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Abstract12

Classical models of perceptual decision-making assume that animals use a single, consistent strat-13

egy to form decisions, or that decision-making strategies evolve slowly over time. Here we present14

new analyses suggesting that this common view is incorrect. We analyzed data from two mouse15

decision-making experiments and found that choice behavior relies on an interplay between multiple16

interleaved strategies. These strategies, characterized by states in a hidden Markov model, persist17

for tens to hundreds of trials before switching, and may alternate multiple times within a session.18

The identified strategies were highly consistent across animals, consisting of a single “engaged”19

state, in which decisions relied heavily on the sensory stimulus, and several biased or disengaged20

states in which errors frequently occurred. These results provide a powerful alternate explanation21

for “lapses” often observed in psychophysical experiments, and suggest that standard measures of22

performance mask the presence of dramatic changes in strategy across trials.23

1 Introduction24

Understanding the computations performed in the brain will require a comprehensive characterization of25

behavior [6, 29, 39]. This realization has fueled a recent surge in methods devoted to the measurement,26

quantification, and modeling of natural behaviors [2, 12, 37, 59, 67]. Historically, studies of perceptual27

decision-making behavior have tended to rely on models derived from signal detection theory (SDT)28

[30, 38] or evidence accumulation [8, 27, 52]. More recently, approaches based on reinforcement29

learning have also been used to model the effects of context, reward, and trial-history on perceptual30

decision-making behavior [34, 40, 50, 63]. In all cases, however, these approaches describe decision-31

making in terms of a single strategy that does not change abruptly across trials or sessions.32
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One puzzling aspect of sensory decision-making behavior is the presence of so-called “lapses”, in33

which an observer makes an error despite the availability of strong sensory evidence. The term itself34

suggests an error that arises from a momentary lapse in attention or memory, as opposed to an inability35

to perceive the sensory stimulus. Lapses arise in all species, but are surprisingly frequent in rodent36

experiments, where lapses can comprise up to 10-20% of all trials [35, 48, 49].37

The standard approach for modeling lapses involves augmenting the classic psychometric curve with a38

“lapse parameter”, which characterizes the probability that the observer simply ignores the stimulus on39

any given trial [13, 51, 66]. This model can be conceived as a mixture model [20, 43, 46] in which, on40

every trial, the animal flips a biased coin to determine whether or not to pay attention to the stimulus41

when making its choice. Previous literature has offered a variety of explanations for lapses, including42

inattention, motor error, and incomplete knowledge of the task [13, 41, 66], and recent work has argued43

that they reflect an active process of uncertainty-guided exploration [50]. However, a common thread44

to these explanations is that lapses arise independently across trials, in a way that does not depend on45

the time course of other lapses.46

Here we show that lapses do not arise independently, but depend heavily on latent states that underlie47

decision-making behavior. We use model-based analyses to show that mice rely on discrete decision-48

making strategies that persist for tens to hundreds of trials. One of these states corresponds to an49

“engaged” strategy, in which the animal’s choices are strongly influenced by the sensory stimulus, while50

other states correspond to biased or weakly stimulus-dependent strategies. These analyses show that51

lapses arise primarily during long sequences of trials when the animal is in a biased or disengaged52

state. Conversely, we find that animals with high apparent lapse rates may nevertheless be capable of53

high-accuracy performance for extended blocks of trials.54

Our modeling framework consists of a hidden Markov Model (HMM) with states corresponding to differ-55

ent decision-making strategies. Within each state, the animal’s strategy is parameterized by a Bernoulli56

generalized linear model (GLM). The resulting “GLM-HMM” framework [5, 12, 22] includes the classic57

lapse model as a special case, where the probability of entering the stimulus-independent “lapse state”58

is the same on every trial. However, the framework allows for a variety of more complex behaviors in59

which multiple decision-making strategies trade off in a state-dependent manner over longer timescales.60

We used the GLM-HMM to analyze choice data from two large cohorts of mice performing different61

visual detection tasks [35, 48]. We showed that lapses in these experiments were the result of mice62

switching between relatively engaged and disengaged decision-making strategies within a session.63

While lapse events are typically expected to last for a single trial, these strategies persisted for tens64

to hundreds of trials. We studied the statistics of data simulated from the best-fitting GLM-HMM, and65

found that the long choice run-lengths (a run refers to a sequence of consecutive trials in which a mouse66

makes the same repeated choice) that are observed in the real data only exist in data simulated from a67

GLM-HMM and not in data simulated from the classic lapse model, indicating that the GLM-HMM better68

captures the true behavior of real mice. Finally, we validated our interpretation of the GLM-HMM’s69

latent states when we compared the response times and violation rates (quantities not used to fit our70

model) associated with engaged and disengaged states. We found that the most extreme response71

times were typically associated with the disengaged states, which is consistent with previous findings72

linking accuracy and response times [32, 53, 61]. Taken together, these results shed substantial new73

light on the factors governing sensory decision-making in rodents, and provide a powerful set of tools74

for identifying hidden states in behavioral data.75
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2 Results76

2.1 The classic lapse model for sensory decision-making77

A common approach for analyzing data from two-choice perceptual decision-making experiments in-78

volves the psychometric curve, which describes the probability that the animal chooses one option79

(e.g., “rightward”) as a function of the stimulus value [13, 51, 66]. The psychometric curve is commonly80

parameterized as a sigmoidal function that depends on a linear function of the stimulus plus an offset81

or bias. This sigmoid rises from a minimum value of γr to a maximal value of 1 − γl, where γr and γl82

denote “lapse” parameters, which describe the probability of of making a rightward or leftward choice83

independent of the stimulus value. Thus, the probability of a rightward choice is always at least γr, and84

it cannot be greater than 1 − γl. In what follows, we will refer to this as the “classic lapse model of85

choice behavior”, which can be written:86

p(yt = 1 | xt) =
(
1− (γr + γl)

) 1

1 + e−xt·w + γr, (1)

where yt ∈ {0, 1} represents the choice (left or right) that an animal makes at trial t, xt ∈ RM is a vector87

of covariates, and w ∈ RM is a vector of weights that describes how much each covariate influences88

the animal’s choice. Note that xt includes both the stimulus and a constant ‘1’ element to capture the89

bias or offset, but it may also include other covariates that empirically influence choice, such as previous90

choices, stimuli, and rewards [11, 25, 44].91

Although the classic lapse model can be viewed as defining a particular sigmoid-shaped curve relating92

the stimulus strength to behavior (Fig. 1c), it can equally be viewed as a mixture model [20, 43, 46].93

In this interpretation, we regard the animal as having an internal state zt that takes on one of two94

different values on each trial, namely “engaged” or “lapse”. If the animal is engaged, it makes its choice95

according to the classic sigmoid curve (which saturates at 0 and 1). If lapsing, it ignores the stimulus96

and makes its choice based only on the relative probabilities of a left and right lapse. Mathematically,97

this can be written:98

p(yt = 1 | xt) =

{
1

1+e−w·xt , zt = “engaged”
γr

γr+γl
, zt = “lapse”,

(2)

where p(zt = “lapse”) = (γr + γl) and p(zt = “engaged”) = 1 − (γr + γl). In this interpretation, the99

animal flips a biased coin, with fixed probability (γr + γl), on each trial and then adopts one of two100

strategies based on the outcome—a strategy that depends on the stimulus vs. one that ignores it. Note101

that the animal can make a correct choice in the lapse state through pure luck; we use “lapse” here102

simply to indicate that the animal is not relying on the stimulus when making its decision.103

Viewing the classic lapse model as a mixture model highlights some of its limitations. First, it assumes104

that animals switch between only two decision-making strategies. Second, it assumes that lapses occur105

independently in time, according to an independent Bernoulli random variable on each trial. Finally, the106

model assumes that choices in the “lapse” state are fully independent of the stimulus, neglecting the107

possibility that they are still weakly stimulus dependent [13], or are influenced by other covariates such108

as reward or choice history [11, 25]. These limitations motivate us to consider a more general family of109

models, which includes the classic lapse model as a special case.110
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Figure 1: The GLM-HMM generalizes the classic lapse model. (a) The classic lapse model formulated as
a 2-state GLM-HMM. Each box represents a generalized linear model (GLM) describing how the probability of
a binary choice depends on the stimulus in the corresponding state: “engaged” (left) or “lapse” (right). Arrows
between boxes indicate the transition probabilities between states. Note that the probability of switching to the
engaged state at the next trial is always 0.8 (it is independent of state at the current trial) and similarly there is
always a 0.2 probability of entering the lapse state on each trial. (b) An example (simulated) sequence for the
animal’s internal state when the transitions between states are governed by the probabilities in (a). Notice that the
lapse state tends to last for only a single trial at a time. (c) Psychometric function arising from the model shown in
(a), depicting the probability of a rightward choice as a function of the stimulus. The parameters γr and γl denote
the probability of a rightward and leftward lapse, respectively. As specified by the transition probabilities in (a), the
total lapse probability for this model is γr + γl = 0.2. (d) Example 3-state GLM-HMM, with three different GLMs
corresponding to different decision-making strategies (labeled “engaged”, “disengaged” and “right biased”). The
high self-transition probabilities of 0.95, 0.86 and 0.75 ensure that these states typically persist for many trials in
a row. (e) An example sequence for the animal’s internal state sampled from the GLM-HMM shown in (d). (f)
The psychometric curve arising from the model shown in (d), which corresponds to a weighted average of the
psychometric functions associated with each state. Note that although the decision-making models shown in (a)
and (d) are vastly different, the resulting psychometric curves are nearly identical, meaning that the psychometric
curve alone cannot be used to distinguish them.

2.2 A model for decision-making with multiple strategies111

Recognizing the limitations of the classic lapse model, we propose to analyze perceptual decision-112

making behavior using a framework based on Hidden Markov models (HMMs) with Bernoulli general-113

ized linear model (GLM) observations [12, 22]. The resulting “GLM-HMM” framework, also known as114

an input-output HMM [5], allows for an arbitrary number of states, which can persist for an extended115

number of trials and exhibit different dependencies on the stimulus and other covariates.116

A GLM-HMM has two basic pieces: an HMM governing the distribution over latent states, and a set of117

state-specific GLMs, specifying the decision-making strategy employed in each state (see Fig. 1). For118

a GLM-HMM with K latent states, the HMM has a K ×K transition matrix A specifying the probability119

of transitioning from any state to any other,120

p(zt = k | zt−1 = j) = Ajk, (3)

where zt−1 and zt indicate the latent state at trials t − 1 and t, respectively. The “Markov” property of121
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the HMM is that the state on any trial depends only on the state from the previous trial, and the “hidden”122

property refers to the fact that states are latent or hidden from external observers. For completeness,123

the HMM also has a distribution over initial states, given by a K-element vector π whose elements sum124

to 1, giving p(z1 = k) = πk.125

To describe the state-dependent mapping from inputs to decisions, the GLM-HMM contains K inde-126

pendent Bernoulli GLMs, each defined by a weight vector specifying how inputs are integrated in that127

particular state. The probability of a rightward choice (yt = 1) given the input vector xt and the latent128

state zt is given by129

p(yt = 1 | xt, zt = k) =
1

1 + e−xt·wk
, (4)

where wk ∈ RM denotes the GLM weights for latent state k ∈ {1, . . . ,K}. The full set of parameters130

for a GLM-HMM can therefore be denoted Θ ≡ {π, A, {wk}Kk=1}, consisting of an initial probability131

vector π, a transition matrix A, and a set of state-specific GLM weights {wk}Kk=1.132

It is worth noting that the classic lapse model described in Eq. 1 and Eq. 2 corresponds to a restricted133

2-state GLM-HMM. If we consider state 1 to be “engaged” and state 2 to be the “lapse” state, then the134

state-1 GLM has weights w1 =w, and the state-2 GLM has all weights set to 0 except the bias weight,135

which is equal to − log(γl/γr). The transition matrix has identical rows, with probability 1 − (γr + γl)136

of going into state 1 and probability (γr + γl) of going into state 2 at the next trial, regardless of the137

current state. This ensures that the probability of a lapse on any given trial is stimulus-independent and138

does not depend on the previous trial’s state. Fig. 1a-c shows shows an illustration of the classic lapse139

model formulated as a 2-state GLM-HMM.140

However, there is no general reason to limit our analyses to this restricted form of the GLM-HMM. By141

allowing the model to have more than two states, multiple states with non-zero stimulus weights, and142

transition probabilities that depend on the current state, we obtain a model family with a far richer set of143

dynamic decision-making behaviors. Fig. 1d shows an example GLM-HMM with three latent states, all144

of which have high probability of persisting for multiple trials. Intriguingly, the psychometric curve arising145

from this model (Fig. 1f) is indistinguishable from that of classic lapse model. Thus, the psychometric146

curve, which is simply the average probability of a choice given the stimulus, cannot provide insight into147

the dynamics of decision-making across trials.148

2.3 Mice switch between multiple strategies during visual decision-making149

To examine whether animals employ multiple strategies during decision-making, we fit the GLM-HMM150

to behavioral data from two binary perceptual decision-making tasks (see Methods 4.1). First, we fit the151

GLM-HMM to choice data from 37 mice performing a visual detection decision-making task developed152

in [10] and adopted by the International Brain Laboratory (IBL) [35]. During the task, a sinusoidal grating153

with contrast between 0 and 100% appeared either on the left or right side of the screen (Fig. 2a). The154

mouse had to indicate this side by turning a wheel. If the mouse turned the wheel in the correct direction,155

it received a water reward; if incorrect, it received a noise burst and an additional 1-second timeout. We156

analyzed choice data from animals with at least 3000 trials of data (across multiple sessions) after they157

had successfully learned the task (see Methods 4.4).158

We modeled the animals’ decision-making strategies using a GLM-HMM with four inputs: (1) the159

(signed) stimulus contrast, where positive values indicate a right-side grating and negative values indi-160

cate a left-side grating; (2) a constant offset or bias; (3) the animal’s choice on the previous trial; and161

(4) the stimulus side on the previous trial. A large weight on the animal’s previous choice gives rise162

to a strategy known as “perserveration” in which the animal makes the same choice many times in a163
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row, regardless of whether it receives a reward. A large weight on the previous stimulus side, which164

we refer to as the “win-stay, lose-switch” regressor, gives rise to the well-known strategy in which the165

animal repeats a choice if it was rewarded, and switches choices if it was not. Note that for the IBL task166

in question, bias and trial-history dependencies were sub-optimal, meaning that the maximal-reward167

strategy was to have a large weight on the stimulus and zero weights on the other three inputs.168

To determine the number of different strategies underlying decision-making behavior, we fit GLM-HMMs169

with varying numbers of latent states. Note that the 1-state model is simply a standard Bernoulli GLM,170

while the classic lapse model (Eq. 1, Eq. 2) is a constrained version of the 2-state model. We found that171

a 3-state GLM-HMM substantially outperformed models with fewer states, including the classic lapse172

model. The states of the fitted model were readily interpretable, and tended to persist for many trials in173

a row.174

Figures 2 and 3 show results for an example mouse. For this animal, the multi-state GLM-HMM out-175

performed both the standard (1-state) GLM and the classic lapse model, both in test log-likelihood and176

percent correct, with the improvement approximately leveling off at 3 latent states (Fig. 2b-c). Note177

that the test set for this mouse contained 900 trials. Log-likelihood increases of 0.13 bits/trial and 0.09178

bits/trial for the 3-state model over the 1-state model and classic lapse models, respectively, meant that179

the data were (20.13)900 ≈ 1.7 × 1035 and (20.09)900 ≈ 2.4 × 1024 times more likely under the 3-state180

model.181

The transition matrix for the fitted 3-state model describes the transition probabilities between three182

different states, each of which corresponds to a different decision-making strategy (Fig. 2d). Large183

entries along the diagonal of this matrix, ranging between 0.94 and 0.98, indicate a high probability184

of remaining in the same state for multiple trials. The other set of inferred parameters were the GLM185

weights, which define how the animal makes decisions in each state (Fig. 2e). One of these GLMs186

(“state 1”) had a large weight on the stimulus and negligible weights on other inputs, giving rise to187

high-accuracy performance on the task (Fig. 2f). The other two GLMs (“state 2” and “state 3”), by188

comparison, had small smaller weights on the stimulus, and relatively large bias weights.189

We can visualize the decision-making strategies associated with these states by plotting the corre-190

sponding psychometric curves (Fig. 2g), which show the probability of a rightward choice as a function191

of the stimulus, conditioned on both previous choice and reward. The steep curve observed in state192

1, which exhibited near-perfect performance on high-contrast stimuli and little dependence on previ-193

ous choice or reward, led us to call it the ‘engaged’ state. By comparison, the psychometric curves194

for states 2 and 3 reflected large leftward and rightward biases, respectively. They also had relatively195

large dependence on previous choice and reward, as indicated by the gap between solid and dashed196

lines. While this mouse had an overall accuracy of 80%, it achieved 90% accuracy in engaged state,197

compared to only 60% and 58% accuracy in the two biased states (Fig. 2f).198

To gain insight into the temporal fluctuations in decision-making behavior, we used the fitted 3-state199

model to compute the posterior probability over the mouse’s latent state across trials (Fig. 3). These200

probabilities, formally given by p(zt = k | {xt, yt}Tt=1), reflect the experimenter’s ability to infer the201

animal’s state on any given trial from the entire sequence of choices and inputs during a session.202

Fig. 3a shows state probabilities for three example sessions (Note that we examined only the first 90203

trials of each session, when the stimulus statistics were stationary; see Methods Sec. 4.4 for details).204

Contrary to the predictions of the classic lapse model, strategies persisted for many trials at a time.205

Remarkably, the most probable state often had probability close to 1, indicating that we can be highly206

confident about the mouse’s internal state given the observed data.207

If we assign each trial to its most probable state, this mouse spent approximately 69% of all trials (out of208

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2021. ; https://doi.org/10.1101/2020.10.19.346353doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.346353
http://creativecommons.org/licenses/by-nc-nd/4.0/


7

-100 0 100
stimulus

0

0.5

1

p(
"R

")

all trials

-100 0 100
stimulus

0

0.5

1

p(
"R

")

state 1 
("engaged")

state 2 
("biased left")

state 3 
("biased right")

model
data

1 L. 2 3 4 5
# states

0.30

0.35

0.40

0.45

te
st 

LL
 (b

its
/tr

ial
)

1 L. 2 3 4 5
# states

78

80

82

84

pr
ed

ict
ive

 a
cc

. (
%

)

stim
ulu

s
bia

s
pre

v. 

cho
ice

win-s
tay

-

los
e-s

witch

0

5

GL
M

 w
eig

ht

All 1 2 3
state

50

75

100

ac
cu

ra
cy

 (%
)

ca

state 1

Lapse 
model

b

d e

g

1 2 3
state t

1

2

3

sta
te

 t-
1

0.98 0.01 0.01

0.04 0.94 0.02

0.04 0.01 0.96

f

80
90

60 58

wa
s r

ew
ar

de
d?

 R

N

L

Y

prev. choice

h

state 2

state 3

Figure 2: GLM-HMM analysis of choice behavior of an example IBL mouse. (a) Schematic for visual decision-
making task, which involved turning a wheel to indicate whether a Gabor patch stimulus appeared on the left or
right side of the screen [10, 35]. (b) Model comparison between GLM-HMMs with different numbers of latent
states, as well as classic lapse model (labeled ‘L’) using 5-fold cross-validation. Normalized log-likelihood in units
of bits/trial was computed relative to a ‘null’ Bernoulli coin flip model (see Methods). A black rectangle highlights
the log-likelihood for the 3-state model, which we used for all subsequent analyses. (c) Test set predictive
accuracy for each model, indicating the percent of held-out trials where the model successfully predicted the
mouse’s true choice. (d) Inferred transition matrix for best-fitting 3 state GLM-HMM for this mouse. Large entries
along the diagonal indicate a high probability of remaining in the same state. (e) Inferred GLM weights for the
3-state model. State 1 weights have a large weight on the stimulus, indicating an “engaged” or high-accuracy
state. In states 2 and 3, the stimulus weight is small, and the bias weights give rise to large leftward (state 2) and
rightward (state 3) biases. (f) Overall accuracy of this mouse (grey), and accuracy for each of the three states.
(g) Psychometric curve for each state, conditioned on previous reward and previous choice. (h) The standard
psychometric curve for all choice data from this mouse, which can be seen to arise from the mixture of the three
per-state curves shown in (g). Empirical data are shown on top of the fit curve, as are 95% confidence intervals.

5040 total trials over 56 sessions) in the engaged state, compared to 15% and 16% of trials in the biased209

left and rightward states (Fig. 3c). Moreover, the mouse changed state at least once within a session in210

roughly 71% of all 90-trial sessions, and changed multiple times in 59% of sessions (Fig. 3d). This rules211

out the possibility that the states merely reflect the use of different strategies on different days. Rather,212
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Figure 3: Inferred state dynamics for example IBL mouse. (a) Posterior state probabilities for three example
sessions, revealing high levels of certainty about the mouse’s internal state, and showing that states typically
persisted for many trials in a row. (b) Average trajectories of state probabilities within a session, computed over
56 sessions. Error bars indicate ±1 standard error of the mean. (c) Fractional occupancies for the three states
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the mouse tended to remain in an engaged, high-performance state for tens of trials at a time, with213

lapses arising predominantly during interludes when it adopted a left-biased or right-biased strategy214

for multiple trials in a row. The multi-state GLM-HMM thus provides a very different portrait of mouse215

decision-making behavior than the basic GLM or lapse model.216

2.4 State-based strategies are consistent across mice217

To assess the generality of these findings, we fit the GLM-HMM to the choice data from 37 mice in the218

IBL dataset [35] (Fig. 4). We found that the results shown for the example animal considered above219

were broadly consistent across animals. Specifically, we found that the 3-state GLM-HMM strongly220

outperformed the basic GLM and classic lapse model in cross-validation for all 37 mice (Fig. 4a and221

Fig. S5). On average, it predicted mouse choices with 4.2% higher accuracy than the basic GLM (which222

had an average prediction accuracy of 78%), and 2.8% higher accuracy than the classic lapse model223

(Fig. 4b). Furthermore, for one animal the improvement in prediction accuracy for the 3 state GLM-HMM224

was as high as 12% relative to the basic GLM, and 7% relative to the classic lapse model.225

Although performance continued to improve slightly with four and even five latent states, we will focus226

our analyses on the 3-state model for reasons of simplicity and interpretability. Supplementary figure227

S8 provides a full analysis of 4-state model, showing that it tended to divide the engaged state from the228
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Figure 4: Model fits to full population of 37 IBL mice. (a) Change in test log-likelihood as a function of number
of states relative to a (1-state) GLM, for each mouse in the population. The classic lapse model, a restricted
form of the 2-state model, is labeled ‘L’. Each trace represents a single mouse. Solid black indicates the mean
across animals, and the dashed line indicates the example mouse from Figs. 2 and 3. The rounded rectangle
highlights performance of the 3-state model, which we selected for further analyses. (b) Change in predictive
accuracy relative to a basic GLM for each mouse, indicating the percentage improvement in predicting choice.
(c) Grey dots correspond to 2017 individual sessions across all mice, indicating the fraction of trials spent in
states 1 (engaged) and 2 (biased left). Points at the vertices (1,0), (0,1), or (0,0) indicate sessions with no
state changes, while points along the sides of the triangle indicate sessions that involved only 2 of the 3 states.
Red dots correspond the same fractional occupancies for each of the 37 mice, revealing that the engaged state
predominated, but that all mice spent time in all 3 states. (d) Inferred GLM weights for each mouse, for each of
the three states in the 3-state model. The solid black curve represents a global fit using pooled data from all mice
(see Algorithm 1); the dashed line is the example mouse from Fig. 2 and Fig. 3. (e) Histogram of expected dwell
times across animals in each of the three states, calculated from the inferred transition matrix for each mouse.

3-state model into two “sub-states” that differed slightly in accuracy.229

Fits of the 3-state GLM-HMM exhibited remarkable consistency across mice, with a majority exhibiting230

states that could be classified as “engaged”, “biased-left”, and “biased-right” (Fig. 4d). (See Methods231

section 4.1.5 for details about the alignment of states across mice). While we plot inferred transition232

matrices for all 37 mice in supplementary figure S6, here we used the diagonal elements of each matrix233

to compute an expected dwell time for each animal in each state (Fig. 4e). This revealed a median234

dwell time, across animals, of 24 trials for the engaged state, versus 13 and 12 trials for the biased-235
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left and biased-right states, respectively. Thus, mice tended to remain engaged for longer periods236

than they remained in either biased state, though the average duration of biased states still departed237

dramatically from the assumptions of the classic lapse model. For context, for the classic lapse model238

and a lapse rate of 20%, the expected dwell time in the lapse state is just 1
1−0.2 = 1.25 trials. We239

analyzed the distribution of state dwell times inferred from data and found they were well approximated240

by a geometric distribution, matching the theoretical distribution of data sampled from a Hidden Markov241

Model (Fig. S9 and Fig. S10).242

Finally, we examined the fraction of trials per session that mice spent in each of the three states (Fig. 4c).243

To do so, we used the fitted model parameters to compute the posterior probabilities over state, and244

assigned each trial to its most likely state. The resulting “fractional occupancies” revealed that the me-245

dian mouse spent 69% of its time in the engaged state, with the best mice exceeding 90% engagement.246

Moreover, the majority of sessions (83% of 2017 sessions across all animals) involved a switch between247

two or more states; in only 17% of sessions did a mouse remain in the same state for an entire 90-trial248

session.249

2.5 The GLM-HMM captures the statistics of real data250

In order to understand why the GLM-HMM outperformed the classic lapse model, we compared the251

statistics of real data with data simulated from the two models. The GLM-HMM incorporates long252

temporal dependencies in strategy, which may induce particular temporal patterns in the observed253

choice data. Hence, a natural statistic to examine is choice run-length, where a run refers to a sequence254

of consecutive trials in which the mouse makes the same repeated choice (Fig. 5a). Figure 5b shows255

the distribution of choice run-lengths observed in the 181,530 trials of real mouse data (red), as well as256

the choice run-lengths that would arise if the mice performed the task perfectly (grey). Under perfect257

performance, only 2% of trials would occur in runs of length 10 or greater, whereas 19% of trials occur258

in such runs in the real data. A good model of mouse decision-making behavior should be able to259

capture the heavy tail of this run-length distribution.260

We examined the distribution of simulated run-lengths generated by three different fitted models: (1)261

the classic lapse model with only a bias and stimulus weight; (2) the classic lapse model with the262

usual 4 inputs (stimulus, bias, previous choice and win-stay-lose-switch); (3) the full 3-state GLM-HMM.263

The stimulus-only lapse model had the largest discrepancy with real data, with a pronounced under-264

prediction of long runs Fig. 5c). The full lapse model performed better, confirming that the trial-history265

regressors were instrumental in producing longer run-lengths. However, the full 3-state GLM-HMM266

performed far better than either lapse model, generating a run-length distribution that was closest to the267

real data.268

We also examined a related statistic, given by the number of runs lasting more than 5 trials (Fig. 5d).269

The real data contained 6,111 runs longer than 5 trials. This was consistent with datasets simulated270

from the fitted GLM-HMM, but far greater than the number produced by either of the two lapse models.271

Thus, compared to the classic lapse model, the GLM-HMM was far better able to account for the tem-272

poral distribution of mouse choices, in particular the tendency to produce long sequences of repeated273

choices.274
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Figure 5: Simulated data from GLM-HMM captures statistics of real choice data. (a) Definition of choice
run-length. Shown are the choices that an IBL mouse made over the course of 30 trials (red, bottom), as well as
the choices it should have made during that same time course if the mouse performed the task perfectly (grey,
top). Choice run-length is defined as the number of trials during which a mouse repeated the same decision
(example choice run-lengths of 2, 3 and 9 trials are highlighted). (b) Red: fraction of trials in choice run-lengths
of between 1 and 30 trials when calculated from all trials for all mice. Grey: distribution of choice run-lengths
that would have been obtained if IBL mice performed the task perfectly. (c) Difference in choice run-length
distribution for simulated data (from three different models) compared to the red distribution shown in (b). Models
used to simulate data were a lapse model with only stimulus intensity and bias regressors, a lapse model that
also included history regressors (previous choice and win-stay-lose-switch), and a 3 state GLM-HMM (also with
history regressors). We simulated 100 example choice sequences from each model and calculated the mean
histogram of choice run-lengths across the 100 simulations. This was then subtracted from the red histogram
of (b). (d) Number of choice run-lengths with more than 5 trials for each model simulation used in (c). In the
181,530 trials of real choice data, there were 6111 run-lengths lasting more than 5 trials (as shown with the
dashed line). When we simulated choice data according to each of the models shown in (c), we found that only
the GLM-HMM could generate simulations with as many run-lengths lasting more than 5 trials as in the real data
(15/100 simulations had 6111 or more run-lengths lasting more than 5 trials for the GLM-HMM compared to 0/100
for both of the lapse models).

2.6 Data provide evidence for discrete, not continuous, states275

The GLM-HMM describes perceptual decision-making in terms of discrete states that persist for many276

trials in a row before switching. However, the model’s dramatic improvement over classic models does277

not guarantee that the states underlying decision-making are best described as discrete. One could278

imagine, for example, that a continuous state governing the animal’s degree of engagement drifts grad-279

ually over time, and that the GLM-HMM simply divides these continuous changes into discrete clusters.280

To address this possibility, we fit the data with PsyTrack, a psychophysical model with continuous latent281

states [55, 56]. The PsyTrack model describes sensory decision-making using an identical Bernoulli282

GLM, but with dynamic weights that drift according to a Gaussian random walk (see Methods sec. 4.3).283
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Figure 6: Mice have discrete—not continuous—decision-making states. (a) Cross-validation performance
of the 3 state GLM-HMM compared to PsyTrack [55, 56] for all 37 mice studied (each individual line is a separate
mouse; black is the mean across animals). Test loglikelihood is considerably higher for all mice for the GLM-
HMM than for PsyTrack, which assumes that the mouse uses a set of smoothly evolving GLM weights to make its
decision at each trial. (b) As a sanity check, we simulated datasets from a 3 state GLM-HMM with the parameters
for each simulation chosen as the best fitting parameters for a single mouse. We then fit the simulated data both
with PsyTrack and with the 3 state GLM-HMM in order to check that the 3 state GLM-HMM best described the
data. (c) We did the opposite and fit PsyTrack to the animals’ data and then generated data according to an
AR(1) model with parameters specified using the PsyTrack fits (see section 4.3 for full details). By performing
cross-validation on the simulated data, we confirmed that we could use model comparison to distinguish between
discrete and continuous decision-making behavior in choice data.

Although PsyTrack has previously been used to characterize slow changes that arise over the course of284

learning, here we used it to assess whether the decision-making in well-trained mice is better described285

using weights that drift continuously or that switch between three discrete states. For all 37 mice in286

our dataset, the 3-state GLM-HMM achieved substantially higher test log-likelihood than the PsyTrack287

model (Fig. 6a). Model selection also correctly identified simulated data from the GLM-HMM, whereas288

datasets simulated from a matched first-order autoregressive model had roughly equal log-likelihood289

under the two models (Fig. 6b-c).290

We also used the GLM-HMM to look for evidence of discrete state changes in the raw behavioral time291

series data itself. Fig. S11 shows the resulting plots, revealing that an identified state change from292

engaged to one of the two biased states corresponded to a drop of approximately 20% in accuracy,293

with accuracy approximately constant during the 5 trials before and after the switch. This suggests294

that—at least for the state changes inferred using the fitted model—that performance did not appear to295

descend gradually over the 10 trials spanning the state change, but rather appeared consistent with a296

discrete drop in accuracy. We performed a similar analysis for datasets simulated from a GLM-HMM and297

from a continuous autoregressive model (see Section 4.3). Both models exhibited step-like changes298

in accuracy after an inferred state change. However, only the GLM-HMM produced the large jump in299

accuracy found in real data.300
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2.7 Mice switch between multiple strategies in a second task301

To ensure that our findings were not specific to the IBL task or training protocol, we examined a second302

mouse dataset with a different sensory decision-making task. Odoemene et al. [48] trained mice to303

report whether the flash rate of an LED was above or below 12Hz by making a right or left nose poke304

(Fig. 7a). Once again, we found that the multi-state GLM-HMM provided a far more accurate description305

of mouse decision-making than a basic GLM or the classic lapse model (Fig. 7b). Although the per-306

formance of the 3-state and 4-state models was similar, we focused on the 4-state model because—in307

addition to having slightly higher test log-likelihood for a majority of animals—the 4-state model bal-308

anced simplicity and interpretability, with each state in the 4-state model corresponding to a distinct309

behavioral strategy. (See supplementary figures S17 and S18 for a comparison to 3-state and 5-state310

fits). The 4-state model exhibited an average improvement of 0.025 bits/trial over the classic lapse311

model, making the test dataset approximately 1 × 1018 times more likely under the GLM-HMM than to312

the lapse model.313

Fig. 7d shows the inferred GLM weights associated with each state in the 4-state GLM-HMM, while314

Fig. 7e shows the associated psychometric curves, conditioned on previous choice and previous re-315

ward. Based on these curves, we labeled the four states as (from left to right): “engaged”, “biased left”,316

“biased right” and “win-stay”. The combination of stimulus and choice history weights for this fourth317

state gave rise to a large separation between psychometric curves conditioned on previous reward; the318

resulting strategy could be described as “win-stay” because the animal tended to repeat a choice if it319

was rewarded. (However, it did not tend to switch if a choice was unrewarded). Accuracy was highest320

in the engaged state (92%) and lowest in the biased-left (67%) and biased right states (77%), and took321

an intermediate value in the win-stay state (83%).322

Similar to the IBL dataset, the identified states tended to persist for many trials in a row before switching.323

As before, we used the diagonal entries of the inferred transition matrices to compute the expected dwell324

time for each animal for each state, producing median expected dwell times of 63, 34, 49 and 13 trials,325

respectively (Fig. 7f). These dwell times were nevertheless much shorter than the length of a session,326

which lasted 650 trials on average in this experiment. This indicates that the mice in the Odoemene327

et al. [48] task, like the IBL mice, typically switched strategies multiple times per session.328

Finally, we used the fitted model to examine the temporal evolution of latent states within a session.329

Figure 7g shows the average posterior state probabilities over the first 200 trials in a session for two330

example mice and the average over all mice (Fig. S19 shows average posterior state probabilities for331

each individual mouse in the cohort separately). These trajectories reveal that mice typically began a332

session in one of the two biased states, and had a low probability of entering the engaged state within333

the first 50 trials: mice used these initial trials of a session to “warm-up” and gradually improve their334

performance [34]. This represents a substantial departure from the IBL mice, the majority of which had335

a high probability of being engaged from the very first trial, and had relatively flat average trajectories336

over the first 90 trials of a session (Fig. 3 and Fig. S7). We also examined whether the effects of fatigue337

or satiety could be observed in the average state probabilities at the end of sessions, but did not find338

consistent patterns across animals (Fig. S20).339
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Figure 7: GLM-HMM application to second mouse dataset
(a) Mice in the Odoemene et al. [48] task had to indicate if the flash rate of light pulses from an LED panel was
above or below 12Hz by nose poking to the right or left.
(b) Left: test set log-likelihood for 15 mice in this dataset. Black is the mean across animals. Right: change in test
set predictive accuracy relative to a GLM for each mouse in the dataset. Black is the mean across all animals.
(c) The psychometric curve when all data from all mice are concatenated together.
(d) The retrieved weights for a 4 state GLM-HMM for each mouse. The covariates influencing choice in each of
the four states are the stimulus frequency, the mouse’s bias, its choice on the previous trial (‘p.c’) and the product
of reward and choice on the previous trial (‘w.s.l.s.’). Black indicates the global fit across all mice.
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Figure 7 (previous page):
(e) The probability that the mouse went rightward in each of the four states as a function of the stimulus, previous
choice and reward on the previous trial (each of the four lines corresponds to a different setting of previous choice
and previous reward; the four lines are calculated using the global fit weights shown in d). We also report animals’
task accuracy (labeled ‘acc.’) when in each of the four states.
(f) The expected dwell times for each mouse in each state, as obtained from the inferred transition matrices (for
the full transition matrices for all mice, see Fig. S16). Black indicates the median dwell time across animals. We
report the fractional occupancies (labeled ‘occ.’ ) of the four states across all mice.
(g) Left and middle: average (across 20 sessions) posterior state probabilities for the first 200 trials within a
session for two example mice; error bars are standard errors. Right: posterior state probabilities for first 200 trials
when averaged across all mice. Error bars indicate standard deviation across mice.

2.8 External correlates of engaged and disengaged states340

One powerful feature of the GLM-HMM is the fact that it can be used to identify internal states from341

binary decision-making data alone. However, it is natural to ask whether these states manifest them-342

selves in other observable aspects of mouse behavior. In other words, does a mouse behave differently343

when it is in the engaged state than in a biased state, above and beyond its increased probability of344

making a correct choice? To address this question, we examined response times and violation rates,345

two observable features that we have did not incorporate into the models.346

Previous literature has revealed that humans and monkeys commit more errors on long duration trials347

than short duration trials [32, 53, 61]. We, thus, looked at the distributions of response times for the348

engaged state, compared to for the disengaged states (the biased left and biased right states), for mice349

performing the IBL task. Within the IBL task, response time is the time from when the stimulus appears350

on the screen to when the animal receives feedback on the outcome of its decision (when it receives a351

reward, or hears an auditory cue to indicate an error trial). The median response time across trials and352

across IBL mice was just 0.34s, but it was not uncommon for trials to last much longer (up to tens of353

seconds). We show response time Q-Q plots for each of the 37 IBL mice in Fig. 8a. The engaged and354

disengaged response time distributions were statistically different for all 37 mice (Komogorov-Smirnov355

tests reject the null hypothesis with p < 0.05 for all 37 mice). Examining the Q-Q plots, it is clear that356

the most extreme response times for each animal were typically associated with the lower accuracy357

disengaged states.358

Figure 8b shows the difference in the 90th quantile response times for the disengaged and engaged359

states for each mouse. For the majority of mice, 90th quantile response times were longer for the360

disengaged states compared to for the engaged state. The median difference in the 90th quantile361

response time, across all mice, was 0.95s (shown in blue) and this was statistically different from 0s362

(we calculate 95% bootstrap confidence intervals).363

We also examined the difference in violation rates for each animal in the Odoemene et al. [48] dataset364

for the disengaged (states 2, 3 and 4) compared to engaged states (state 1), and plot these in Fig. 8c.365

Violation trials are those where the mouse did not make a decision within the task-specific response366

period after the appearance of the stimulus. The mean violation rate across all mice and all trials in367

this dataset was 21% (much higher than in the IBL dataset, where the violation rate was less than368

1%), and we found that, across all mice, the violation rate was 3.2% higher in the disengaged states369

compared to in the engaged state (shown in blue). Given that no information about response times or370

violation rates was used for to train the GLM-HMM, these analyses provide a useful external validation371

for our interpretation of the GLM-HMM’s latent states as corresponding to ‘engaged’ and ‘disengaged’372
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Figure 8: Behavioral correlates for GLM-HMM states. (a) Q-Q plots for response time distributions associated
with engaged and disengaged (biased left/rightward) states for IBL mice. Each curve is an individual animal, and
the red dots indicate the 90th quantile response times. For all 37 mice, a KS-test indicated that the engaged and
disengaged response time distributions were statistically different. Furthermore, as can readily be observed from
the Q-Q plots, the longest response times typically occurred in the disengaged state. (b) Difference in the 90th
quantile response time for the engaged and disengaged states for each IBL animal, as well as 95% bootstrap
confidence intervals. Blue is the median difference across mice (0.95s), as well as the 95% bootstrap confidence
interval. (c) Violation rate differences for mice in the Odoemene et al. [48] dataset when in the engaged (state
1) and disengaged states (states 2, 3, 4). Error bars are 95% bootstrap confidence intervals; blue indicates the
mean difference in violation rate across all mice (3.2%).

behavior.373

3 Discussion374

In this work, we used the GLM-HMM framework to identify hidden states from perceptual decision-375

making data. Mouse behavior in two different perceptual decision-making tasks [35, 48] was far better376

described by a GLM-HMM with sustained engaged and disengaged or biased states. Unlike the classic377

lapse model, these states alternated on the timescale of tens to hundreds of trials. Additionally we378

found that, for most of the IBL mice, the slowest response times were associated with the disengaged379

states, and that mice performing the Odoemene et al. [48] task had higher violation rates in the less380

engaged states. These behavioral correlates for the GLM-HMM’s latent states provide independent381

validation for our interpretation of the retrieved states as corresponding to ‘engaged’ and ‘disengaged’382

behavior.383

While we found similarities in the strategies pursued by mice performing the different visual detection384

tasks, we also found some differences. In particular, we found that mice performing the Odoemene385

et al. [48] task often “warmed up” to the task [34], only reaching their high accuracy, engaged state386

after one hundred or so trials. In comparison, mice performing the IBL task often started the session in387

their engaged states. This ability to infer the state or strategy employed by an animal at different times388
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during a session will be useful for characterizing differences in performance across sessions and across389

animals. It will also provide a powerful tool for neuroscientists studying the neural mechanisms that390

support decision-making, as different strategies may well rely on different circuits or different patterns391

of neural activity [18, 19, 21, 33, 62, 69].392

Although we found evidence of warm-up behavior at the start of sessions in the Odoemene et al. [48]393

mice, we were somewhat surprised to find few signatures of satiation or fatigue toward the end of a394

session. This might be due to the fact that sessions were typically of fixed duration, and may have395

ended before mice had a chance to grow satiated or fatigued. One future direction will be to apply396

the GLM-HMM to experiments with longer sessions, where it may be useful for detecting changes in397

behavior reflecting satiety or fatigue.398

Another exciting future direction will be to explore how the GLM-HMM framework contributes to the399

wider discussion on the observed differences in lapse rates across species [60, 61]. While the lapse400

rates of rodents performing perceptual decision-making tasks are often as high as 10-20% [35, 48, 49],401

lapse rates for non-human primates and humans performing these tasks are often much lower [60, 61].402

Could these differences be due to different species using different strategies during these tasks? We403

look forward to applying the model to data from rats, non-human primates, and humans to explore this404

problem further.405

In future work, we will aim to make explicit the connection between the ‘engaged’ and ‘disengaged’406

strategies identified by model and existing measures of arousal and engagement in the literature.407

Identifying the relationship between the GLM-HMM’s hidden states and pupil diameter, low-frequency408

LFP oscillations, spontaneous neuronal firing, noise correlations and the action of neuromodulators409

[14, 31, 54, 64] will be a priority.410

That discrete states underpin mouse choice behavior may also call for new normative models to explain411

why mice may develop these states to begin with [1]. The existence of disengaged and engaged states412

could reflect explore-exploit behavior [15, 16, 50], optimal learning (e.g., [4, 23, 26, 47]), or could simply413

indicate incomplete learning of the task. Another promising direction will be to replace the model’s fixed414

transition matrix with a generalized linear model allowing external covariates to modulate the probability415

of state changes [12]). This would allow us to identify the factors that influence state changes (e.g., a416

preponderance of unrewarded choices) and, potentially, seek to control such transitions.417

While there are many avenues for future research, we believe that these results call for a significant418

rethinking of rodent perceptual decision-making behavior and the methods for analyzing it. Indeed,419

standard analysis methods do not take account of the possibility that an animal makes abrupt changes420

in decision-making strategy multiple times per session. We feel that the ability to infer internal states421

from choice behavior will open up new directions for data analysis and provide new insights into a422

previously inaccessible dimension of perceptual decision-making behavior.423

4 Methods424

4.1 Inference of GLM-HMM parameters425

4.1.1 GLM-HMM objective function426

We fit the parameters of the GLM-HMM, Θ ≡ {π, A, {wk}Kk=1}, to choice data using Maximum A Pos-427

teriori (MAP) estimation via the Expectation Maximization (EM) algorithm [17]. This algorithm iteratively428
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maximizes the log-posterior of the parameters given the data, given (up to an unknown constant) by:429

f(Θ|y, {x}Tt=1) ≡ log
∑
s

∑
zs

p(ys, zs|{xs,t}Tt=1,Θ) + log p(Θ), (5)

where s indexes the session in which the data was collected (out of S sessions), and the sum over430

zs is over all possible state allocations for trials in that session. The prior distribution over the model431

parameters p(Θ) was given by:432

p(Θ) ≡ p(W )p(A)p(π) =

 K∏
j=1

N (wj |0, σ2I)

 K∏
j=1

Dirichlet(Aj |α)

Dirichlet(π|απ). (6)

Here, W ≡ [w1 . . . wK ] represents the matrix formed by concatenating the vectors of per-state433

GLM weights, and wj ∈ RM denotes the GLM weights for state j, where M = 4 was the number of434

inputs or covariates (including the bias). For each weight vector, we used an independent zero-mean435

Gaussian prior with variance σ2. For the (K × K) transition matrix A, we placed an independent436

Dirichlet prior distribution over each row Ai. The Dirichlet is controlled by a shape parameter α, giving:437

p(Aj |α) =
1

B(α)

∏K
i=1 (Aji)

α−1. We also placed a Dirichlet prior over the initial state distribution with438

απ = 1, which corresponds to a flat prior. In order to select the prior hyperparameters for the transition439

matrix and the weights for a given dataset, we performed a grid search for σ ∈ {0.5, 0.75, 1, 2, 3} and440

α ∈ {1, 2} and selected the set of hyperparameters that resulted in the best performance on a held-out441

validation set. For IBL mice, the prior hyperparameters selected were σ = 2 and α = 2. While for mice442

in the Odoemene et al. [48] dataset, the best hyperparameters were σ = 0.75 and α = 2.443

4.1.2 Expectation Maximization Algorithm444

We used the Expectation Maximization (EM) algorithm [17, 45] to maximize the objective function,445

f(Θ|y, {x}Tt=1), given in (Eq. 5) with respect to the GLM-HMM parameters. The E-step of the EM446

algorithm involves forming the Expected Complete log-likelihood (ECLL) using the forward-backward447

algorithm [3]. The ECLL is a lower bound on f(Θ|y, {x}Tt=1) [7, 17, 45], which is then maximized with448

respect to Θ during the M-Step. Concretely, the Expected Complete log-likelihood is:449

ECLL(Θ) ≡
∑
s

∑
zs

p
(
zs|ys, {xs,t}Tt=1,Θ

old) log p
(
zs,ys|Θ, {xs,t}Tt=1

)
+ log p(Θ)

=

S∑
s=1

[ K∑
k=1

γs,1,k logπk +

T∑
t=1

K∑
j=1

K∑
k=1

ξs,t,j,k logAjk +

T∑
t=1

K∑
k=1

γs,t,k log p(ys,t|zs,t = k,xs,t,wk)

]
+ log p(Θ)

(7)

where we substituted the definition of the joint distribution,450

p(y, z|{x}Tt=1,Θ) = p(z1)p(y1|z1,x1)

T∏
t=2

p(zt|zt−1)p(yt|zt,xt) (8)

in order to get to the second line. γs,t,k ≡ p
(
zs,t = k|ys, {xs,t}Tt=1,Θ

old
)

and ξs,t,j,k ≡ p
(
zs,t+1 =451

k|zs,t = j,ys, {xs,t}Tt=1,Θ
old
)

are the quantities estimated through the forward-backward algorithm, as452

we will describe below; p(ys,t|zs,t = k,xs,t,wk) is obtained from Eq. 4.453
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4.1.3 Expectation Step454

During the E-Step of the EM algorithm, the quantities {γs,t,k} and {ξs,t,j,k} were computed using the455

forward-backward algorithm [3] at the current setting of the GLM-HMM parameters, Θold. In particular,456

the forward-backward algorithm involves calculating as,t,k ≡ p
(
ys,[0:t], zs,t = k|{xt′}tt′=1

)
and bs,t,k ≡457

p
(
ys,[t+1:T ]|zs,t = k, {xt′}Tt′=t+1

)
so as to be able to form γs,t,k and ξs,t,j,k as follows:458

γs,t,k ≡ p
(
zs,t = k|ys, {xs,t}Tt=1,Θ

old)
=
p
(
ys,[0:t], zs,t = k|{xs,t′}tt′=1,Θ

old
)
p
(
ys,[t+1:T ]|zs,t = k, {xs,t′}Tt′=t+1,Θ

old
)

p
(
ys|{xs,t}Tt=1,Θ

old
)

=
as,t,kbs,t,k∑K
k=1 as,T,k

.

(9)

Similarly,459

ξs,t,j,k =
as,t,jAjkbs,t+1,kp

(
ys,t+1|zt+1 = k,xt+1,wk

)∑K
k=1 as,T,k

(10)

where, once again, p
(
ys,t+1|zt+1 = k,xt+1,wk

)
comes from (Eq. 4).460

The forward-backward algorithm is a recursive algorithm and calculates the forward probabilities, {as,t,k},461

as follows:462

as,1,k = πkp
(
ys,1|zs,1 = k,xs,1,wk

)
(11)

and, for 1 < t ≤ T :463

as,t,k =

K∑
j=1

as,t−1,jAjkp
(
ys,t|zs,t = k,xs,t,wk

)
(12)

Similarly, the backward probabilities are calculated recursively as follows:464

bs,T,k = 1 (13)

and, for t ∈ {T − 1, ..., 1}:465

bs,t,j =
K∑
k=1

bs,t+1,kAjkp
(
ys,t+1|zs,t+1 = k,xs,t+1,wk

)
. (14)

The forward-backward algorithm enables evaluation of the sum over all possible state allocations in466

Eq. 5 and Eq. 7 in linear time in the number of trials, rather than in exponential time.467

4.1.4 Maximization Step468

After running the forward-backward algorithm, we formed the ECLL as in Eq. 7 and then maximized469

it with respect to the GLM-HMM parameters, Θ. For the initial state distribution π and the transition470

matrix A, this resulted in the closed-form updates:471

πnew
k =

∑S
s=1 γs,1,k∑S

s=1

∑K
j=1 γs,1,j

(15)
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Anew
jk =

α− 1 +
∑S

s=1

∑T
t=2 ξs,t,j,k

K(α− 1) +
∑S

s=1

∑T
t=2

∑K
k=1 ξs,t,j,k

. (16)

For the GLM weights, there was no such closed form update, but a Bernoulli GLM falls into the class472

of functions mapping external inputs to HMM emission probabilities considered in [22], so we know473

that the ECLL is concave in the GLM weights. As such, we were able to numerically find the GLM474

weights that maximize (not just locally but globally) the ECLL using the BFGS algorithm [9, 24, 28, 58]475

as implemented by the scipy optimize function in python [65].476

4.1.5 Comparing states across animals and GLM-HMM parameter initialization477

In Fig. 4 and Fig. 7, we show the results from fitting a single GLM-HMM to each animal; however it is478

nontrivial to map the retrieved states across animals to one another. As such, we employed a multistage479

fitting procedure that allowed us to make this comparison, and we detail this procedure in Algorithm 1.480

In the first stage, we concatenated the data for all animals in a single dataset together (for example, in481

the case of the IBL dataset, this would be the data for all 37 animals). We then fit a GLM (a 1 state GLM-482

HMM) to the concatenated data using Maximum Likelihood estimation. We used the fit GLM weights483

to initialize the GLM weights of a K-state GLM-HMM that we again fit to the concatenated dataset484

from all animals together (to obtain a “global fit”). We added Gaussian noise with σinit = 0.2 to the the485

GLM weights, so that the initialized states were distinct, and we initialized the transition matrix of the486

K-State GLM-HMM as 0.95×1+N (0,Σtrans.) where Σtrans. ∈ RK2×K2
and Σtrans. = 0.05×1. We then487

normalized this so that that rows of the transition matrix added up to 1, and represented probabilities.488

While the EM algorithm is guaranteed to converge to a local optimum in the log probability landscape of489

Eq. 5, there is no guarantee that it will converge to the global optimum [57]. Correspondingly, for each490

value of K, we fit the model 20 times using 20 different initializations.491

In the next stage of the fitting procedure, we wanted to obtain a separate GLM-HMM fit for each animal,492

so we initialized a model for each animal with the GLM-HMM global fit parameters from all animals493

together (out of the 20 initializations, we chose the model that resulted in the best training set log-494

likelihood). We then ran the EM algorithm to convergence; it is these recovered parameters that are495

shown in Fig. 4 and Fig. 7. By initializing each individual animal’s model with the parameters from the496

fit to all animals together, it was no longer necessary for us to permute the retrieved states from each497

animal so as to map semantically similar states to one another.498

We note that the initialization scheme detailed above is sufficiently robust so as to allow recovery of499

GLM-HMM parameters in various parameter regimes of interest. In particular, we simulated datasets500

from a GLM-HMM with the global fit parameters for both the IBL and Odoemene et al. [48] datasets, as501

well as a global fit lapse model. We show the results of these recovery analyses in Fig. S3 and Fig. S4.502

4.2 Assessing Model Performance503

4.2.1 Cross Validation504

There are two ways in which to perform cross-validation when working with Hidden Markov Models.505

Firstly, it is possible to hold out entire sessions of choice data for assessing test-set performance.506

That is, when fitting the model, the objective function in Eq. 5 and the ECLL in Eq. 7 are modified to507
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Algorithm 1 Multistage GLM-HMM fitting procedure

1: Fit GLM (1 state GLM-HMM) to all data from all animals
2: Fit global GLM-HMM to all data from all animals:
3: for K ∈ {2, ..., 5} do
4: for init. ∈ {1, ..., 20} do
5: Initialize K-state GLM-HMM using noisy GLM weights
6: Run EM algorithm until convergence
7: end for
8: end for
9: Fit separate GLM-HMM to each animal by initializing with global fit:

10: for each individual animal do
11: for K ∈ {2, ..., 5} do
12: Initialize K-state GLM-HMM using best global GLM-HMM parameters for this K
13: Run EM algorithm until convergence
14: end for
15: end for

only include 80% of sessions (since we use 5-fold cross-validation throughout this work); and the log-508

likelihood of the held-out 20% of sessions is calculated using the fit parameters, and a single run of the509

forward-pass on the held-out sessions:510

LLtest ≡
∑

s∈S\S′
log p

(
ys|{xs,t}Tt=1,Θ

′) = log
∑
s∈S′

K∑
k=1

as,T,k (17)

where S \ S′ is the set of held out sessions, and Θ′ is the set of GLM-HMM parameters obtained by511

fitting the model using the trials from S′.512

The second method of performing cross-validation involves holding out 20% of trials within a session.513

When fitting the model, the third term in the ECLL is modified so as to exclude these trials and is now514 ∑
t∈T ′

∑K
k=1 γs,t,k log p

(
ys,t,k|zs,t = k,xs,twk

)
, where T ′ is the set of trials to be used to fit the model.515

Furthermore, the calculation of the posterior state probabilities, γs,t,k and ξs,t,j,k, is also modified so as516

to exclude the test set choice data. In particular, γs,t,k is now p
(
zs,t|{ys,t′}t′∈T ′ , {xs,t′}t′∈T ′ ,Θold

)
and517

similarly ξs,t,j,k is now p
(
zs,t+1 = k|zs,t = j, {ys,t′}t′∈T ′ , {xs,t′}t′∈T ′ ,Θold

)
. The method of calculating518

these modified posterior probabilities is as detailed in Eq. 9 and Eq. 10, but now the calculation of the519

forward and backward probabilities, as,t,k and bs,t,k in Eq. 11, Eq. 12, Eq. 13 and Eq. 14 is modified so520

that, on trials that are identified as test trials, the p
(
ys,t|zs,t = k,xs,t,wk

)
term in these equations is521

replaced with 1.522

In Fig. 2, Fig. 4 and Fig. 7, we perform cross-validation by holding out entire sessions. We believed it523

would be harder to make good predictions on entire held out sessions, compared to single trials within524

a session, as we thought that mice would exhibit more variability in behavior across sessions compared525

to within sessions. When we compare the performance of the GLM-HMM against the PsyTrack model526

of [55] in Fig. 6, we use the second method of cross-validation so as to use the same train and test sets527

as PsyTrack (PsyTrack cannot make predictions on entire held-out sessions).528
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4.2.2 Normalized Log-likelihood529

In Fig. 2, Fig. 4 and Fig. 7 we report the normalized log-likelihood of different models on held-out530

sessions. This is calculated as follows:531

NLL(Θ) =
LLtest − LL0

ntest log(2)
(18)

where, for the GLM-HMM, LLtest is the test set log-likelihood as calculated in Eq. 17, and LL0 is the532

log-likelihood of the same test set under a Bernoulli model of animal choice behavior. Specifically, this533

baseline model assumes that animals flip a coin on each trial so as to decide to go Right, and the534

probability of going Right is equal to the fraction of trials in the training set in which the animal chose535

to go to the Right. ntest is the number of trials in the test set, and is important to include since LLtest536

depends on the number of trials in the test set. Dividing by log(2) gives the Normalized log-likelihood537

the units of bits per trial. Clearly, larger values of the Normalized log-likelihood are better, with a538

value of 0 indicating that a model offers no improvement in prediction compared to the crude baseline539

model described above. However, even small values of normalized log-likelihood can indicate a large540

improvement in predictive power. For a test set size of ntest = 500, a normalized log-likelihood value of541

0.01 indicates that the test data is 31.5 times more likely to have been generated with the GLM-HMM542

compared to the baseline model. For a test set of ntest = 5000, and the same value of NLL, the test set543

becomes 1× 1015 times more likely under the GLM-HMM compared to the baseline model!544

4.2.3 Predictive Accuracy545

In Fig. 2, Fig. 4 and Fig. 7, we also report the predictive accuracy of the GLM-HMM. When calculating546

the predictive accuracy, we employ a method similar to the second method described above in section547

4.2.1. In particular, we hold out 20% of trials and then obtain the posterior state probabilities for these548

trials, t′′ ∈ {T \ T ′}, as γs,t′′,k = p
(
zs,t′′ |{ys,t′}t′∈T ′ , {xs,t′}t′∈T ′ ,Θ

)
, using the other 80% of trials (this549

latter set of trials being labeled T ′). We then calculate the probability of the held-out choices being to550

go Right as:551

pR,s,t′′ ≡ p
(
ys,t′′ = 1|{ys,t′}t′∈T ′ , {xs,t′}t′∈T ′ ,xs,t′′ ,Θ

)
=

k∑
k=1

(
γs,t′′,k

)
p
(
ys,t′′ = 1|zs,t′′ = k,xs,t′′ ,wk

)
(19)

We then calculate the predictive accuracy as:552

predictive accuracy =

∑
t′′∈T\T ′

((
1
(
ys,t′′ = 1

)
1
(
pR,s,t′′ > 0.5

))
+
(
1
(
ys,t′′ = 0

)
1
(
pR,s,t′′ ≤ 0.5

)))
|{T \ T ′}|

(20)

4.3 Comparison with PsyTrack Model of Roy et al.553

The PsyTrack model of Roy et al. [56] assumes an animal makes its choice at trial t according to554

p(yt = 1 | xt) =
1

1 + e−wt·xt
(21)
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where wt evolves according to555

wt = wt−1 + ηt (22)

where ηt ∼ N (0, diag(σ21, ..., σ
2
M )) and w0 ∼ N (0, diag(σ2init ,1, ..., σ

2
init ,M )). Specifically, the animal is556

assumed to use a set of slowly changing weights to make its decision on each trial.557

In order to perform model comparison with the PsyTrack model of [55, 56], we utilized the code provided558

at https://github.com/nicholas-roy/psytrack.559

4.3.1 Simulating Choice Data with AR(1) Model for Weights560

While the GLM-HMM is a generative model that can be readily used to simulate choice data that re-561

sembles, in accuracy and in the resulting psychometric curves, the choice data of real animals, this is562

not true for the PsyTrack model of [55, 56]. Indeed, specifying only the {σ2init,m}, {σ2m} hyperparameters563

of that model and then generating weights according to Eq. 22 and choice data according to Eq. 21 will564

likely result in choice behavior that is vastly different from that of real animals (the PsyTrack model is565

underconstrained as a generative model). As such, so as to produce Fig. S11 we simulated smoothly566

evolving weights from an AR(1) model where the parameters of this model were obtained using the567

PsyTrack fits to real data. Specifically, we assumed that the probability of going rightward at time t was568

given by:569

p(yt = 1|wt,xt) =
1

1 + e−wt·xt
(23)

and we assumed that the weights evolved according to an AR(1) process as follows:570

wm,t = αmwm,t−1 + (1− αm)m̄PsyTrack
m + ηm,t (24)

where wm,t is the mth element of wt in Eq. 23 and w̄PsyTrack
m is the average weight that an animal places571

on covariate m across all trials when fit with the PsyTrack model: w̄PsyTrack
m = 1

T

∑
tw

PsyTrack
t,m . We572

obtained αm by regressing wPsyTrack
t,m against wPsyTrack

t−1,m and taking the retrieved slope (after confirming573

that the retrieved slope had a magnitude of less than 1, so as to ensure that the weights did not diverge574

as t → ∞). ηm,t ∼ N (0, σ̃2m), where σ̃2m = (1− α2
m)σ2m and σ2m was obtained from the PsyTrack fit to575

an animal’s real choice data. Finally, we set w0 = 0.576

We simulated weight trajectories for thousands of trials for each animal, so that the AR(1) process577

reached the stationary regime for each covariate, and so that the mean, variance and autocovariance578

of each weight for each covariate were close to those returned by the PsyTrack fits to the real choice579

data.580

4.3.2 Additional details about Figure S11581

In order to produce supplementary Fig. S11, we aligned sets of 10 trials for which there was a state582

transition after trial 5 either out of the engaged state or into the engaged state. Animals were in the583

same state for all 5 trials prior to the transition and in the same state for all 5 trials after the transition584

(we excluded sequences where state switches occurred during the first 5 or latter 5 trials). Each grey585

line in Fig. S11 is the average accuracy across all eligible 10 trial sequences for a particular animal; we586

required that all animals had at least 30 sequences to be included in Fig. S11. As a result, 27 (out of587

37) animals are shown in Fig. S11 and are used to compute the average curve across all animals.588
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4.4 Datasets studied589

In this paper, we applied the GLM-HMM to two publicly available behavioral datasets associated with590

recent publications. Firstly, we studied the data associated with [35] that is made available via figshare591

at https://doi.org/10.6084/m9.figshare.11636748. We used the framework developed in [36] to592

access the data. We modeled the choice data for the 37 animals in this dataset which had more than593

30 sessions of data during the ‘bias block’ regime. We focused on this regime because of the fact594

that mice, when they have reached this regime, understand the rules of the task and exhibit stationary595

behavior (see Fig. S1 for plots of accuracy against session identity for each animal, as well as Fig. S2596

for the psychometric curves for these animals for the trials studied). For each session, we subset to597

the first 90 trials of data because, during these trials, the stimulus was equally likely to appear on the598

left or right of the screen. After the first 90 trials, the structure of the task changed and for a block599

of trials, the stimulus appeared on the left with a probability of either 80% or 20%; the block identity600

switched multiple times throughout a session, so that 80% and 20% blocks were interleaved. We601

subset to the animals with more than 30 sessions of data because we were able to confidently recover602

GLM-HMM and lapse model generative parameters when we simulated datasets with this number of603

trials: see Figures Fig. S3 and Fig. S4. As a sanity check to make sure that the recovered states and604

transitions were not a consequence of the animals we study having been exposed to bias blocks in605

earlier sessions, we obtained data for 4 animals that were never exposed to bias blocks (not included in606

the publicly released dataset) and fit the GLM-HMM to the choice data for these animals. In Fig. S12,607

we show that the retrieved states, dwell times and model comparison results for these animals look608

very similar to those shown in Fig. 4.609

The second dataset that we studied was that associated with [48], with the data being made available610

at https://doi.org/10.14224/1.38944. Once again, we studied sessions after animals had learned611

the task (see Fig. S13 and Fig. S14). For this dataset, the retrieved states were less distinct compared612

to those for the IBL dataset, and as such, we required more trials to be able to recover the generative613

parameters in simulated data: see Fig. S3. We thus subset to the 15 animals with more than 20 ses-614

sions of data and 12,000 trials of data. Compared to the IBL dataset, where the violation rate across all615

animals’ data was less than 1% of trials (where a violation is where the animal chose not to respond),616

the violation rate across the 15 animals that we studied from this second dataset was 21%. Thus, it617

was important to develop a principled method for dealing with violation trials. We treated violation trials618

as trials with missing choice data, and we handled these trials in a similar way to how we handled test619

data when performing the second type of cross-validation described in section 4.2.1 above. That is, we620

modified the third term of the ECLL given in Eq. 7 to exclude violation trials, and we modified the defini-621

tion of the posterior state probabilities for these trials to be γs,t,k = p
(
zs,t|{ys,t′}t′∈T ′ , {xs,t′}t′∈T ′ ,Θold

)
622

and ξs,t,j,k = p
(
zs,t+1 = k|zs,t = j, {ys,t′}t′∈T ′ , {xs,t′}t′∈T ′ ,Θold

)
, where T ′, rather than representing623

the training set data, is now the set of non-violation trials. The calculation of the forward and backward624

probabilities, as,t,k and bs,t,k, was modified so that, on violation trials, in Eq. 11, Eq. 12, Eq. 13 and625

Eq. 14, the p
(
ys,t|zs,t = k,xs,t,wk

)
term was replaced with 1.626

4.4.1 Forming the Design Matrix627

Each of the models discussed in this paper (GLM-HMM, the classic lapse model, the PsyTrack model628

of Roy et al. [56]) were fit using a design matrix of covariates, X ∈ RT×M , where T was the number629

of trials of choice data for a particular animal. A single row in this matrix was the vector of covariates,630

xt ∈ RM , influencing the animal’s choice at trial t. For all analyses presented in text, unless specified631

otherwise, M = 4.632
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For both tasks, the first column in the design matrix was the z-scored stimulus intensity. For the IBL633

task, we calculated the stimulus intensity as the difference in the value of the visual contrast on the634

right side of the screen minus the visual contrast on the left of the screen. This resulted in 9 different635

values for the ‘signed contrast’: {−100,−25,−12.5,−6.25, 0, 6.25, 12.5, 25, 100}. We then z-scored636

this difference quantity across all trials. For the Odoemene et al. [48] task, we subtracted the 12Hz637

threshold from the flash rate presented on each trial and then z-scored the resulting quantity.638

For all trials, all animals and both tasks, the second column of the design matrix was set to 1, so as to639

enable us to capture the animal’s innate bias for going rightward or leftward. The third column in the640

design matrix was the animal’s choice on the previous trial Xt,3 ≡ 2yt−1 − 1. Whereas yt−1 ∈ {0, 1},641

Xt,3 ∈ {−1, 1}. It is not strictly necessary to perform this scaling, but we did so to ensure that the642

range of values for X:,1 and X:,3 were more similar (which can be useful when performing parameter643

optimization). Finally, the fourth column in the design matrix was the win-stay-lose-switch covariate,644

which was calculated as X:,4 ≡ rt−1 ×
(
2yt−1 − 1

)
, where rt−1 ∈ {−1, 1} was a binary variable645

indicating whether or not the animal was rewarded on the previous trial. Again X:,4 ∈ {−1, 1}.646

4.5 Code availability647

We contributed code to the Bayesian State Space Modeling framework of [42] and we use this code648

base to perform GLM-HMM inference. The code to analyze the resulting model fits and to produce the649

figures in this paper will be made available at https://github.com/zashwood/glm-hmm.650
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Figure S1: Raw behavioral data for IBL animals: Accuracy across sessions. We plot the accuracy of IBL
animals [35] across sessions as evidence that mice have learned the task, and that their choice behavior has
reached stationarity. We also report the overall accuracy of each animal when aggregated across sessions. The
example animal studied in Fig. 2 and Fig. 3 is ‘CSHL_008’.
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Figure S2: Raw behavioral data for IBL animals: Psychometric curves. We plot the psychometric curves for
the 37 IBL animals [35] whose choice data we study. The example animal that we study in Fig. 2 and Fig. 3 is
‘CSHL_008’. Animals are ordered in the same way that they are in Fig. S1 when considering row-major order,
so plots can be compared across the two figures. In each plot, we also show each animal’s empirical choice
probabilities; error bars are 68% confidence intervals.
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Figure S3: GLM-HMM Recovery Analysis 1. For dataset sizes comparable to those of real animals, we can
recover the IBL and Odoemene global parameters in simulated data. (a) Dataset sizes for each of the 37 IBL
animals studied (left) and 15 mice from Odoemene et al. (right). The dashed vertical line indicates the number
of trials that we used in simulation data in panels b, c and d (3240 for the IBL parameter regime and 12000 for
the Odoemene regime simulation). (b) Normalized test loglikelihood for each of 5 simulations is maximized at 3
states (blue vertical line) after we simulate according to the (IBL regime) parameters shown in panel c. Similarly,
in the right panel, normalized test loglikelihood is maximized at 4 states when we simulate choice data with the
(Odoemene regime) parameters shown in panel d. The thick black line marked as ‘ex. sim.’ (example simulation)
indicates the simulation whose generative and recovered parameters we show in panels c and d. (c) Left: the
generative and recovered GLM weights (for the simulation marked as ‘ex. sim.’ in panel b) when we simulate
choice data in the IBL parameter regime. Middle and right: the generative and recovered transition matrices. (d)
The generative and recovered parameters in the Odoemene et al. parameter regime.
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Figure S4: GLM-HMM Recovery Analysis 2: We can recover lapse behavior. (a) We simulate 5 datasets,
each with 3240 trials, according to the best fitting lapse model for IBL animals. We then fit these simulated
datasets with GLM-HMMs, as well as a lapse model (a constrained 2 state GLM-HMM). The normalized test
loglikelihood is highest for the lapse model in all simulations, indicating that lapse behavior can be distinguished
from the long-enduring multi-state behavior that best described the real data. The thick black line marked as
‘ex. sim.’ (example simulation) indicates the simulation whose generative and recovered parameters we show in
panels b and c. (b) Left: the generative and recovered weights when recovery is with a lapse model. Right: the
generative weights are the same as in the left panel, but we now recover with an unconstrained 2 state GLM-HMM
(thus the stimulus, previous choice and w.s.l.s. weights for the second state can be non-zero) (c) The generative
(left) transition matrix and the recovered transition matrices when we recover with a lapse model (middle) and an
unconstrained 2 state GLM-HMM (right). While the lapse model and 2 state GLM-HMM results don’t perfectly
agree, if mice were truly lapsing, the transition matrix would not have the large entries on the diagonals that we
observe in the real data.
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Figure S5: Model comparison for all IBL animals Rather than plotting curves on top of one another as in
Fig. 4a, we plot each individual animal’s normalized test set loglikelihood in a grid. We do not show model
comparison results for the example animal studied in Fig. 2 and Fig. 3 since we show the curve for that particular
animal there, but animals are otherwise ordered in the same way (according to row-major order) that they are in
Fig. S1 and Fig. S2, so plots can be compared across these figures.
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Figure S6: Retrieved transition matrices for all IBL animals We do not plot the transition matrix for the example
animal studied in Fig. 2 as the retrieved transition matrix is shown there. Animals are ordered in the same way
as in other supplemental figures so plots can be compared across figures.
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Figure S7: Average posterior state probabilities for all IBL animals. Average posterior state probabilities
across all sessions for each individual animal. Each session lasts 90 trials. Animals are ordered in the same way
as in other supplemental figures so plots can be compared across figures.
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Figure S8: GLM-HMM 4 state fits to IBL data. (a) Retrieved GLM weights for each of the 37 IBL animals for
each state of the 4 state GLM-HMM, as well as the global weights (black) for the fit when all data from all animals
are concatenated. (b) An alternative method of plotting the weights in panel a: we plot, as a function of the
stimulus intensity, as well as the animal’s reward and choice on the previous trial, the probability that the animal
goes rightward at the current trial. (c) The expected dwell time for each animal in each of the 4 states, as obtained
from the best-fitting transition matrices for each animal.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2021. ; https://doi.org/10.1101/2020.10.19.346353doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.346353
http://creativecommons.org/licenses/by-nc-nd/4.0/


40

0 30 60 90
state dwell time 

 # trials

0

0.1

0.2

0.3

0.4
fr

ac
. d

w
el

l t
im

es
 in

 s
ta

te

State 1 State 2
predicted
empirical

State 3

Figure S9: Retrieved state dwell times are approximately geometrically distributed. With the solid line,
we show the predicted dwell times (according to the retrieved transition matrix) in each of the three states for
the example animal of Fig. 2 and Fig. 3. Predicted dwell times can be obtained from the transition matrix as
p(dwell time = t) = (1 − Akk)At−1

kk because state dwell times in the Hidden Markov Model are geometrically
distributed. We then use the posterior state probabilities to assign states to trials in order to calculate the dwell
times that are actually observed in the real data (shown with the dashed line); we also show the 68% confidence
intervals associated with these empirical probabilities. We find that the empirical dwell times for the biased
leftward and rightward states seem to be geometrically distributed. For the engaged state, because there are
some entire sessions (each session is 90 trials) during which the animal is engaged, we see that the empirical
dwell times associated with this state are not as well described by a geometric distribution. A future direction may
be to allow non-geometrically distributed state dwell times by replacing the Hidden Markov Model with e.g. the
Hidden semi-Markov Model [68].
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Figure S10: State dwell times are approximately geometrically distributed for all IBL animals. We plot
the predicted (“pred.”; shown with the solid line) and empirical (“emp.”; shown with the dashed lines) state dwell
time probabilities for each IBL animal and each state (excluding the example animal since the state dwell time
probabilities for the example animal are shown in Fig. S9)). Colors map to states in the usual way (orange is
state 1, green is state 2, blue is state 3). The empirical state dwell times are obtained by using the posterior state
probabilities to assign state labels to trials, and the predicted state dwell time probabilities are obtained from the
transition matrix according to p(dwell time = t) = (1−Akk)At−1

kk .
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Figure S11: Evidence for discrete decision-making states in raw behavioral data. (a), (b) Average accuracy
across 10 trials before and after a state change at trial 5 out of the engaged state (panel a) or to the engaged
state (panel b). Each grey line is the average accuracy relative to the mean accuracy for the three trials before
the state change for a single animal, while the colored line represents the average across all animals. For further
details, see Methods 4.3. (c), (d) Choice data is simulated from a GLM-HMM using the best fitting parameters
for each mouse (each grey line represents choice data simulated with a different animal’s 3 state GLM-HMM fit).
We then identified state changes out of and to the engaged state, and show the change in accuracy before and
after these state transitions. (e), (f) We simulated choice data using weights that smoothly evolve according to an
AR(1) model as described in Section 4.3 using the Psytrack fits for each animal. We then fit a 3 state GLM-HMM
to the simulated choice data, and identified the state with the largest weight on the stimulus as the engaged
state. We show the change in accuracy for each animal’s simulated choice data (each grey line represents data
simulated from a different animal’s PsyTrack model fit) when switching out of the engaged state (panel e) and
when switching to the engaged state (panel f). By comparing the plots in c and d to those in e and f, and observing
that the change in accuracy is, on average, 27% when switching out of the engaged state for data simulated from
the 3 state GLM-HMM compared to just 13% for data simulated from the PsyTrack-inspired model, we have
verified that we can use changes in accuracy across the state change boundary to disambiguate behavior based
on discrete decision-making strategies from behavior based on continuously evolving strategies. Furthermore,
the plots in a and b resemble the plots in c and d more closely than the plots in e and f providing additional
evidence that real mice use discrete decision-making strategies.
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Figure S12: GLM-HMM application to 4 mice not exposed to bias blocks in IBL task. We confirm that mice
that have never been exposed to bias blocks in the IBL task continue to show state-dependent decision-making.
This is a sister figure to Fig. 4, and each panel can be interpreted in the same way as in Fig. 4.
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Figure S13: Accuracy across sessions for Odoemene et al. [48] animals. We plot the accuracy across
sessions for Odoemene et al. animals as evidence that the animals’ choice behavior has reached stationarity.
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Figure S14: Psychometric curves for Odoemene et al. [48] animals. We plot the psychometric curves for
each of the 15 animals whose choice data we study. We also show each animal’s empirical choice probabilities;
error bars are 68% confidence intervals. Animals are ordered as in Fig. S13.
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Figure S15: Model Comparison for all Odoemene et al. animals. Rather than plotting curves on top of one
another as in Fig. 7b, we plot each individual animal’s normalized test set loglikelihood in a grid. Animals are
ordered in the same way that they are in Fig. S13 and Fig. S14, so plots can be compared across figures.
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Figure S16: Retrieved transition matrices for Odoemene et al. animals Each individual transition matrix is
the best fitting transition matrix for 1 of the 15 Odoemene et al. mice that we study. Row-major order has animals
ordered in the same way that they are in Fig. S15.
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Figure S17: GLM-HMM 3 state fits to Odoemene et al. data. When 3 state GLM-HMMs are fit to the Odoemene
et al. data, the engaged and bias left states are merged to form a single (mostly engaged) state (accuracy remains
high at 88%), while the win-stay and bias right states are largely unchanged. This is a sister figure to panels d,
e, and f of Fig. 7, where the panels can be interpreted in the same way that they are there.
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Figure S18: GLM-HMM 5 state fits to Odoemene et al. data. When 5 state GLM-HMMs are fit to the Odoemene
et al. data, the engaged state is split into an engaged/bias left and engaged/bias right state, while the win-stay,
bias right and bias left states are largely unchanged. This is a sister figure to panels d, e, and f of Fig. 7, where
the panels can be interpreted in the same way that they are there.
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Figure S19: GLM-HMM captures ‘warm-up’ effect for Odoemene et al. animals. Average (across 20 sessions)
posterior state probabilities for the first 200 trials of a session for each animal in the Odoemene et al. dataset.
Orange corresponds to the engaged state, green to the biased left, blue to the biased right and pink to the
win-stay state from Fig. 7. Error bars represent standard errors.
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Figure S20: GLM-HMM posterior state probabilities at end of session. Average (across 20 sessions) posterior
state probabilities for the last 200 trials of a session for each animal in the Odoemene et al. dataset. Orange
corresponds to the engaged state, green to the biased left, blue to the biased right and pink to the win-stay state
from Fig. 7. Error bars represent standard errors.
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