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Abstract 

Imaging calcium signals in neurons of awake, behaving mice using two-photon microscopy makes it 

possible to study how learning alters coding in large neural populations. Such experiments produce 

extremely large datasets requiring powerful automated methods to extract responses from 

hundreds of neurons. Here we present a new open source toolbox for 1) segmentation of regions of 

interest (ROIs) representing neuronal structures, 2) inspection and manual splitting, addition or 

rejection of ROIs, 3) neuropil correction and signal extraction and 4) matching of ROIs in sequential 

recordings. Our toolbox is built around a novel method for the identification of ROIs based on 

temporal cross-correlations of low frequency components derived by Fourier analysis, of each pixel 

with its neighbors. The approach is insightful for the end user and allows for the ROI detection 

around neurons or irregular structures such as dendrites and axons by adjusting simple 

morphological constraints. This new pipeline thus provides an efficient and user-friendly approach 

for analyzing calcium responses in neuronal structures imaged over prolonged periods of time. 

 

Keywords 

Two-photon microscopy, calcium imaging, region of interest, automated, chronic, data analysis, ROI 

segmentation, cross-spectral power. 
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Introduction 

The advances in vivo two-photon fluorescence microscopy (Engert and Bonhoeffer, 1999; Svoboda 

et al., 1996) and the development of genetically encoded fluorescent biosensors (Chen et al., 2013; 

Mank et al., 2008) have revolutionized neurobiological research over the last two decades. The 

combination of these techniques has enabled the imaging of neuronal activity in awake behaving 

animals over timespans up to many months. This provides combined anatomical and functional 

information at the cellular level for hundreds of neurons at the same time, or at the dendritic, axonal 

or synaptic level in more restricted numbers of neurons (Cichon and Gan, 2015; Gambino et al., 

2014; Iacaruso et al., 2017; Jia et al., 2010; Petreanu et al., 2009; Szalay et al., 2016; Wilson et al., 

2016; Winnubst et al., 2015). The insight this provides about the functions and interactions of 

specific neural subtypes in different brain regions of awake behaving animals was previously 

unthinkable.  

The most used approach is the imaging of changes in intracellular calcium levels as a proxy for 

neuronal activity. This is achieved by making use of genetically encoded calcium sensors such as 

GCaMP6 (Chen et al., 2013), whose fluorescent properties change upon binding calcium. The mere 

size of the obtained datasets, which consist of movies of calcium-indicator fluorescence images, 

forms a considerable challenge for data analysis.  

An important step in the analysis of calcium imaging data is the identification of cell bodies or 

neurites in the image sequences. Ideally, one can identify the same structures in recordings 

performed at different days over prolonged periods of time, allowing the assessment of changes in 

neuronal responses during learning at the single cell level. Identification of these regions of interest 

(ROI) is preferentially done in an automated fashion, as manual segmentation is neither reproducible 

nor scalable. Moreover, human annotators tend to include non-active ROIs and miss active ROIs with 

low background fluorescence (Giovannucci et al., 2019; Pachitariu et al., 2017). Automated ROI 

identification requires robust detection algorithms with minimal assumptions on the properties of 

ROIs to detect the circumferences of individual cells and neurites.   
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Various software packages have been published that accomplish this task, using different 

approaches. Cell boundaries may be detected by multiple coupled active contours (Reynolds et al., 

2017). Matrix factorization approaches (Giovannucci et al., 2019; Maruyama et al., 2014; Mukamel 

et al., 2009; Petersen et al., 2018; Pnevmatikakis et al., 2016) determine the activity of neurons and 

their delineation by considering fluorescence as a spatiotemporal pattern that can be expressed as 

the product of a matrix encoding location and a matrix encoding time. Deep learning approaches 

(Apthorpe et al., 2016; Klibisz et al., 2017) define ROIs based on neuron features learned from data 

in which cells were manually detected. Dictionary learning approaches make use of neuron 

templates to identify ROIs (Pachitariu et al., 2017). Finally, correlation-based approaches define ROIs 

based on activity correlations between pixels (Kaifosh et al., 2014; Smith and Häusser, 2010; Spaen 

et al., 2019). All these approaches have their strengths and weaknesses. For example, deep learning 

approaches that select ROIs based on shapes must be trained for different types of data and may 

include neurons from which no signal can be extracted. Identifying ROIs with highly variable shapes 

is complicated for most approaches except those based on activity correlation. For most approaches 

it is often necessary to introduce significant adaptations to the software in order to make it suitable 

for specific experimental settings and the underlying calculations that define the ROIs can be difficult 

or impossible to track. In other approaches the outcome is significantly affected by initial parameters 

which are not self-evident and thus difficult to tweak. Correlation-based approaches are easy to 

understand and require few predefined constraints but can be severely limited by noise in the 

recordings. In this paper, we describe an open-source pipeline (Fig.1) for calcium imaging data 

analysis. It makes use of a novel approach for ROI detection, termed SpecSeg, which is based on 

cross-correlations of low frequency components, derived through Fourier transforms, of each pixel 

trace with its eight adjacent neighbors. It makes use of our finding that low-frequency fluctuations 

below 0.4 Hz are a signature of active neurons. Our approach is insensitive to noise, straightforward 

and highly insightful for the end user as it enables the visualization of the ROI detection process. It 

allows the detection of ROIs around irregular structures such as dendrites and axons and the 
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parameters set by the users are intuitive. The pipeline also includes a user interface for quality 

control and the manual splitting, addition or rejection of ROIs, and a tool to match ROIs in sequential 

imaging sessions (Fig. 1). Together, this new pipeline provides an efficient and user-friendly 

approach for analyzing calcium responses in neuronal structures imaged over prolonged periods of 

time. 
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Results 

 

Pipeline 

Figure 1 shows the components of our pipeline for the analysis of chronic calcium imaging datasets. 

The pipeline requires motion-corrected calcium imaging data in raw TIFF or SBX (Neurolabware) 

format. We use an adapted version of NormCorre (Pnevmatikakis and Giovannucci, 2017) to motion 

correct our SBX files. A motion corrected series of TIFF images can also be used, but this first needs 

to be converted to SBX format for which we provide a conversion tool. 

The first step in the pipeline is ROI selection, which involves (a) the reorganization and 

downsampling of the data in order to speed up memory retrieval, (b) extraction of the frequency 

components of the fluorescence traces for each pixel (“pixel trace”) by Fourier analysis and the 

creation of images representing how well they correlate with those of neighboring pixels (c) the 

identification of peaks within the images and the construction of preliminary contours (ROIs), and (d)  

further refinement of the ROIs based on activity correlations within each contour. The second step in 

the pipeline is the ROI manager, a user interface for the inspection of the ROIs that has tools for 

manually rejecting, splitting or adding ROIs. The third step is neuropil subtraction and signal 

extraction and the final, fourth step is deconvolving the signals, using maximum likelihood spike 

estimation (MLSpike, Deneux et al., 2016).  

In addition, a separate toolbox is included for matching the selected ROIs in sequential imaging 

sessions by aligning the images and measuring the overlap of ROIs between different sessions. The 

sensitivity of ROI matching can be changed easily with an overlap threshold and the results of the 

matching can be evaluated and edited. Below, each step in the pipeline is described in detail. 

The MATLAB implementation of the toolbox and instructions on how to install and use the software 

can be found at https://github.com/Leveltlab/SpectralSegmentation .  
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Figure 1. Overview of the pipeline for automated region of interest (ROI) selection and signal extraction.  
Calcium imaging data needs to be motion corrected after collection using NoRMCorre. ROI selection involves 
data reorganization, extraction of frequency components of pixel traces and the drawing and refinement of 
ROIs around the peaks identified in the images based on the frequency components. A user interface allows 
for the manually rejecting, splitting or adding of ROIs. Next, neuropil is subtracted, and the signal extracted 
and deconvolved. A toolbox for matching of ROIs in repeated recordings is also provided. 
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ROI selection based on cross-spectral power 

We established a novel approach for the automated segmentation of ROIs in calcium imaging data 

based on cross-spectral power of the pixel trace. To develop the method, we made use of calcium 

imaging data acquired repeatedly using two-photon microscopy in mice expressing the genetically 

encoded calcium indicator GCaMP6f in the primary visual cortex (V1) and tested it on a variety of 

different datasets from different brain regions and using different approaches. 

The first step in the process (stacktranspose.m) is to transpose the image sequences to place time in 

the first dimension and width * height in the second dimension, and to downsample the data to 

approximately 1Hz (DecimateTrans.m), using the MATLAB decimate function (Mathworks ®). This 

way, each pixel trace is organized in sequential order in memory and can be accessed rapidly, 

speeding up the next steps in the process.  

Next is the cross-spectral power calculation (spectral.m). Each pixel trace is cut into overlapping one-

minute segments, and a discrete Fourier transformation is applied to each segment to extract 

frequency components between 0.017 and 0.5Hz, with of bin width of 0.017Hz. Then we calculate 

the cross-spectral density function of each pixel with its 8 neighbors, and average these over all 

segments. Finally, the average cross-spectral density functions are normalized with the variances of 

each pixel and its neighbors, and the average cross-spectral power for each frequency component at 

each pixel is calculated (this estimate is a measure for how well pixels correlate with their direct 

neighbors at each frequency component). This results in a series of 30 images, each representing a 

different frequency component. 

These images of spectral components provide a better basis for the selection of ROIs around active 

neurons than the fluorescent signal (Fig. 2A-B). We find that spectral components below 0.4Hz are 

the most indicative for active neural elements (Fig. 2C-I, Fig. 3A-C). As a consequence, when we 

compose images by translating the cross-spectral power of a particular low-frequency component 

into brightness, active elements in the image become very clearly separated from the background 

(Fig. 2C-F), even when their level of fluorescence is low (see neuron in red box). Interestingly, active  
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Figure 2. Comparison of fluorescence and spectral power images. A) Average fluorescence projection. The 
colored squares indicate regions containing an easily recognizable active neuron (dark blue); a silent neuron 
(cyan); no neuron (green); a hardly recognizable but active neuron (red). B) Maximum fluorescence projection. 
Note that the neuron in the cyan region can be easily detected, while the neuron in the red region is hardly 
visible C-H) Cross-spectral images. Note that the silent neuron in the cyan region is hardly visible in the cross-
spectral images, while the active cell in the red region can be easily identified I) The cross spectral power of 
the four example areas. Note the logarithmic y-axis. J) Pixel traces of the example areas denoted in panel A-H. 
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neurons also look different in cross-spectral images. They no longer have a dark central nuclear 

region. Low frequency pixel correlations tend to show a central maximum that declines to the 

border of a neuron (Figs. 2, 3).  

In contrast, non-active neurons with high levels of fluorescence, which are visible in the average 

fluorescence projection (Fig. 2A, J), do not show up in the spectral images (see neuron in cyan box). 

ROIs can thus be selected by searching for the largest local maxima in these spectral images and 

drawing contours around them (Fig. 3). Because the images of the different frequency components 

reveal different neurons and/or neuronal compartments, a complete set of ROIs is created by adding 

up all ROIs detected in the spectral images of all low-frequency components (Fig. 2G, H).  

 

Automated ROI refinement 

Some contours selected this way may still contain overlapping or closely juxtaposed neuronal 

elements (Fig. 3A-D), especially if the density of cell bodies or neurites is high. To prevent this 

problem, contours are further constrained based on whether the fluorescence pixel traces within 

the contour are tightly correlated as would be expected if they are from the same neuron. We do 

this by taking the median fluorescence trace of the pixel traces from the local maximum and its eight 

neighboring pixels and correlating this trace with each pixel trace in the preselected contour. This 

results in correlation values for every pixel in the ROI (pixel R). Next, using a threshold set at half the 

maximum correlation strength (this threshold can be adapted), a new contour is selected around the 

best-correlated pixels (Fig. 3E). To save an estimate of how well the fluorescence pixel traces are 

correlated inside an ROI, we square the pixel correlation values of an ROI and average them, 

resulting in the mean pixel R2 (Fig. 3E). The mean pixel R2 indicates how much of the pixel variance is 

explained by a shared signal within an ROI. We assume that this signal is the actual activity trace of a 

neuron, possibly including a general neuropil signal. The remaining variance is due to sources 

surrounding a neuron influencing individual pixel traces separately.   
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Figure 3. Automatic ROI creation and refinement. A) Maximum fluorescence projection of the recording. The 
colored squares denote four example areas that are selected for an ROI search based on local maxima of the 
cross-spectral image in the next panels. Scale bar = 40µm. B) The spectral power of the first frequency 
component (0.013 Hz) that is used in the ROI search. C) Cross-spectral power, with different frequency 
components displayed in different colors. D) The spectral power from panel B in the selected areas containing 
local maxima. The contour that is found around these putative neurons is displayed in red. For these neurons 
the threshold for pixel inclusion was too low, resulting in ROIs that are too large. These ROIs are automatically 
refined based on pixel correlation. E) The pixel correlations of the ROIs displayed in D. The color displays the 
pixel correlation of the signal from each pixel with the signal from the ROI local maximum. The pixel 
correlation threshold allows for ROI refinement. The new contour, shown in white, is determined by the pixel 
correlation values. 
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Versatility of ROI selection approach 

Restrictions can be applied in order to select ROIs around cell bodies, such as the minimal and 

maximal surface area of the ROI or its roundedness. Without these restrictions, thin elongated 

contours can be easily selected, making it also possible to define ROIs on dendrites and axons (Fig. 

4A-C). We tested the ROI selection approach on various datasets, including two-photon calcium 

imaging using a GRIN-lens in visual thalamus (Fig. 4D) and one-photon miniscope imaging in visual 

cortex (Fig. 4E). One-photon miniscope signals are generally more correlated and contaminated by 

out-of-focus signals. Spectral analyses therefore resulted in unclear separation of individual ROIs. A 

simple Gaussian background subtraction on the raw data strongly improved separation (Fig. 4E). 

 

Comparison with other packages using Neurofinder 

To compare the efficiency of our method with that of other packages that are available, we made 

use of Neurofinder datasets (http://neurofinder.codeneuro.org/). Our results (SegSpect0, by 

Spectral Segmentation) scored in the mid-range of all tested methods. Because this seemed a 

relatively low score considering the good results we obtained with SpecSeg on our own datasets, we 

looked at the Neurofinder results in more detail. We noticed that in several Neurofinder datasets, 

SpecSeg missed more than 50% of the Neurofinder “ground-truth” ROIs and found additional ROIs 

that were not included as ground-truth ROIs, both contributing to the lower score (Fig. 5A, D). To 

understand why SpecSeg selected different ROIs than those considered as ground truth, we 

calculated the mean pixel R2 of the pixels within the latter ROIs (Fig. 5B, C, E, F) (see methods). This 

provides an estimate of how much of the pixel variance is derived from a shared signal within an 

ROI. When we sorted the ROIs based on the mean pixel R2, we noticed a sharp decline of this 

estimate in the ground-truth ROIs in all of the Neurofinder datasets (Fig. 5C, F). In the Neurofinder 

datasets, most ROIs had a mean pixel R2 below 0.15, suggesting that > 85% of the signal variance in 

these ROIs originated from external sources or simply noise (Fig. 5G-H). ROIs selected by SpecSeg all 

had mean pixel R2 values well above this level. This resulted in only part of the ROIs defined as 
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Figure 4. Examples of fluorescent signals, cross-spectral power and ROI selection in datasets derived from 
different brain regions and/or imaging techniques. Left column: maximum fluorescence projections. Middle 
column: cross-spectral power, with different frequency components in different colors. Right column: cross-
spectral power maximum projection, with contours of ROIs in red. A) Two-photon microscopy of layer 5 apical 
tufts in mouse V1. B) Two-photon microscopy of layer 5 apical trunks in mouse V1. C) Two-photon microscopy 
of visual lateromedial area axon projections to V1. D) Two-photon microscopy of visual thalamus using a GRIN-
lens. E) One-photon miniscope imaging in mouse V1 layer 2/3. 
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ground truth in the Neurofinder datasets to correspond with those drawn using SpecSeg. 

Importantly, SpecSeg missed less than 1% of the ground-truth ROIs with a mean pixel R2 over 0.3.  

SegSpec also selected additional ROIs representing active neurons that were not identified among 

the Neurofinder ground-truth ROIs. These ROIs had high pixel correlations and showed clearly 

defined responses with high signal to noise ratios (Fig. 5A, D). This shows that it is crucial to select 

ROIs based on activity and not solely on cell morphology visualized by the baseline fluorescence of 

the calcium indicator, as some responsive neurons may be invisible especially when using calcium  

indicators with very low calcium-free fluorescence such as JCaMP7c (Dana et al., 2019).  

Finally, we compared our ROIs with those obtained using Suite2P (Pachitariu et al., 2017). The 

authors of Suite2P define a model that combines the estimated signal of an ROI with its neuropil 

background. Using a cost function to minimize the difference between model and actual 

fluorescence time course, the parameters of this model for each pixel are estimated. To process the 

data in a timely fashion, the pixels traces were ordered in time and binned, limiting the amount of 

time points (<10000). This is similar to our implementation, however we decimate the signal, which 

gives slightly better results than binning. As with other tools using sophisticated mathematical 

approaches, the outcome can be dependent on initial assumptions that are not always clear and 

self-evident, e.g. in this case the parameter defining the temporal kernel should be equal for all cells, 

which may not be appropriate in various cases. As expected, we found overlapping subsets for ROIs 

with high mean pixel R2 values. The ROIs that SpecSeg did not select generally had a mean 

fluorescence trace similar to the background fluorescence in the Suite2P visualization tool.   

Together, we suspect that ground-truth ROIs in the Neurofinder dataset are largely based on 

anatomical characteristics of GCaMP6-expressing neurons and include many silent neurons. Hence, 

the best performing methods on the Neurofinder datasets may use convolutional neural networks 

trained on ground truths that include neurons with low pixel correlations. Whether neurons that 

show so little activity that they cannot be reliably separated from noise or neuropil activity should be 

included in the analysis is questionable, though.  
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Figure 5. In Neurofinder datasets, SpecSeg (SS) only identifies ROIs from which a reliable signal can be 
extracted. A, D). Spectral images for the same datasets, with ROIs encircled by red (overlapping) and green 
(non-overlapping) contours. B, E). Pixel R for ground truth ROIs in Neurofinder (NF) datasets. Color bar 
indicates pixel R. Red encircled NF ground truth ROIs overlap with Spectral Segmentation (SS) ROIs. Note that 
SS has selected all ROIs with the highest mean pixel R2. C, F). Mean pixel R2 of ROIs sorted by magnitude. NF 
ROIs overlapping with SS ROIs are plotted in red. The green line displays SS ROIs that do not overlap with NF 
ROIs, while blue line represents NF ROIs that do not overlap with SS ROIs. G) Correlation of each pixel trace 
within an ROI with the median pixel trace at the local maximum of cross-spectral power and its 8 neighboring 
pixels, of four example ROIs with decreasing mean pixel R2 from the 03.00 NF dataset. H) Fluorescence traces 
(blue) plotted against their SEM * 3 (green) for the four example ROIs. Note that around a mean pixel R2 of 0.2 
or lower, the signal becomes non-significant.  
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Speed  

In order to get an impression of the speed of our approach, we automatically timed the different 

components of the pipeline on two different computers analyzing 16 different datasets, varying in 

size from 6 to 51 gigabytes. Depending on the hardware that was used and the size of the dataset, 

the different components of the analysis pipeline varied in the time they required for completion 

(Fig. 6). This makes it difficult to provide hard numbers about the speed at which the SpecSeg 

pipeline processes the data. However, a useful indicator is that 1 hour of acquired data imaged at 15 

Hz was processed by automated analysis in approximately 5 hours, from NoRMCorre motion 

correction until signal extraction. More than half of the time was used by the NoRMCorre motion 

correction. This illustrates that the speed of the SpecSeg pipeline is not a bottleneck, and in most 

cases performs the analysis overnight. 

 

User interface for rejecting, splitting or manually defining ROIs 

The automated procedure for selecting ROIs is highly effective. However, in some cases, ROIs can 

still be found that contain signals from multiple neurons or do not seem to represent a neuronal 

structure. Because such errors can cause misinterpretation of calcium imaging data, we developed a 

graphical user interface for splitting or deleting such ROIs. Additionally, because the automated ROI 

selection process is activity dependent, ROIs are not drawn around neurons that are not active in the 

imaging session. The user interface also allows adding ROIs for such neurons (Fig. 7A), in case the 

experimenter wants to include them in their analysis – for example in a chronic experiment in which 

the neurons do show activity in other recording sessions. 
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Figure 6. Timing analysis pipeline. Timing the analysis per GB of raw data with two different computer 
systems. Computer 1: 2x CPU: intel xeon E5-2620 2.4GHz, 6 cores. RAM: 96GB. Computer 2: CPU: intel core i7-
4770 3.4GHz quadcore. RAM: 32GB. Total automated analysis time including motion correction with 
NoRMCorre. Computer 1: 10.6 minutes per GB (n=8). Computer 2: 4.5 minutes per GB (n=8). Not including 
NoRMCorre. Computer 1: 2.5 minutes per GB (n=8). Computer 2: 1.8 minutes per GB (n=8). Error bars shows 
the standard error of the mean. 
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Sometimes ROIs are created that envelop multiple neurons (Fig. 7B). To visually guide the splitting of 

these ROIs, pixel traces within the ROI are correlated with four reference points and correlation 

values are color coded. In case the ROI contains signals from more than one neuron, this becomes 

clearly visible (Fig. 7C). The correlation values are then used in k-means clustering to split the ROI 

into multiple ROIs, or to delete parts of the ROI, on the user’s request (Fig. 7D). ROIs can also be 

deleted entirely or marked to be kept when more stringent criteria for ROI selection are applied. 

Finally, ROIs can be drawn in manually, or added by the computer, based on the fluorescence or 

spectral image (Fig. 7A). Altogether, these additional tools provide the means to adjust the ROI 

selection process in an easy and user-friendly way. 

 

Neuropil correction and signal extraction 

Once the ROIs are selected, the calcium signals from the cells can be extracted by averaging all pixel 

traces within the ROI contours. However, because the calcium signals from the neuropil can 

contaminate those of the cells, neuropil signal is first subtracted from the ROIs (Zhou et al., 2018). To 

achieve this, we select an area surrounding each ROI, taking care to avoid other ROIs (Fig. 8, see 

methods for details). The average of the pixel traces in this area is used as an estimate of the local 

neuropil activity. After multiplying it by 0.7 it is subtracted from the averaged fluorescence trace 

from the selected ROI. This method of neuropil subtraction is widely used (Chen et al., 2013; Khan et 

al., 2018; Tegtmeier et al., 2018). 
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Figure 7. ROI manager user interface. A) A screenshot of the user interface. The functionality is set to ROI 
creation. The ROI creation function of the UI allows the user to add additional ROIs based on the current image 
in the UI. The current image shown in A is the cross-spectral power, in which several frequencies are shown in 
different colors. B) Maximum fluorescence of a ROI that envelopes two neurons. C) To guide and calculate the 
ROI splitting the fluorescence signal from the four corners is correlated with the all fluorescence pixel traces in 
the ROI. This results in four correlation values per pixel, which are shown in different colors. D) The ROI is 
clustered into three clusters with k-means clustering using the correlation values from C. The number of 
clusters is set by the user. E) The fluorescence signal of the three clusters. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.20.345371doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.345371
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

12 
 

 

 

Figure 8. Neuropil estimation from surrounding pixels. A, D) Spectral image with an example ROI (blue 
contour) and surrounding background (red contour). B) Fluorescence signal of the example ROI of A. The 
neuropil signal is almost non-existent and neuropil correction does not change the ROIs’ signal much. C) 
Correlation of neuropil signal with ROI signal depends on the distance from the ROI. The fluorescence signal 
was extracted from rings at increasing distances around the example ROI, excluding other ROIs. Those 
background signals were correlated with both the raw signal of the ROI (blue line), and with the ROIs’ neuropil 
corrected signal (green line). Neuropil correction slightly decreases the correlation of the background signal. E) 
In this ROI the neuropil signal caused more contamination than in the example of A. Neuropil signal was larger 
because more dendrites are present, and the ROI itself has a less strong signal. The neuropil correction seems 
necessary for this ROI. F) The neuropil correction decreases the correlation with the surrounding background 
signal. G) Correlation with neuropil signal of multiple ROIs, before and after neuropil correction. The distance 
between these shows the ‘neuropil correction effect’. H) The neuropil correction effect is significantly smaller 
when an ROI has a stronger mean pixel R2. 
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To test how our neuropil subtraction alters the signal, we correlated the pixel trace of ROIs with the 

pixel traces from the surrounding area (Fig. 8A-F). We found that in our data, neuropil correction 

barely changes the ROI signal in most cases (Fig. 8A-C). In some cases, however, the signal improves 

after neuropil subtraction (Fig. 8D-F). There may be multiple reasons why neuropil subtraction has  

less effect in our hands than in studies by others (Pachitariu et al., 2017). Experimental conditions 

such as the number of neurons that are labeled, the brain region that is imaged or the calcium 

indicator that is used will influence to what extent neuropil contaminates the signal (Pachitariu et al., 

2017). An additional possibility is that when ROIs with a high mean pixel R2 are selected, those ROIs 

that have a weak signal and are strongly influenced by neuropil are excluded. To test this directly, we 

plotted the effect of neuropil correction on the signal extracted from ROIs against their mean R2 (Fig. 

8G, H). This revealed that indeed, ROIs with higher mean pixel R2 are barely affected by neuropil 

correction while those with low mean pixel R2 are strongly affected. Thus, selection of ROIs with high 

mean pixel R2 has the added advantage that it reduces the need for neuropil subtraction.   

 

Automated retrieval of the same ROIs in chronically recorded datasets 

One of the great strengths of two-photon microscopy of calcium responses in neuronal cell 

populations is that changes in neuronal activity can be followed at the single cell level over 

prolonged periods of time. To achieve this, it is essential to identify the same ROIs in chronic 

recordings of the same brain region. In very large datasets containing many recordings, this is a 

daunting task to do by hand, even after automated ROI selection. We therefore developed a toolbox 

for automated matching of ROIs in chronically recorded datasets. It involves the registration of the 

sequential recordings with each other, through translation and rotation of the spectral images. Next, 

overlapping ROIs are searched for in all possible pairs of recordings in the series (i.e. each recording 

is compared to all other recordings). By thresholding for a minimal amount of overlap between each 

pair of ROIs in both directions, only ROIs with similar shapes and sizes are matched. Finally, merging   
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Figure 9. An example of matched ROIs in three sequential recordings. An ROIs center of mass (CoM) is shown 
with a dot. The dot’s color shows in which recordings (‘rec') it was found back. The triangles denote the 
position of some CoMs of ROIs that were present in other recordings, but missed in the recording in which the 
triangle is shown. The color denotes in which recording the ROI was present. The right bottom figure shows 
the three spectral images overlaid with red, green and blue colors, resulting in the same color mixing as the 
ROI CoM dots. Scale bar: 40µm.  
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all the matched pairs of ROIs results in a “matching matrix” containing the matched ROIs that are 

found in the series of recordings.  

An example of ROI matching in three sequential recordings of V1 neurons, performed with 2-4 

weeks in between sessions, is shown in Fig. 9. In these color-coded images, many cells can be 

retrieved in all three recordings. However, some neurons are not retrieved in one or two of the 

recordings, as indicated by the triangles. This may be caused by various factors, such as the precise 

angle and depth of the recording, changes in viral expression of the calcium indicator or the lack of 

activity of a neuron during one of the recordings.  

 

Comparing ROIs between recordings 

For a quantitative assessment of the number of ROIs that can be matched between recording 

sessions we analyzed data from 5 mice that were imaged 7, 8, 12, 13 and 12 times respectively, over 

a period of 2-5 months. This resulted in 21, 28, 66, 78 and 66 possible pairs of recordings 

respectively, in which we investigated the number of matched ROIs. With all data of the five mice 

pooled together, 37.7% ± 21.3% of the ROIs were matched between recordings pairs, corresponding 

to 94± 57 ROIs. The percentage of matched ROIs was calculated as the percentage of matched ROIs 

in the recording with the least ROIs per recording-pair. 

The number of matches was influenced by the time between two recordings. Fig. 10A shows that 

there was a significant correlation between the number of matched neurons and the time between 

recordings in two of the three mice (Spearman correlation, for mice 1 and 2 P<0.005, for mice 3, 4 

and 5 P<0.0005, r=-0.6, -0.35, -0.66, -093, -0.68 for mice 1 to 5 respectively. The fits shown in the 

figure are exponential fits (y = a * eb * x) with the initial value (a) at 75, 71, 53, 56, 61(%), and decay 

rate (b) at -0.0084, -0.0036, -0.0171, -0.0160, -0.0123 for mice 1 to 5 respectively). This suggests that 

it is not only variations in the angle or exact location of the recordings that determines whether ROIs 

can be matched, but probably also slower, biological processes such as viral expression of the 

calcium indicator, learning- or age-induced changes in neural activity, cell death or anatomical 
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changes of the brain. Indeed, Fig. 10B shows that correlations between the registered spectral 

images decreases over time (spearman correlation P=0.0006 for mice 1, for all other mice P<0.0005, 

r=-0.68, -0.58, -0.61, -0.93, -0.82 for mice 1 to 5 respectively), suggesting that the structure of the 

imaged location and activity patterns and GCaMP6f labeling of the neurons alter over a period of 

weeks to months. Changes in GCaMP6f labeling and/or neuronal activity is supported by the 

observation that more ROIs were detected on later imaging sessions for some mice (spearman 

correlation P=0.2, P=0.008, P=0.51, P=0.97, P=0.015, and r=0.56, 0.83, -0.21, -0.01, 0.68 for mice 1 to 

5 respectively) (Fig. 10D). Finally, we tested what fraction of ROIs could be tracked in multiple 

sessions. For pooling the data from the 5 imaged mice, we were constrained by the minimum 

number of recordings of the mice. We therefore limited the number of sessions to 7, choosing the 

sessions in such a way that the number of days between the first and last recording was close to 65. 

We then calculated in how many imaging sessions the ROIs from recording 1 were found back in 

subsequent sessions (Fig. 10C). If ROIs were found in 6 or less sessions, this was not necessarily in 

consecutive ones. As shown in figure 9, ROIs can be missing for some sessions, and then show up 

again. We found that 22% of all ROIs could be matched in all 7 recordings, averaged over the five 

mice, which corresponded to 213 neurons, or 213*7=1491 separate ROIs in total. 28% of ROIs (354 

ROIs) could not be matched with ROIs from any other recording. Together, these results show that 

the developed pipeline is highly efficient in identifying ROIs and tracking them over many imaging 

sessions with little effort of the user. 
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Figure 10. Chronic tracking. A) The number of matches between recordings decreases if there is more time 
between the recording pairs. B) Spectral correlation for each recording pair. Recordings that are recorded 
closer together in time have better correlation coefficients. This shows that the imaged brain changes over 
time. C) Checking in how many recordings the ROIs from recording one were found back in all seven 
recordings. To be able to pool all the mice together seven recordings were analyzed per mouse. Recordings 
were chosen so that the time between the first and last recording was as close to 65 days as possible. The 
number of putative neurons in each condition were: 1146, 792, 606, 516, 421, 319 and 213 for conditions 1 to 
7 respectively. Error bar shows standard error of the mean for the five mice. D) The number of ROIs found in 
the mice recordings did increase significantly for mouse 2 and 5 (spearman correlation: P<0.05, for mouse 1, 3 
and 4 the P values were 0.20, 0.51 and 0.97 respectively). 
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Discussion 

Here we describe a novel open source toolbox for automatic ROI selection, ROI editing, neuropil 

correction, signal extraction and chronic matching of ROIs. Our ROI selection is based on clustering 

of co-active pixel traces combined with morphological filtering to identify somata and neurites alike. 

Pixel correlations were also used in several other approaches for ROI selection (Kaifosh et al., 2014; 

Smith and Häusser, 2010; Spaen et al., 2019). In our implementation, however, the first step of ROI 

selection involves calculating the low (0.013-0.5Hz) frequency cross-spectral power components. 

These spectral components can be visualized, yielding exceptionally clear images of the local 

functional anatomy that include neuronal cell bodies and neurites. Underlying these low-frequency 

components are bouts of neuronal activity, which cause a prolonged rise in the fluorescence of the 

calcium indicator. In contrast to the high-frequency components, the low-frequency components are 

less sensitive to noise. Moreover, neuropil shows little low-frequency activity thus allowing for the 

efficient separation of neuronal structures from the background.  

This first step of our ROI selection process requires only few initial constraints, allowing inclusion of 

ROIs with irregular shapes or sizes. During the second step, a threshold is set on the pixel 

correlations within the ROI, which leads to a robust separation of ROIs containing highly correlated 

pixels and rejection of areas of pixels in overlapping neural elements. Additional filters for 

morphological properties of the ROIs such as size or roundedness can be included. Adjustment of 

these constraints makes it possible to select ROIs around neuronal cell bodies, dendrites or axons. 

These constraints are intuitive and easy to use, making the SpecSeg ROI selection process very 

versatile and user friendly. 

The pipeline also includes a graphical user interface, facilitating quality control of the selected ROIs. 

This interface comprises an alternative method for visualizing pixel correlations within the ROI, 

aimed at detecting whether multiple cells are present within one ROI. This makes it easy to split or 

reject ROIs if necessary. Also, ROIs can be added if the experimenter believes that cells are missed, 

and the quality of their signal can be assessed immediately. 
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We used the NeuroFinder datasets ( http://neurofinder.codeneuro.org/ ) to compare the efficiency 

of the automated ROI selection procedure with other ROI segmentation packages available. This 

revealed that SpecSeg scored lower than other frequently used packages such as Suite2P (Pachitariu 

et al., 2017) and CaImAn (Giovannucci et al., 2019). This could be caused by the settings we used for 

ROI selection, by limitations of our ROI selection approach, or by what are considered “ground-

truth” ROIs in the Neurofinder datasets (or a combination of these factors).  

When we performed quality control on the Neurofinder ground-truth ROIs, we noticed that in a 

considerable subset the pixel traces within the ROI showed very little correlation. This implies that 

most of the signal extracted from pixels in such ROIs does not represent the signal from the ROI 

itself, but rather from surrounding neuropil. In contrast, SpecSeg only included ROIs with a high 

signal to noise (SNR) ratio. This also included ROIs that were too dark to detect by assessing the 

average fluorescent signal alone and were missed in the Neurofinder ground-truth ROIs. This means 

that SpecSeg selects the most relevant ROIs but misses ROIs of neurons that are silent during the 

recording. A similar observation was made in a study comparing ROIs identified automatically using 

CaImAn and those identified by human annotators. It was found that matching ROIs were preferably 

those with a high SNR (Giovannucci et al., 2019). To achieve a more refined set of ROIs, that more 

closely match ROIs selected by human annotators, both CalmAn and Suite2P include a final step to 

exclude spurious ROIs by training classifiers (Giovannucci et al., 2019; Pachitariu et al., 2017). 

In SpecSeg, we chose to rely as little as possible on human annotation (directly, or indirectly by using 

trained classifiers) because our analyses revealed that this results in the inclusion of many ROIs with 

low SNR. We think it is debatable whether such ROIs should be included in the data analysis, as they 

may contaminate the actual neural code of the imaged neurons. When electrophysiological 

approaches are used, units with a signal that cannot be reliably separated from background noise 

would certainly not be included in the analysis. Only in some instances it is useful to know that a 

neuron is included in the dataset but does not show any activity, for example when chronically 

tracking the activity of individual neurons. In such cases, the option to manually include neurons 
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using the SpecSeg graphical interface when they are not detected by the activity-based approach 

can solve the issue. An additional problem with using trained classifiers is that they will need to be 

retrained when other structures than neuronal cell bodies need to be identified for ROI selection, 

such as axons or dendrites. 

We included a neuropil subtraction approach in our pipeline that works similarly to previously 

described methods (Chen et al., 2013; Khan et al., 2018; Tegtmeier et al., 2018). It calculates the 

signal from a donut-shaped area around the ROI, which is then subtracted from the signal derived 

from the ROI. We noticed that for most ROIs, neuropil correction did not significantly improve the 

neuronal signal. Of course, the level of neuropil contamination depends on many factors, including 

the brain region imaged, the strength of the neuronal signals, the density of labeling and the 

synchronicity of neuronal activity. After more thorough analysis, we noticed that ROIs with high 

mean pixel R2 were much less contaminated by the neuropil signal than those with low mean pixel 

R2. It should be noted that in ROIs with low mean pixel R2, neuropil subtraction may actually 

introduce an artefact in the signal, again illustrating the importance of removing such ROIs from the 

analysis.  

It is difficult to compare the speed of the ROI selection process to other software packages available. 

However, we found that motion correction using NoRMCorre was the slowest step in the process, 

taking up approximately half the time of the total automated ROI selection process. This implies that 

the actual ROI selection process is not a bottleneck. Importantly, we found that the speed of ROI 

selection was more than sufficient for all practical purposes except on-line ROI selection. 

One of the strengths of calcium imaging approaches is that one can follow the responses of 

individual neurons over prolonged periods of time. To facilitate this approach, we developed a tool 

for automated matching of ROIs in whole series of sequentially recorded calcium imaging sessions. 

Using this approach, about half of the ROIs between two randomly selected pairs of recordings could 

be matched. As already mentioned, one cause for not retrieving ROIs in all recordings is that some 

neurons are silent during some recordings, and thus not included by our activity-dependent ROI 
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selection approach. Also, ROIs may be missed due to slight misalignments of the imaged brain 

region. Interestingly, we found that when the time between two recordings was longer, the number 

of matched ROIs was reduced. This shows that biological factors also play a role in the success rate 

by which neurons are detected in multiple recordings. Over time, the brain may slightly change its 

shape, causing some neurons to be excluded from the field of view. Moreover, neurons may die, or 

lose or gain expression of the viral vector. The most interesting reason seems to be that neurons 

may not be active in some recordings, in line with the finding that when mice perform the same task 

over prolonged periods of time, neuronal activity patterns reorganize over time resulting in the 

recruitment of different sets of neurons (Driscoll et al., 2017). Together, these issues may explain 

why studies in which the chronic tracking of activity of individual neurons are still sparse. Our 

automated matching approach will make this exciting possibility of two-photon calcium imaging 

more accessible. 

In conclusion, SpecSeg is a powerful, complete and open-source pipeline for ROI selection, signal 

extraction and chronic ROI matching that can be used on a variety of 1P and 2P calcium imaging 

data. Its main advantage over several existing calcium imaging toolboxes are the ease of use and 

simplicity, the intuitive way ROIs are selected and constrained, the selection of ROIs that represent 

neurons whose responses can be well separated from background noise, the possibility to select 

ROIs of various shapes and sizes, and its graphical interface for ROI editing.  
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Materials and methods 

 

Mouse experiments 

To develop the ROI selection tools described in this study, we made use of two-photon imaging data 

from mice that were repeatedly imaged in as yet unpublished behavioral studies. Here we describe 

the methodology developed for the analysis of such data. All animal experiments were approved by 

the institutional animal care and use committees of the Royal Netherlands Academy of Arts and 

Sciences. We used male and female mice that were 2-7 months of age. The mice were offspring of 

Ai14 mice (Cre-dependent tdTomato reporter mice, strain 007908) crossed with mice expressing Cre 

in vasoactive intestinal polypeptide (VIP)-expressing or somatostatin (SOM)-expressing interneurons 

(Jackson Laboratories, www.jaxmice.jax.org, strains 010908 and 013044 respectively). All animals 

were kept in a 12 h reverse day/night cycle with access to food and water ad libitum. Experiments 

were carried out during the dark cycle. 

 

Viral injections 

Mice were injected with a viral vector driving expression of the genetically encoded calcium sensor 

GCaMP6f in neurons (AAV2/9.syn.GCaMP6f, UPenn Vector Core facility). Anesthesia was induced 

with 5% isoflurane and maintained at 1.6% isoflurane in Oxygen (0.8L/min flow rate). Mice were 

administered Metacam (1mg/kg subcutaneously (s.c.), for analgesia) and dexamethasone (8 mg/kg 

s.c.) to prevent cerebral edema/inflammation and Cefotaxim (25 mg/kg s.c.) as antibiotic profylaxis, 

after induction of anesthesia. Mice were head-fixed on a stereotax, scalp and soft tissue overlying 

the visual cortex were incised and the skull exposed. A small hole was drilled in the skull overlying 

the center of primary visual cortex (V1). A pulled capillary with AAV2/9.syn.GCaMP6f was inserted 

vertically through this hole to a depth of 200-400 um from the brain surface. Approximately 20 to 

100 nl of virus (titer ~10E12 viral genomes per ml) was injected slowly using a Nanoject and the hole 

was covered with bone wax. During the surgery, the temperature was maintained with euthermic 
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pads. Respiration was monitored to adjust depth of anesthesia. Eyes were protected from light and 

from drying using Cavasan eye ointment. Once the window was made the exposed dura was 

continuously kept moist with artificial aCSF, consisting of a solution of 125 NaCl, 10 Hepes, 5 KCl, 2 

MgSO4, 2 CaCl2, and 10 Glucose, in mM. Later the scalp was sutured, and the animal allowed to 

recover from anesthesia. 

 

Cranial Window Surgery 

One month after viral vector injection, mice were anesthetized again as described above. Mice were 

head-fixed on a stereotax and scalp and soft tissue overlying the visual cortex were incised and the 

skull exposed. A metal ring (5mm inner diameter) was fixed on the skull centered on V1, with dental 

cement. A cranial window was made inside the ring and the dura was exposed. The cranial window 

was then covered with a double coverslip (to reduce brain movements under the microscope) and 

fixed to the metal ring using dental cement. Animals were allowed to recover after the dental 

cement dried. After a minimum of 2 weeks of recovery, mice were submitted to further handling and 

training. During the training and recording periods described below, animals were typically in the 

setup 5 days per week.  

 

Handling and habituation 

Once an animal recovered from the viral injection, and before window implantation, animals were 

handled daily for 5 minutes (or until they started to groom while being handheld) to reduce handling 

stress during later training. Next, animals were trained and habituated for 3 days with head-

restrainment in the training setup with a running wheel. After habituation, animals were placed in a 

two-photon microscopy setup. Once the mice were comfortable with the setup, they performed a 

visual detection task.  
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Visual stimulation 

Stimuli were presented on a gamma-corrected Dell-P2314H 23” full HD LED monitor, placed 15 cm in 

front of the mouse. Stimuli were made with custom-made MATLAB scripts. Receptive field size of 

each region of interest (ROI) was estimated by reverse correlation after presenting 3 black and 3 

white squares (7.5° - size degrees) simultaneously at pseudo random locations on the screen. The 

stimuli were repeated for 10-15 times at each location. The duration was 0.5 s, the interstimulus was 

an isoluminant gray screen, duration 1.5 s, contrast: 1.0 and maximum luminance was kept to 20% 

of screen max (Max luminance). For visual stimulation, various stimuli were used, depending on the 

behavioral experiment. 

 

Two-photon imaging 

For imaging we used a Neurolabware standard microscope (CA, USA) equipped with a Ti-sapphire 

laser (Mai-Tai, Spectra-physics, CA,USA). A black cloth was used to cover the objective in order to 

prevent light coming from the monitor to the objective. Two-photon laser scanning microscopy was 

performed at 910 nm and neurons were imaged using a 1 mm field of view with 16x water-

immersion objective (0.8NA) with computer-optimized optics of 1.6x magnification.  

Two-photon Calcium-imaging sequences were recorded in awake behaving mice and saved in a 

continuous binary format (sbx, Neurolabware). The dimensions of the images were 812 by 512 

pixels, with 16 bit unsigned integer pixel depth. These files are associated with a metadata file (mat, 

MATLAB) that defines, among other parameters, pixel dimensions, number of channels, number of 

sections, and number of frames recorded. All further processing was done with MATLAB 

(Mathworks™).  

 

Data analysis code 
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The code for all data analysis procedures described below is available at Github: 

(https://github.com/Leveltlab/SpectralSegmentation). A flowchart of the analysis pipeline is shown 

in Fig. 1 and is also present in the Github repository.   

 

ROI selection based on cross-spectral power 

We developed a pipeline for ROI extraction that works as follows: First, the images are cropped to 

remove border artifacts before being aligned using rigid registration with NoRMCorre 

(https://github.com/flatironinstitute/NoRMCorre), a toolbox provided by the Simons Foundation 

(Pnevmatikakis and Giovannucci, 2017). We adapted the entry function of this toolbox in order for it 

to work with files in .sbx format, produced by the Neurolabware microscope that we used, and 

integrated it in the pipeline. After visual inspection to ascertain that the images are well aligned, the 

image sequences are transposed to place time in the first dimension and width * height in the 

second dimension (StackTranspose.m). This makes the processing of pixel traces much more 

efficient in the time domain. This data is saved in binary format for later use with “_Trans.dat” as 

extension. In addition, we also save a downsampled version of this file with “_DecTrans.dat” as 

extension. Downsampling was perfomed with “decimate” (Mathworks) to a sampling rate of ±1Hz. 

Next, it calculates the cross-spectral power of the fluorescent signal between neighboring pixels over 

time. To achieve this, the data is first detrended and for each half-overlapping time window (60 

seconds) the data is convolved with a hamming window. Cross-spectral density functions are 

calculated from the discrete Fourier transforms of these pixel-trace segments for each pixel with its 

eight neighbors and averaged over all time windows. Additionally, the total variance is calculated for 

each pixel from their average auto-spectral density function. Then, the cross-spectral power 

functions are normalized (see formula 1) with their respective variances. 

𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓) =
�𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)�2

𝑉𝑉𝑥𝑥𝑉𝑉𝑦𝑦
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 Formula 1. Cross-spectral power: Where Pxy (f) is the average normalized cross-spectral power, Gxy 

(f) is the cross spectral density between x and y for frequency component f, and Vx and Vy the 

average variance of x and y respectively. 

 

Finally, the normalized cross-spectral power functions of a pixel with its eight neighbors are 

averaged. The result is a 2D matrix representing cross-spectral power at each frequency component 

for all pixels. We used this to generate an image for each spectral component. This data is saved in a 

separate file with “_SPSIG.mat” as extension. 

Cross-spectral images are generated for spectral components between 0.017 Hz to 0.5 Hz, from 

image sequences recorded at a sampling rate between 10 and 30 Hz (Fig. 2). Pixels within active 

neurons display strong cross-spectral power below 0.4 Hz whereas background neuropil is usually 

non correlated making neurons clearly visible in these images (Figs. 2, 3). The images for cross-

spectral components between 0.017 and 0.4 Hz are therefore used to extract ROIs (spectral.m). 

For each cross-spectral image in the selected frequency range, a series of morphological constraints 

are applied to find as many non-overlapping ROIs as possible (getSpectrois.m). First, all maxima 

(cross-spectral peaks) in the image are detected and sorted according to magnitude. A fraction (0.25-

0.4) of these peaks with the highest values are selected and sorted in decreasing order. Based on 

this selection, a square area of pixels (Voxel; 50x50 pixels) is sampled for each peak, centered on the 

peak and contours are detected using contourc (MATLAB) (Fig 3D). Closed contours containing the 

selected peak are selected and constrained by a set of criteria: 

1. To avoid that multiple peaks from the same neuron are selected, the minimal distance between 

peaks in each ROI should be greater than a defined threshold (20 pixels). 

2. To ensure that the magnitude of the peak is well above background level, the peak should be 

greater than (95%) of the pixel range within a voxel. 

3. Given the expected size range of cell bodies, the minimum and maximum area (number of pixels) 

should be between 30-400 pixels (a pixel is ±1.5µm2 within our field of view: ±1mm). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.20.345371doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.345371
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

27 
 

4. Roundedness; The relationship between the area of a contour and the length of its circumference 

(4*Pi* Area / Circumference^2) should be greater than 0.6 (1 = completely round, 0 = any shape),  

These parameters can be adapted depending on the type of ROI that a user is interested in and the 

magnification of the images. To select cell bodies, for example, the roundedness should be greater 

than 0.6 and the number of pixels should be below 100 at low magnification. Because the criteria are 

simple and self-evident, optimal values can easily be established with some experimentation. 

Depending on the density of active neurons and their processes in an image sequence, contours 

around correlated pixels may still represent overlapping or adjacent neural elements. Therefore, the 

ROIs are further restrained based on the assumption that pixels in adjacent cell bodies are not highly 

correlated. To achieve this, all pixel traces within the original ROI are correlated with the averaged 

down-sampled trace of eight neighboring pixels at the original local maximum. Based on this 

calculation, the ROI is constrained to an area containing pixels with correlations larger than the half 

maximum of the total range (Fig. 3E). In principle, this is a computationally expensive approach, but 

it is feasible because the numbers of pixel traces in a preselected ROI are limited in number and the 

traces are decimated to 1Hz. For analysis and selection purposes we also saved the mean pixel R2 of 

an ROI. To calculate this we averaged the squared pixel correlations within the constrained ROI. 

 

User interface for ROI refinement 

To give users control over the selected ROIs, we developed a graphical user interface to reject ROIs 

outside a preferred range of properties (RoiManagerGUI.m). Additionally, the user interface allows 

the user to manually delete or keep ROIs. In rare cases, some ROIs have areas with pixels that have 

low or negative correlations. This may indicate that the ROI contains signals from multiple neuronal 

sources, or that registration was suboptimal and the neuron was not located at the ROI during the 

entire recording. We therefore developed the option to split these ROIs (Fig. 7B-E). The user 

interface creates four reference points at the distal edges of the ROI. The fluorescence signal from 

these reference points is then correlated with the signal of each pixel in the ROI. This creates four 
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correlation values per pixel of the ROI. These are used to create a color-coded image in the user 

interface, indicating the location of different signal sources in the ROI. The pixels in the ROI can then 

be subjected to k-means clustering. After setting the number of clusters the user can decide to split 

such an ROI in two or more ROIs or to delete part of the ROI. The user can also add more reference 

points if clustering needs to be improved.  

We also included the option to create new ROIs in the user interface, for example when neurons 

were missed by the automated analysis. These new ROIs can be added in two different ways. One 

option is to manually draw the contour of the ROI. The other option is to let the computer draw the 

ROI, based on the cross-spectral image (or any other user-defined background image, such as the 

fluorescent image) and a threshold set by the user (Fig. 7A). 

 

Signal extraction and neuropil subtraction 

To extract the calcium signals for each ROI (retrievesignals.m), all pixel traces within the ROI 

contours are averaged. The signals are neuropil corrected by subtracting the averaged signal of a 

neuropil area from the ROI signal. A donut-shaped neuropil area is created for each ROI. To achieve 

this, a small buffer area with a width of 2 pixels (~2 µm) is first added around each ROI. The neuropil 

area is defined by first enlarging the ROI by 20 pixels (~20 µm) using a circular filter, after which the 

central and adjacent ROIs and their buffer areas are excluded from this area. To prevent 

overcorrection, the neuropil signal is multiplied by 0.7, in accordance with previous studies (Chen et 

al., 2013; Khan et al., 2018; Tegtmeier et al., 2018). 

 

Spike estimation 

The extracted ROI signal can be converted into an estimate of a spike train (DeconvolveSignals.m) 

with the MLspike toolbox (Deneux et al., 2016), which has to be downloaded via their github 

(https://github.com/MLspike). The spike train is then saved in the same format as the regular 

calcium signals. 
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Identification of the same ROIs in chronically recorded datasets 

Finally, we include a toolbox to identify the same ROIs in chronic recordings of the same brain region 

(ChronicMatching.m). It first registers the spectral images of the recordings to ensure that each ROI 

will be located at exactly the same position in all recordings. To achieve this, the spectral images are 

normalized so that all values were in the range from -1 to 1. Next, the registration of the spectral 

images is done by repeated translation and rotation. Each recording is registered to a reference 

recording chosen by the user. Preferentially, one of the middle recordings is used as a reference in 

order to minimize the difference between the reference and the recordings to be registered.  

The distance over which recordings need to be translated is calculated by doing a 2D cross-

correlation between the reference image and the spectral images of the other recordings. The cross-

correlation is calculated with xcorr2_fft (Masullo, 2020), which is much faster than the MATLAB 

built-in cross-correlation function. After the translations are applied, the images are padded with 

zeros to maintain the same dimensions. 

To correct the rotation, each recording is rotated using bicubic interpolation over a range of 

different angles, from 1° clockwise to 1° counterclockwise in steps of 0.05°. Each rotation is 

compared to the reference image with a 2D correlation and the best fit is applied if the correlation is 

at least 0.005 higher than the original image. Several rounds of translation and rotation are applied 

until no significant further improvement is achieved. 

After registration, ROIs between all chronic recordings within an experiment are matched. A 

minimum percentage of overlap threshold is set. In the example presented here, we chose 67.5% 

based on the best balance between false positives and false negatives as determined by inspection 

with the chronic viewer user interface. The ROI matching is represented in a 2D matrix (the “match 

matrix”), consisting of a column for each recording and rows with the ROI numbers in each recording 

that are matched to each other. If no match for a particular ROI is found in a recording, the cell was 

kept blank. 

To create the match matrix, the following three steps are taken: 
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1. For each ROI in each recording, the overlapping ROIs from all other recordings are identified. The 

percentage of the reference ROI that is covered by each overlapping ROI of other recordings was 

calculated (“overlap”) and saved as a putative match if it is above the overlap threshold. 

2. Next, the overlap for each pair of putatively matched ROIs is calculated in the opposite direction 

(i.e. the percentage of overlapping ROI that is covered by the reference ROI). The average of the two 

overlap values are averaged, and putative matches whose average overlap is below the overlap 

threshold (in our example 67.5%) are discarded. Calculating the overlap in these two simple steps 

automatically takes many parameters of the neurons into account: if the sizes, shapes or positions of 

two ROIs differ significantly the overlap value will always be small. 

3. To obtain the final matching matrix, the data needs to be merged in order to match the same ROIs 

in all recordings, not just in pairs of recordings. The merging process includes ‘mutual linking’: if an 

ROI from recording A is matched only to recording B, but that ROI from recording B has matches to A 

and C, it is implied that the ROI from recording A is also matched to the ROI in recording C. This 

mutual linking increases the number of matched ROIs. 

The results can be checked in a user interface (ChronicViewer.m). The matches can be verified by 

selecting a cell in the match matrix, which will light up the ROI contours of the match. Clicking on 

ROIs in the main image will show the ROI numbers and match information in a table. The match 

matrix can be edited if necessary. 
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