bioRxiv preprint doi: https://doi.org/10.1101/2020.10.20.346411; this version posted October 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1	Ceragenins and antimicrobial peptides kill bacteria through distinct mechanisms
2	
3	Gabriel Mitchell ^{1§} , Melanie R. Silvis ² , Kelsey C. Talkington ¹ , Jonathan M. Budzik ^{1,3} ,
4	Claire E. Dodd ¹ , Justin M. Paluba ¹ , Erika A. Oki ¹ , Kristine L. Trotta ⁴ , Daniel J. Licht ¹ ,
5	David Jimenez-Morales ^{5,6} , Seemay Chou ⁴ , Paul B. Savage ⁷ , Carol A. Gross ^{2,8} , Michael
6	A. Marletta ^{$1,9,10#$} and Jeffery S. Cox ^{$1#$}
7	
8	
9	Running title: Ceragenins kill bacteria through a distinct mechanism
10	Keywords: Antibiotics, Gram-negative, Gram-positive, mycobacteria, CSA
11	
12	
13 14 15	¹ Department of Molecular and Cell Biology, University of California, Berkeley, USA. ² Department of Microbiology and Immunology, University of California, San Francisco, USA.
16 17 18	³ Department of Medicine, University of California, San Francisco, USA. ⁴ Department of Biochemistry and Biophysics, University of California, San Francisco, USA.
19 20	⁵ Department of Medicine, Division of Cardiovascular Medicine, Stanford University, CA, USA.
21 22	⁶ Department of Cellular and Molecular Pharmacology, University of California, San Francisco, USA.
23 24	⁷ Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
25 26 27	⁸ Department of Cell and Tissue Biology, University of California, San Francisco, USA. ⁹ Department of Chemistry, University of California, Berkeley, USA. ¹⁰ California Institute for Quantitative Biosciences, University of California, Berkeley,
28 28 29	USA. [#] Corresponding authors: jeff.cox@berkeley.edu; marletta@berkeley.edu
29 30 31	Scurrent address: Open Innovation @ NITD, Novartis Institute for Tropical Diseases, Emeryville, CA, USA.

32 ABSTRACT

Ceragenins are a family of synthetic amphipathic molecules designed to mimic the 33 properties of naturally-occurring cationic antimicrobial peptides (CAMPs). Although 34 ceragenins have potent antimicrobial activity, whether their mode of action is similar to 35 that of CAMPs has remained elusive. Here we report the results of a comparative study of 36 37 the bacterial responses to two well-studied CAMPs, LL37 and colistin, and two 38 ceragenins with related structures, CSA13 and CSA131. Using transcriptomic and 39 proteomic analyses, we found that *Escherichia coli* responds similarly to both CAMPs 40 and ceragenins by inducing a Cpx envelope stress response. However, whereas E. coli exposed to CAMPs increased expression of genes involved in colanic acid biosynthesis, 41 42 bacteria exposed to ceragenins specifically modulated functions related to phosphate transport, indicating distinct mechanisms of action between these two classes of 43 molecules. Although traditional genetic approaches failed to identify genes that confer 44 45 high-level resistance to ceragenins, using a Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) approach we identified E. coli essential 46 genes that when knocked down modify sensitivity to these molecules. Comparison of the 47 48 essential gene-antibiotic interactions for each of the CAMPs and ceragenins identified 49 both overlapping and distinct dependencies for their antimicrobial activities. Overall, this 50 study indicates that while some bacterial responses to ceragenins overlap with those 51 induced by naturally-occurring CAMPs, these synthetic molecules target the bacterial envelope using a distinctive mode of action. 52

IMPORTANCE

54	The development of novel antibiotics is essential since the current arsenal of
55	antimicrobials will soon be ineffective due to the widespread occurrence of antibiotic
56	resistance. Development of naturally-occurring cationic antimicrobial peptides (CAMPs)
57	for therapeutics to combat antibiotic resistance has been hampered by high production
58	costs and protease sensitivity, among other factors. The ceragenins are a family of
59	synthetic CAMP mimics that kill a broad spectrum of bacterial species but are less
60	expensive to produce, resistant to proteolytic degradation and have been associated with
61	low levels of resistance. Determining how ceragenins function may identify new essential
62	biological pathways of bacteria that are less prone to development of resistance and will
63	further our understanding of the design principles for maximizing the effects of synthetic
64	CAMPs.

65 INTRODUCTION

66	Our current arsenal of antibiotics will soon be ineffective against the simplest bacterial
67	infections due to the continued spread of antibiotic resistance (AR) (1). AR has been
68	identified in virtually all bacterial species of clinical relevance, including Gram-positive
69	and Gram-negative bacteria as well as mycobacteria (2). Despite the threat that AR
70	represents to global health, there is a lack in the development of antimicrobials with
71	innovative mechanisms of action (3-5). A better understanding of the fundamental
72	principles of how antibiotics kill microbes and how AR develops will help break the
73	futile cycle of antibiotic development and microbial evolution.
74	
75	Antimicrobial peptides are structurally diverse molecules expressed in a wide
76	array of organisms that directly kill microbes, including bacteria (6, 7). Many
77	antimicrobial peptides, such as the class of cationic antimicrobial peptides (CAMP),
78	rapidly kill bacteria by disrupting membranes although other mechanisms of action were
79	also suggested (7-9). The potential of using CAMPs to treat AR infections has become a
80	research focus due to their action against a broad spectrum of pathogens, their selectivity
81	toward microbial membranes and the low appearance of resistance (6, 10). Despite some
82	progress in this area, significant barriers to CAMP therapeutic development include high
83	production costs, toxicity, susceptibility to proteolytic degradation and activation of
84	allergic responses (6, 10).
85	
86	Caraganing are a family of synthetic amphinathic molecules derived from cholic

86 Ceragenins are a family of synthetic amphipathic molecules derived from cholic
87 acid designed to mimic the activity of endogenous CAMPs (11, 12). These molecules are

88	inexpensive to manufacture and are not susceptible to proteolysis, making them an
89	attractive alternative to peptide-based synthetic CAMPs. Importantly, ceragenins have
90	antimicrobial activity against a broad spectrum of microbes, which include both Gram-
91	negative and Gram-positive bacteria (11, 13). High-level resistance to ceragenins is
92	seemingly difficult to acquire in the lab as attempts to isolate ceragenin-resistance
93	bacterial mutants failed in the Gram-positive bacterium Staphylococcus aureus and
94	identified only modest and unstable resistance in Gram-negatives (14). Although
95	ceragenins were designed as CAMP mimics and can depolarize bacterial membranes
96	(15), the inability to identify bona-fide ceragenin-resistant bacterial mutants represents a
97	major barrier in understanding their mechanism of action.
98	
99	Here we take a comparative approach using a combination of transcriptomic,
100	proteomic and genetic approaches to compare the bacterial responses to treatment with
101	ceragenins and two well-studied CAMPs. The results of this study suggests that
102	ceragenins kill bacteria by disrupting the bacterial envelope through a distinctive mode of
103	action from naturally-occurring CAMPs. We also show, for the first time, that ceragenins
104	have activity against mycobacteria despite their distinctive cell wall architecture.

105 MATERIALS AND METHODS

106	Antimicrobial compounds. CSA13 and CSA131 (16) as well as CSA44 and CSA144
107	(17) were prepared as described previously and solubilized at 10 mg/mL in sterile
108	distilled and deionized (DD) water. LL37 (Anaspec, Fremont, California, USA), colistin
109	(Sigma-Aldrich, St-Louis, MO, USA) and ciprofloxacin (MP Biomedicals, Irvine,
110	California, USA) were solubilized at 10 mg/mL in sterile DD water. Erythromycin
111	(Sigma-Aldrich) was solubilized at 10mg/mL in ethanol. Antimicrobial compounds were
112	aliquoted and stored at -20° C. Freeze-thaw cycles of stock solutions were limited to three
113	times.
114	
115	Bacterial strains, growth conditions. E. coli MG1655 (18), L. monocytogenes 10403S
116	(19), <i>M. marinum</i> strain M (20), <i>M. smegmatis</i> mc ² 155 (21) and <i>M. tuberculosis</i> Erdman
117	(20) were as previously described. <i>M. avium</i> $mc^2 2500$ is a clinical strain isolated from an
118	acquired immunodeficiency syndrome (AIDS) patient with pulmonary disease and
119	predominantly formed a smooth/transparent colony morphotype on solid agar (22). M.
120	avium $mc^2 2500D$ is an isogenic, laboratory-derived strain with an opaque colony
121	morphotype. E. coli and L. monocytogenes were routinely grown on Mueller-Hinton agar
122	(MHA) (BD, Franklin Lakes, New Jersey, USA) plates or in cation-adjusted Mueller-
123	Hinton (CAMH) (BD) broth and on Brain-heart infusion agar (BHIA) (Becton
124	Dickinson) plates or in Brain-heart infusion (BHI) (BD) broth, respectively. M. avium
125	and <i>M. tuberculosis</i> were cultured in Middlebrook 7H9 (BD) broth containing 0.5%
126	glycerol, 10 % Oleic Albumin Dextrose Catalase (OADC) (Sigma-Aldrich) and 0.05%
127	Tween-80. M. marium was cultured in Middlebrook 7H9 broth containing 0.5% glycerol,

128	10 % OADC and 0.2% Tween-80. M. smegmatis was grown on Middlebrook 7H10 (BD)
129	plates or Middlebrook 7H9 plates containing 0.5% glycerol, 0.5% dextrose and 0.2%
130	Tween-80, unless otherwise stated. All bacterial strains were grown at 37°C, except from
131	<i>M. marinum</i> , which was grown at 30° C. Liquid cultures were incubated with shaking,
132	unless otherwise stated.
133	
134	Antibiotic susceptibility testing. Minimal inhibitory concentrations (MICs) of
135	antimicrobial compounds against E. coli and L. monocytogenes were determined by a
136	broth microdilution technique following the recommendations of the Clinical and
137	Laboratory Standards Institute (CLSI) (23), except that BHI was used to perform assays
138	on L. monocytogenes. Antibiotic quality control experiments were performed using E.
139	coli ATCC25922 (ATCC, Manassas, VA, USA). A similar protocol using extended
140	incubation periods was used to determine MICs against M. avium (10 days), M. marinum
141	(5 days), M. smegmatis (3 days) and M. tuberculosis (14 days). For the determination of
142	MICs using mycobacterial species, plates were placed in a vented container containing
143	damp wipes to minimize evaporation.
144	
145	Time-kill experiments. Time-kill experiments were performed to characterize the effect
146	of compounds on bacterial growth and survival. Bacteria were inoculated at 10^5 - 10^6
147	CFU/mL in liquid media in the absence or presence of antibiotics at the following
148	concentrations: E. coli, 0.5 µg/mL colistin, 64 µg/mL LL37, 4 µg/mL CSA13 and 4

149 μg/mL CSA131; *L. monocytogenes*, 2 μg/mL CSA13, 2 μg/mL CSA131, 2 μg/mL

150 ciprofloxacin and 0.25 µg/mL erythromycin; *M. smegmatis*, 0.5 µg/mL CSA13 and 0.5

	151	ug/mL ci	profloxacin.	Bacterial	cultures	were a	grown at	37°	C with	shaking	and th
--	-----	----------	--------------	------------------	----------	--------	----------	--------------	--------	---------	--------

- 152 number of CFU/mL was determined at several time points. Plates without Tween-80
- 153 were used for the CFU determination of *M. smegmatis* cultures.
- 154

155 Serial passage experiments. Serial passage of bacteria in presence of sub-inhibitory

156 concentrations was performed as previously described (14, 24). Experiments were

157 performed in CAMH or BHI broth for *E. coli* and *L. monocytogenes*, respectively. In few

158 cases, bacteria growing at the two highest sub-inhibitory concentrations of antimicrobial

- had to be combined in order to get an inoculums of 10^5 - 10^6 CFU/mL.
- 160

Preparation and sampling of bacterial cultures for transcriptomic profiling. A single 161 162 colony of *E. coli* MG1655 was inoculated into CAMH broth and incubate 16-18 h at 37° C with shaking. Cultures were diluted in fresh media to an A_{600nm} of 0.1, incubated at 37° 163 C with shaking until an A_{600nm} of 0.8-1.0 (~2h) and antibiotics were added to each 164 165 cultures, which were further incubated for 1 h at 37° C with shaking. Antibiotic were 166 adjusted to concentrations having similar impact on *E. coli* growth for that particular, 167 higher bacterial density, culture format (i.e. 4 μ g/mL colistin, 8 μ g/mL CSA13, 8 μ g/mL CSA131 and 256 µg/mL LL37). Cultures samples were then mixed 1:2 with RNA Protect 168 Bacteria Reagent (QIAGEN, Germantown, Maryland, USA), vortexed immediately for 5 169 170 seconds and incubated for 5 min at room temperature. The bacterial suspensions were 171 centrifugated for 10 min at $5,000 \times g$, supernatants discarded and pellets were stored few days at -80° C before proceeding to RNA extraction. 172 173

174	RNA purification and sequencing. Bacterial pellets were resuspended in 100 μ L of 10
175	mM Tris, 1 mM EDTA, pH 8.0 buffer containing 10 mg/mL lysozyme (Sigma-Aldrich).
176	2.5 μ L of 20 mg/mL Proteinase K (NEB, Ipswich, Massachusetts, USA) was added and
177	samples were incubated at room temperature for 10 min, with frequent mixing. Samples
178	were combined with 0.5 μL of 10% SDS and 350 μL of Lysis Buffer (Ambion life
179	technologies, Invitrogen, Carlsbad, California, USA) containing β -mercaptoethanol,
180	vortexed and the lysate was transferred into a 1.5 mL RNase-free microcentrifuge tube.
181	Samples were then passed 5 times through an 18-21-gauge needle and centrifuged at
182	$12,000 \times g$ for 2 minutes at room temperature. Supernatants were transferred to a new 1.5
183	mL RNase-free microcentrifuge tube before proceeding to the washing and elution steps
184	described in the PureLink RNA Mini Kit (Ambion life technologies). Samples were
185	treated with DNase (NEB) for 15 min at 37° C in a volume of 50 μ L and 5 μ L of 25 mM
186	EDTA was added. Samples were further incubated 10 min at 75° C and quickly placed on
187	ice before being cleaned and re-eluted using the RNA Clean & Concentrator kit (Zymo
188	Research, Irvine, CA, USA) and stored at -80° C. The quality and the quantity of each
189	RNA samples was analyzed by the UC Berkeley QB3 facility using a bioanalyzer and the
190	Qubit technology. RNA samples were sequenced and preliminary analyzed by the UC
191	Davis Genome Center and the UC Davis Bioinformatics Core.
192	

Analysis of RNAseq data. The differential expression analyses were conducted using the
limma-voom Bioconductor pipeline (25) (EdgeR version 3.20.9, limma version 3.34.9)
and R 3.4.4 by the UC Davis Bioinformatics Core. The multidimensional plot was
created using the EdgeR function plotMDS. Pathway analyses were performed using

197 DAVID Bioinformatics Resources 6.8 (26, 27). Only annotation terms from the following 198 databases were included: UP (UniProt) Keywords, COG (Cluster of Orthologous Groups) 199 Ontology, GO (Gene Ontology for Biological process, Molecular function and Cellular 200 component) and KEGG (Kyoto Encyclopedia of Genes and Genomes). Venn diagram 201 analyses were performed using the tool provided on the Bioinformatics & Evolutionary 202 Genomics website of Ghent University (28). Promoter and regulatory binding analyses were performed using the Gene Expression Analysis Tools (29). Only one repeated 203 204 binding sites and promoters was considered for each gene for any specific transcription 205 factors. Lists of genes to be included in specific regulons were retrieved from the RegulonDB Database (30). Fold changes for few transcripts of regulons CpxR (*cpxQ*, 206 csgC, cyaR, efeU, rprA, rseD), PurR (codA, codB) and PhoB (cusC, phnE, prpR) were 207 208 not included in this analysis. The information related to the expected activity (induction and/or repression) of each transcription factor on specific genes were also retrieved from 209 210 the RegulonDB Database.

211

212 **Protein extraction and peptide preparation from** *E. coli* **cultures.** A single colony of E. coli MG1655 was inoculated into CAMH broth and incubate 16-18 h at 37°C with 213 214 shaking. Cultures were diluted in fresh media to an A_{600nm} of 0.1, incubated at 37° C with shaking until an A_{600nm} of 0.8-1.0 (~2 h) and antibiotics (4 µg/mL colistin or 8 µg/mL 215 216 CSA13) were then added to each cultures, which were further incubated for 3 h at 37°C 217 with shaking. Protein were extracted, digested and desalted, as previously described (31), 218 with few modifications. Briefly, 23 mL of bacteria cultures were washed twice in cold 219 PBS and resuspended in 4 mL of lysis buffer (8 M urea, 150 mM NaCl, 100 mM

220	ammonium bicarbonate, pH 8) containing Roche mini-complete protease inhibitor
221	EDTA-free and Roche PhosSTOP (1 tablet of each per 10 mL of buffer) (Roche, Basel,
222	Switzerland). Samples (on ice) were then sonicated 10 times with a Sonics VibraCell
223	probe tip sonicator at 7 watts for 10 seconds. Insoluble precipitates were removed from
224	lysates using a 30 min centrifugation at ~16,100 \times g at 4° C and the protein concentration
225	of each lysates was determined using the microplate procedure of the Micro BCA^{TM}
226	Protein Assay Kit (Thermo Fischer Scientific, Emeryville, CA, USA). Clarified lysates (1
227	mg each) was reduced with 4 mM tris(2-carboxyethyl)phosphine for 30 min at room
228	temperature, alkylated with 10 mM of iodoacetamide for 30 min at room temperature in
229	the dark and quenched with 10 mM 1,4-dithiothreitol for 30 min at room temperature in
230	the dark. Samples were diluted with three volumes of 100 mM ammonium bicarbonate,
231	pH 8.0, and incubated with 10 μ g of sequencing grade modified trypsin (Promega,
232	Madison, WI, USA) while rotating at room temperature for 18 hours. Trifluoroacetic acid
233	(TCA) was then added to a final concentration of 0.3% to each samples, followed by
234	1:100 of 6M HCl and the removal of insoluble material by centrifugation at ~2,000 \times g
235	for 10 min. SepPak C18 solid-phase extraction cartridges (Waters, Milford, MA, USA)
236	were activated with 1 mL of 80% acetonitrile (ACN), 0.1% TFA, and equilibrated with 3
237	mL of 0.1% TFA. Peptides were desalted by applying samples to equilibrated columns,
238	followed by a washing step with 3 mL of 0.1% TFA and elution with 1.1 mL of 40%
239	ACN, 0.1% TFA. The subsequent global protein analysis was performed using 10 μ g of
240	each desalted peptide sample.
241	

242 Liquid chromatography, mass spectroscopy and label-free quantification. Peptides 243 were analyzed using liquid chromatography and mass spectroscopy, as previously described (31). Mass spectrometry data was assigned to E. coli sequences and MS1 244 245 intensities were extracted with MaxQuant (version 1.6.0.16) (32). Data were searched 246 against the E. coli (strain K12) protein database (downloaded on November 6, 2018). 247 MaxQuant settings were left at the default except that trypsin (KR|P) was selected, allowing for up to two missed cleavages. Data were then further analyzed with the artMS 248 Bioconductor package (33), using the MSstats Bioconductor package (version 3.14.1) 249 250 (34) and the artMS version 0.9. Contaminants and decoy hits were removed, and samples were normalized across fractions by median-centering the log₂-transformed MS1 251 intensity distributions. The MSstats group comparison function was run with no 252 253 interaction terms for missing values, no interference, unequal intensity feature variance as well as restricted technical and biological scope of replication. Log₂(fold change) for 254 255 protein/sites with missing values in one condition but found in > 2 biological replicates of 256 the other condition of any given comparison were estimated by imputing intensity values from the lowest observed MS1-intensity across samples (33), and P_{values} were randomly 257 258 assigned between 0.05 and 0.01 for illustration purposes.

259

260 Identification of genetic determinants of resistance to antibiotics using CRISPRi. A

pooled CRISPRi library of strains with inducible knockdown of genes predicted to be
essential (FIG. S1) was used to study the genetic determinants of resistance to CAMPs
and ceragenins. To quantify the antibiotic sensitivity of each CRISPRi strain, the relative
proportion of each sgRNA spacer in the mixed population was enumerated by deep

265	sequencing, after 15 doublings in presence of saturating IPTG and 0.031 μ g/mL colistin,
266	12 μ g/mL LL37, 0.5 μ g/mL CSA13 and 0.25 μ g/mL CSA131. Briefly, a single glycerol
267	stock of the pooled library was fully thawed, inoculated into 10 mL LB at 0.01 A_{600} , and
268	grown for 2.5 hr (final ~0.3 A_{600}) at 37° C with shaking. This culture was collected (10
269	mL, t0) and used to inoculate replicate 4 mL LB cultures (+/- 1mM IPTG and antibiotics)
270	at 0.01 A_{600} , which were then repeatedly grown 130 min to 0.3 A_{600} (5x doublings) and
271	back-diluted to 0.01 for a total of 3 times (15x doublings). At the endpoint, cultures were
272	collected (4 mL, t15) by pelleting (9000 \times g for 2 min) and stored at -80° C. The
273	following day, genomic DNA was extracted using the DNeasy Blood & Tissue kit
274	(Qiagen #69506) with the recommended pre-treatment for Gram-negative bacteria and a
275	RNAse A treatment. sgRNA spacer sequences were amplified from gDNA using Q5
276	polymerase (NEB) for 14x cycles using custom primers containing TruSeq adapters and
277	indices, followed by gel-purification from 8% TBE gels. All sequencing was performed
278	at the Chan Zuckerberg Biohub on the Illumina NextSeq platform using Single End 50bp
279	reads.

Design of the sequencing libraries was optimized to enable multiplexing of many samples and to ensure diversity during cluster generation on the Illumina platform. Custom primers were used to generate the sequencing library that incorporated a second barcode (4bp) to be read in Read 1 (SeqLib.A.F and SeqLib.B.F in Fig. S1). In combination with the TruSeq barcode incorporated by the opposite primer (SeqLib.R in Fig. S1), this enabled the samples to be effectively dual-indexed. In preparing the sequencing libraries, samples were split into two types, Library Type A and Library Type

288	B, which differ in the offset position of the TruSeq Read 1 primer used for sequencing
289	(Fig. S1). Briefly, Library Type A introduces a 2bp offset, as such that, when libraries of
290	Type A and Type B are sequenced on the same flowcell, diversity of sequencing reads is
291	ensured throughout the read length, which includes the spacer region (variable sequence)
292	and the promoter region (identical sequence).
293	
294	Spacer sequences were extracted from FASTQ files and counted by exact
295	matching to expected library spacers. For each treatment condition, the counts tables
296	from each biological replicate were used as inputs for DESeq2 to calculate the change in
297	abundance (Log ₂ FC) and statistical significance (P_{value} and adjusted P_{value}).
298	
299	Determination of LogP values. LogP values (partition coefficient) were determined
300	using Chemicalize from ChemAxon (Escondido, California, USA).
301	
302	Preparation of graphs. GraphPad Prism software (v.7.00) was used to generate graphs
303	and performed statistical tests. Number of independent experiments are indicated in each
304	figure legend.

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.20.346411; this version posted October 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

306 **RESULTS**

307 Susceptibility of bacteria to CAMPs and ceragenins. Minimal inhibitory

- 308 concentrations (MIC) for the CAMPs colistin and LL37 as well as two ceragenin
- 309 compounds, CSA13 and CSA131 (see structures in FIG. 1A), were determined against
- 310 the Gram-negative bacterium *E. coli*, the Gram-positive bacterium *L. monocytogenes* and
- 311 several mycobacterial species (i.e. *M. avium*, *M. marinum*, *M. smegmatis* and *M.*
- 312 *tuberculosis*) (FIG. 1B-1H and Table S1). The fluoroquinolone antibiotic ciprofloxacin
- 313 (CIP, which inhibits DNA gyrase) was included as a positive control. As expected,
- colistin, which requires binding to LPS for activity (35), was active against *E. coli* (FIG.
- 315 1B), but not against *L. monocytogenes* (FIG. 1C) and each of the mycobacterial species

316 (FIG. 1D-1H). Interestingly, LL37 was active against *E. coli* (FIG. 1B) and *L*.

- 317 *monocytogenes* (FIG. 1C) but had no detectable activity against mycobacterial species
- 318 (FIG. 1D-1H). The ceragenins CSA13 and CSA131 were also active against both E. coli
- 319 (FIG. 1B) and L. monocytogenes (FIG. 1C). In contrast to colistin and LL37, the
- 320 ceragenins had activity against mycobacteria, although the MICs varied between species
- 321 (FIG. 1D-1H). While *M. smegmatis* was highly susceptible to CSA13 and CSA131 (FIG.
- 322 1G), both compounds were less active against the slower-growing species *M. avium*
- 323 (FIG. 1D and 1E), *M. marinum* (FIG. 1F) and *M. tuberculosis* (FIG. 1H). Similar trends
- 324 in MIC values for E. coli, L. monocytogenes and M. smegmatis were observed with two
- other ceragenin compounds, CSA44 and CSA144 (See Table S1), which further
- 326 confirmed that ceragenins have antimicrobial activity against mycobacteria. Overall,
- 327 these results demonstrate that the spectrum of activity of ceragenins is broader than
- 328 colistin and LL37, indicating different requirements for activity.

2	2	o
Э	4	9

330	Ceragenins are bactericidal. To determine if ceragenins kill all three types of bacteria,
331	we performed kill-curve experiments at inhibitory concentrations (~1-2 \times MICs) of the
332	molecules (FIG. 1I-1K). Ceragenins (CSA13 or CSA131) killed
333	E. coli (FIG. 11), L. monocytogenes (FIG. 1J) and M. smegmatis (FIG. 1K), although
334	some bacterial cultures recovered during this time course. These results confirmed that
335	ceragenins act on bacteria through a bactericidal mechanism.
336	
337	Serial passage of E. coli and L. monocytogenes in the presence of sub-inhibitory
338	concentrations of ceragenins. Isolation and characterization of antibiotic-resistant
339	bacteria could provide insight into the mode of action of ceragenins. As such, the
340	generation of ceragenin-resistant bacteria was attempted by performing serial passaging
341	experiments with E. coli and L. monocytogenes in the presence of sub-inhibitory
342	concentrations of ciprofloxacin, CSA13 and CSA131 (FIG. 1L and 1M). In contrast to
343	ciprofloxacin-exposed bacteria, E. coli and L. monocytogenes bacteria exposed to
344	ceragenins did not give rise to stable resistance. The generation of spontaneous M .
345	smegmatis mutants resistant to CSA13 was also attempted, but no CSA13-resistant
346	bacteria were recovered, although bacteria resistant to ciprofloxacin and rifampicin were
347	isolated from parallel control experiments (data not shown). These results confirmed that
348	resistance to ceragenins is infrequent (14) and does not emerge in vitro under conditions
349	known to generate resistant mutants against antibiotics.
350	

351	Transcriptional response of E. coli exposed to ceragenins. The transcriptional
352	response of bacteria to antibiotics was analyzed to gain insights into the mechanism of
353	action of CAMPs and ceragenins, as similarly reported for other antibacterial compounds
354	(36, 37). More specifically, we determined the global transcriptional responses of E. coli
355	exposed to colistin, LL37, CSA13 and CSA131 using RNAseq. Bacteria were grown to
356	log phase and treated with supra-MIC concentrations of antibiotics for one hour before
357	being harvested for RNA extraction and sequencing (see Materials and Methods). Plots
358	of the normalized number of reads per gene showed an excellent correlation ($R = 0.965$ -
359	0.999) between biological replicates for each of the conditions tested (FIG. 2A-2D),
360	demonstrating the reproducibility of the method. Hundreds of statistically significant
361	changes in gene expression (defined by absolute \log_2 fold change >1 and adjusted $P_{\text{value}} <$
362	0.05) following exposure of bacteria to colistin, LL37, CSA13 and CSA131 were
363	measured (FIG. 2E-2H and Data Set S1). These results validated our RNAseq approach
364	for the analysis of the transcriptional response of <i>E. coli</i> to antibiotics.
365	
366	The global transcriptional responses of E. coli in response to CAMPs and
367	ceragenins was analyzed using a multidimensional scaling analysis (FIG. 2I).
368	Interestingly, while transcriptional responses of bacteria to CAMPs were extremely
369	similar, the response to CSA13 and CSA131 were not only distinct from these CAMPs,
370	but also distinct from each other. Those trends were corroborated using pathway analysis
371	that showed the enrichment of annotation terms associated with the outer membrane (e.g.
372	lipopolysaccharide and colanic acid) in genes up-regulated by CAMPs, but not
373	ceragenins, (FIG. 2J and Data Set S2) as well as the enrichment of terms associated with

374	translation in genes down-regulated by CSA13, but not CSA131 (FIG. 2K and Data Set
375	S2). While the two ceragenins are structurally quite similar, the addition of four
376	methylene groups to the CSA13 carbon chain to create CSA131 significantly increases
377	the hydrophobicity of the molecule, increasing the partition coefficient from $LogP_{CSA13}$ =
378	5.51 to $LogP_{CSA131} = 7.29$ (see Materials and Methods), which likely contributes to
379	differences in antibacterial activities. Overall, these results showed that transcriptional
380	responses of <i>E. coli</i> to the naturally-occurring CAMPs colistin and LL37 are similar, but
381	differ from the response to ceragenins. These results also suggested that E. coli responds
382	differently to the structurally related ceragenin compounds, CSA13 and CSA131.
383	
384	Identification of pathways defining the transcriptional response of E. coli to
385	ceragenins. Pathway analysis of genes modulated by more than one compound was
386	performed to further define transcriptional responses to CAMPs and ceragenins. The
387	Venn diagram in Figure 3A visualizes the extent of overlap of the individual E. coli genes
388	that had significant increases in mRNA abundance upon treatment with each of the
389	molecules. In particular, 86 genes were induced in all four conditions, 68 were
390	upregulated specifically during CAMP treatment while 57 were induced by the
391	ceragenins (FIG. 3A and Data Set S3). The annotation term "signal" was significantly
392	enriched among the genes up-regulated by all antibiotics (FIG. 3A and Data Set S3),
393	which might be indicative of a common response to CAMPs and ceragenins.
394	Interestingly, this group included genes involved in the membrane stress response such as
395	spy, degP and cpxP (38) (Fig. 3B). Consistent with results from FIG. 2, genes specifically
396	up-regulated in bacteria exposed to CAMPs were significantly associated with annotation

397	terms related to LPS/colanic acid biosynthesis and included genes such as wzc, wcaE and
398	cpsB (FIG. 3A, 3B and Data Set S3). Interestingly, genes specifically up-regulated in
399	bacteria exposed to ceragenins were significantly associated with the annotation term
400	"phosphate transport" (FIG. 2J, FIG. 3A and Data Set S3) and include genes encoding the
401	major phosphate-responsive regulators PhoR and PhoB (FIG. 3B). Overall, these results
402	suggested that E. coli responds to CAMPs and ceragenins by upregulating genes involved
403	in signaling and response to membrane stress. These results also showed that while
404	exposure of E. coli to CAMPs induces the expression of genes related to LPS/colanic
405	acid biosynthesis, exposure to ceragenins induces the expression of genes involved in
406	phosphate transport.

408 For genes with mRNA levels that decreased during these treatments, 101 were 409 down-regulated by all antibiotics, 19 by CAMPs, and 70 by ceragenins (FIG. 3C and Data Set S3). Pathway analysis identified enrichment of terms related to amino acids and 410 411 nucleotide metabolism in genes down-regulated following exposure to all antibiotics 412 (FIG. 3C and Data Set S3). This finding was corroborated by the finding that genes 413 related to purine and pyrimidine biosynthesis (e.g. *pyrB*, *purM* and *purT*) were among the 414 most significantly down-regulated genes by these molecules (FIG. 3D), which is consistent with our pathway analysis (FIG. 2K). Whereas no annotation terms were 415 416 significantly enriched for genes only down-regulated by CAMPs, genes down-regulated 417 by ceragenins showed an enrichment for genes involved in oligopeptide/dipeptide 418 transport such as *dppD* and *dppA* (FIG. 3C, FIG 3D and Data Set S3). Although the 419 reason for the downregulation of genes involved in peptide transport in E. coli exposed to

420 ceragenins is unknown, these results suggested that bacteria exposed to CAMPs and

421 ceragenins respond by downregulating genes involved in metabolic pathways.

422

423	Identification of cis-acting elements that regulate the transcriptional response of E.
424	coli to ceragenins. To determine which signal transduction pathways control the
425	transcriptional responses to CAMPs and ceragenins, the DNA sequences immediately 5'
426	of genes with significantly altered mRNA levels were analyzed for the presence of cis-
427	acting promoter and operator sequences known or predicted to recruit transcription
428	factors (29). Interestingly, genes up-regulated following exposure to each of the
429	molecules (FIG. 4A and Data Set S4) were associated with cis-acting elements
430	interacting with the response regulator CpxR of the CpxA/CpxR two-component
431	regulatory system (enrichment of 11.63%; 10 out of 86 genes), which responds to
432	envelope stress (39) and is consistent with the upregulation of the CpxR-regulon genes
433	spy, degP and cpxP (FIG. 3B). This analysis also showed enrichment for genes associated
434	with cis-acting elements binding the primary sigma factor σ^{D} (40), also involved in the
435	redistribution of the RNA polymerase in response to osmotic stress (41), the alternative
436	sigma factor σ^{E} that coordinates the envelope stress response (39, 42, 43), and the
437	alternative sigma factor σ^{H} , which controls the expression of heat shock genes as well as
438	genes involved in membrane functionality and homeostasis (44) (FIG. 4A). Genes down-
439	regulated following exposure to all antibiotics were associated with the presence of
440	binding sites for the HTH-type transcriptional repressor PurR (FIG. 4B and Data Set S4),
441	which regulates genes involved in the de novo synthesis of purine and pyrimidine
442	nucleotides (45, 46) and corroborates our above analysis (FIG. 2K, 3C and 3D). Overall,

these results suggested that CAMPs and ceragenins perturb the bacterial envelope and
trigger the CpxA/CpxR system. These results also suggested that PurR down-regulates
the expression of genes involved in the biosynthesis of purine and pyrimidine following
the exposure of *E. coli* to CAMPs and ceragenins.

447

448 Expression of the CpxR, PurR, RcsA and PhoB regulons in *E. coli* exposed to

449 **ceragenins.** To further confirm a role for CpxR and PurR in the response of *E. coli* to

450 CAMPs and ceragenins, the expression of the CpxR and PurR regulons was analyzed in

451 more detail (FIG. 5A-B and Data Set S4). The heat map of the CpxR regulon showed a

452 consistent regulation of several genes in bacteria exposed to all four compounds (e.g.

453 *cpxP*, *degP*, *dsbA* and *spy*) (FIG. 5A) and corroborates our results described above (FIG.

454 3B and 4A). Also consistent with our findings described above (FIG. 2K, 3C, 3D and

455 4B), the heat map of the PurR regulon (FIG. 5B) showed downregulation of most genes

456 reported to be repressed by this transcription factor. These results confirmed that the

457 expression of the CpxR and PurR regulons are modulated in *E. coli* exposed to CAMPs

458 and ceragenins.

459

460 Our expression analysis led us to also focus on the RcsA and PhoB regulons to 461 gain insight into the differential regulation of genes involved in the biosynthesis of 462 colonic acid and phosphate transport, respectively (FIG. 5C-D and Data Set S4). RcsA 463 regulates the expression of genes involved in colanic acid biosynthesis (39), a pathway 464 that was up-regulated in *E. coli* exposed to CAMPs, but not ceragenins (FIG. 2J, 3A and 465 3B). Accordingly, the heat map of the RcsA regulon showed a marked modulation of this

466	pathway in E. coli exposed to CAMPs in comparison to ceragenins (FIG. 5C). The
467	phosphate regulon transcriptional regulatory protein PhoB regulates the expression of
468	genes involved in phosphate transport (47) and is up-regulated in E. coli following
469	exposure to ceragenins, but not CAMPs (FIG. 2J, 3A and 3B). Accordingly, the heat map
470	of the PhoB regulon showed partial but specific induction in bacteria exposed to
471	ceragenins (FIG. 5D). More specifically, upregulation of the phn C-phnP operon, the
472	<i>pstSCAB-phoU</i> operon as well as a trend for other <i>pho</i> genes (e.g. <i>phoB</i> and <i>phoR</i>) and
473	the phosphate starvation-inducible <i>psiEF</i> genes were specifically observed in bacteria
474	exposed to ceragenins (FIG. 5D). These results suggested that the specific upregulation of
475	genes involved in colanic acid biosynthesis and phosphate transport in bacteria exposed
476	to colistin/LL37 and ceragenins are mediated by RcsA and PhoB, respectively.
477	
478	Proteomic response of E. coli exposed to colistin and CSA13. To determine if the
479	changes in mRNA levels in response to the molecules led to changes in the proteome, we
480	measured global protein abundance in bacteria exposed to colistin and CSA13 by mass

481 spectrometry-based proteomics. *E. coli* cultures were grown to log phase and treated with

supra-MIC concentrations of antibiotics before protein extraction, peptide preparation

483 and peptide quantification (see Materials and Methods). Approximately 1800 unique

482

484 proteins were detected for each biological replicate (FIG. 6A) and the number of unique

485 peptides identified showed an excellent correlation between biological replicates (FIG.

486 6B). Several statistically significant changes in protein expression (absolute log₂ fold

487 change >1 and adjusted $P_{\text{value}} < 0.05$) were observed following exposure of *E. coli* to

488 colistin (FIG. 6C) and CSA13 (FIG. 6D) (see Data Set S5). The dataset showed that *E*.

489	coli exposed to both colistin and CSA13 up-regulated the proteins DegP, Spy and YepE,
490	which are known members of the Cpx regulon (38) that were strongly up-regulated at the
491	transcriptional level following exposure to CAMPs and ceragenins (FIG. 5A). The
492	dataset also showed the modulation of proteins involved in colanic acid biosynthesis (e.g.
493	Ugd and WcaG) or related to the PhoB regulon (e.g. PstB and PstS) in bacteria exposed
494	to colistin or CSA13, respectively, which also corroborate our transcriptional data (FIG.
495	5C and 5D). Then, similarly to our transcriptional analysis, the proteomic data showed a
496	common induction of the Cpx envelope stress response, but also the specific induction of
497	proteins involved in colanic acid biosynthesis by colistin as well as the modulation of
498	members of the PhoB regulon by CSA13.

500 Annotation term enrichment analysis was performed on the proteomic dataset in 501 order to identify pathways significantly modulated in bacteria exposed to colistin and 502 CSA13 (see Data Set S6). Similar to our transcriptional results (FIG. 2J), the colanic acid 503 pathway was significantly enriched among proteins up-regulated by colistin, but not CSA13 (FIG. 6E). A heat response signature was significantly enriched among proteins 504 uregulated by CSA13, but not colistin (FIG. 6E), corroborating the transcriptional 505 upregulation of genes associated with cis-acting elements for $\sigma^{\rm H}$ (FIG. 4A). In addition, 506 while pathways associated with the periplasm were enriched among proteins down-507 508 regulated by both colistin and CSA13, the outer membrane pathway was significantly 509 enriched among proteins down-regulated by colistin, but not by CSA13 (FIG. 6E). 510 Overall, these results confirmed that *E. coli* responds distinctly to colistin and CSA13, 511 although both compounds modulated proteins associated with the bacterial envelope.

These results also confirmed findings from the transcriptional analysis and showed that colistin and CSA13 modulate the colanic acid and the response to heat pathways,

514 respectively.

515

516 Identification of genetic determinants of resistance to ceragenins in E. coli. Our

517 inability to identify ceragenin-resistant *E. coli* mutants (FIG. 1L and 1M) is consistent

518 with results previously published by Pollard *et al.* (14), indicating that resistance to

519 ceragenins emerges infrequently in culture despite strong selective pressure. This

520 suggests that ceragenins either have multiple essential targets or affect cellular structures

521 that are immutable. Thus, traditional genetic approaches to identify the target(s) of

522 ceragenins has not been feasible. In order to gain insight into the genetic determinants of

523 ceragenin action, we employed an alternative genetic approach that utilizes Clustered

524 Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) to reduce

525 expression of genes in *E. coli* (FIG. 7A). As demonstrated previously, this approach

allows for partial knockdown of essential *E. coli* genes, practically creating hypomorphic

527 alleles that have reduced function but still promote cell viability (48, 49). By combining

528 these genetic perturbations with subinhibitory concentrations of antibiotics and by

measuring the effects on bacterial fitness, we sought to identify functional interactionsbetween bacterial pathways and antibiotic stress.

531

We screened a pooled library of inducible essential gene knockdown strains
grown with or without subinhibitory concentrations of CAMPs or ceragenins (FIG. 7B).
To evaluate the fitness of each individual CRISPRi knockdown within the complex

535	population, we used deep sequencing to measure the relative abundance of guide
536	sequences during the different culturing conditions (see Materials and Methods and
537	FIG.S1). Fold changes in abundance (Log ₂ FC) in response to CAMPs and ceragenins
538	were calculated in comparison to the control condition for each knockdown strain, and
539	significantly resistant or sensitized strains (defined by absolute \log_2 fold change > 0.5 and
540	an adjusted $P_{\text{value}} < 0.05$) were identified for each of the compounds (FIG. 7C-7F and
541	Data Set S7). Interestingly, the CRISPRi guides in the sensitized or enriched strains for
542	one or several treatments predominantly targeted genes involved in the bacterial
543	envelope, consistent with our earlier results that both CAMPs and ceragenins affect the
544	bacterial envelope.

546 The changes in abundance for the genes identified above were further analyzed 547 and compared between treatments (FIG. 7G). Genes involved in the LPS biosynthetic pathways were predominant in these screens, and knockdown of lipid-A-disaccharide 548 549 synthase LpxB (50) sensitized E. coli to all the compounds, highlighting again the 550 bacterial surface as a common site of action for CAMPs and ceragenins. Silencing of the 551 LPS transport genes *lptB* and *lptF* (51) led to sensitivity to colistin, LL37 and CSA131, 552 but not to CSA13, which corroborates the above transcriptomic data (FIG. 2I-K) and again suggests distinctive mechanisms of action for CSA13 and CSA131. Furthermore, 553 554 knockdown of kdsC (56), encoding an enzyme involved in LPS biosynthesis, also led to 555 sensitivity to LL37. Knockdown strains for *rpoE*, the gene encoding the envelope stress responsive sigma factor σ^{E} (39, 42, 43), and the ubiquinone biosynthesis gene *ubiJ* (58) 556 557 were sensitive to CSA13, but not to CSA131, also supporting the idea that these

558	ceragenins have distinctive mechanisms of action. On the other hand, the knockdown
559	strain for the fatty acid biosynthesis gene fabl (52, 53) was sensitive to both CSA13 and
560	CSA131 and not to the CAMPs, and may constitute a common molecular determinant of
561	sensitivity to ceragenins. Other genes involved in fatty acid metabolism were identified
562	as genetic interactors with CAMPs. More specifically, interference with the expression of
563	acpP, encoding acyl carrier protein (54), led to resistance to colistin, whereas knockdown
564	of <i>fabZ</i> , encoding a lipid dehydratase (55), led to sensitivity to LL37, demonstrating
565	differences between the mechanisms of action of these two CAMPs, as previously
566	suggested (35, 57). Taken together, these results support the notion that both CAMPs and
567	ceragenins work by similar yet distinct mechanisms. These studies also provide a starting
568	point for genetic determination of the mode of action for ceragenins.
560	

DISCUSSION

571	Although ceragenins were originally designed to mimic the physiochemical properties of
572	CAMPs (11, 12), our results indicate that they evoke different responses from bacteria
573	than naturally-occurring CAMPs. The fact that they work on a broader array of microbes
574	than CAMPs, including mycobacteria, as showed by this study, also suggests that they
575	have different mechanisms of action. Our results showed that ceragenins target an
576	essential and conserved feature of the cellular envelope and kill phylogenetically diverse
577	bacteria. Using trancriptomics, proteomics and a CRISPRi genetic approach, we
578	compared the responses of bacteria to CAMPs and ceragenins and revealed similarities,
579	but also striking differences, and showed that ceragenins trigger a distinctive envelope
580	stress response. Interestingly, our data also suggested that the two prototypical
581	ceragenins, CSA13 and CSA131, trigger different responses in bacteria. Overall, while
582	our results confirmed that ceragenins act on the bacterial envelope, they challenged the
583	assumption that CAMPs and ceragenins share the same mechanism of action.
584	
585	Although ceragenins have the ability to kill mycobacteria, their activity varies
586	considerably among species. The physicochemical properties of the mycobacterial cell
587	envelope influences its permeability (59) and might explain the observed differences in
588	susceptibility to ceragenins among mycobacterial strains and species (FIG. 1). The
589	identification of the target(s) of ceragenins may reveal an essential feature of the
590	clinically-relevant mycobacteria.
501	

592	The profiling of the response of <i>E. coli</i> to CAMPs and ceragenins showed that
593	these compounds trigger the Cpx envelope stress response, which is known to contribute
594	to the bacterial adaptation to defects in the secretion and folding of inner membrane and
595	periplasmic proteins (39, 60). This corroborates previous studies demonstrating that
596	CpxR/CpxA influence the susceptibility of bacteria to CAMPs (61, 62) and suggests that
597	the Cpx response might similarly help bacteria to survive exposure to ceragenins. The
598	hypothesis that the envelope stress response is induced by CAMPs and ceragenins is also
599	supported by the modulation of genes associated with cis-acting elements for σ^{E} (FIG. 4)
600	and by the enrichment and/or depletion of CRISPRi strains targeting components of the
601	bacterial envelope (FIG. 7).

603 A striking similarity between the transcriptomic profiles of bacteria exposed to 604 CAMPs and ceragenins is the downregulation of genes involved in the biosynthesis of purines and pyrimidines (FIG. 2K, 3C, 3D, 4B & 5B). The cause of this downregulation 605 606 is unknown, but it is possible that the repression of these metabolic pathways is part of the adaptive response to antibiotic exposure (63) and/or relates to a decrease requirement 607 608 for nucleic acid in growth-inhibited bacteria. An intriguing question is whether the flux of 609 the metabolites through these nucleotide metabolic pathways affect susceptibility to 610 antimicrobial agents targeting the bacterial envelope, as observed for other antibiotics (64). 611

612

613 The results of this study showed that *E. coli* responds differently to CAMPs and 614 ceragenins. We showed that CAMPs specifically induced the Rcs response and the

615	expression of genes involved in the biosynthesis of colanic acid (FIG. 2J, 3A, 3B, 5C, 6C
616	and 6E). This is consistent with a previous study that demonstrated that CAMPs,
617	including polymyxin B and LL37, induce the Rcs regulon through the outer membrane
618	lipoprotein RcsF (65). Surprisingly, the ceragenins CSA13 and CSA131 did not induce
619	the Rcs response as markedly as CAMPs (FIG. 5C). In contrast with the current model
620	that outer membrane perturbation by CAMPs is required for the activation of the Rcs
621	response by RcsF (65, 66), our results show that ceragenins perturb the bacterial envelope
622	of E. coli without extensively triggering the Rcs response. We also found that ceragenins,
623	but not CAMPs, induced the expression of genes involved in phosphate transport and of
624	the PhoB regulon (FIG. 2J, 3A, 3B, 5D and 6D). Although the reasons why these genes
625	are differently modulated following exposure to antimicrobial compounds is not
626	understood, these results strongly suggest that ceragenins and CAMPs might have
627	distinctive mechanisms of action.
628	

629 Despite some similarities between the response of bacteria exposed to ceragenins, such as the upregulation of several genes of the Cpx and PhoB regulons and the 630 631 downregulation of genes involved in nucleotides metabolism, our data also showed 632 striking differences between bacteria exposed to CSA13 and CSA131 (FIG. 2I, 2J, 2K and 7G). These differences include the upregulation of genes encompassing several 633 634 functions (e.g. transcription factors and proteins involved in the heat response) as well as 635 the downregulation of genes involved in protein translation in bacteria exposed to CSA13 (FIG. 2J and 2K). The cause of these differences is unknown, however, as noted above, 636 637 the LogP values of CSA13 and CSA131 differ by almost 2 orders of magnitude. Given

that the site of action is the bacterial envelope, such significant difference in coefficient
partition values is likely to alter responses to membrane targets. Future work exploring
the response of bacteria to a broader range of ceragenins will help in understanding these
differences and might help in the design of compounds with a more defined mode of
action.

643

Our CRISPRi approach identified sensitizing interactions between genes involved 644 645 in the biology of the bacterial envelope and the antibacterial compounds colistin, LL37, 646 CSA13 and CSA131 (FIG.7). This information might prove valuable for the design of combination therapies that are synergistic and prevent the emergence of resistance, but 647 also allow treatment regimens with lower concentrations of antibiotics and dose-related 648 649 antibiotic toxicity (67-69). As an example, trilosan, a compound inhibiting the cerageninsensitivity determinant FabI (70) (FIG. 7G), might synergize with ceragenins. In addition, 650 651 the CAMPs/ceragenins-sensitivity determinant LpxB was suggested as a target for the 652 development of antibacterial compounds (71), which compounds would have the potential to more broadly synergize with CAMPs and ceragenins (FIG. 7G). Although 653 654 those antibacterial interactions are purely speculative, our results suggest that the CRISPRi approach presented here constitutes a platform for target identification and the 655 development of antibiotic combination therapies. 656

657

The results of this study suggested that CAMPs and ceragenins both kill bacteria by targeting the bacterial envelope. However, this study also supports the hypothesis that ceragenins have a distinctive mode of action and we propose a model in which ceragenins

661	cross the outer layers of the bacterial envelope and disrupt the inner membrane. This
662	hypothesis is supported by the broad spectrum of action of these molecules, which extend
663	beyond bacteria. Whether the broader activity range of ceragenins impacts the selectivity
664	for microbial membranes characteristic of endogenous CAMPs remains a key question
665	for future study. A better understanding of the structure-activity relationship of these
666	compounds and a deeper knowledge of their unique mechanism of action will be essential
667	in the discovery of the next-generation of ceragenins with increased potency and
668	selectivity.

670 ACKNOWLEDGEMENTS

- 671 The authors would like to thank Teresa Repasy and Guillaume Golovkine for their
- assistance during the design of the RNAseq experiments, and Daniel A. Portnoy for
- 673 providing *L. monocytogenes* 10403S. We acknowledge help from the UC Berkeley
- Functional Genomics Laboratory, the UC Davis Genome Center and the UC Davis
- 675 Bioinformatics Core in performing and analyzing RNAseq experiments as well as the
- 676 Chan Zuckerberg Biohub for the sequencing of the CRISPRi libraries. The UC Berkeley
- 677 proteomics core provided assistance with the LC-MS analysis of our peptide samples.
- 578 J.M.B was supported by NIH training grants (4T32HL007185-39 & -40;
- 679 5K12HL119997-05; 1K08AI146267-0) and a Cystic Fibrosis Foundation Harry
- 680 Shwachman Award during the course of this study. This work was supported by the
- 681 Ceragenin Research Fund granted to M.A.M. and J.S.C. by Bill Brown and Sharon
- 682 Bonner-Brown.

683 **REFERENCES**

- World Health Organization. 2014. Antimicrobial resistance: global report on surveillance
 2014. World Health Organization, Geneva, Switzerland.
 World Health Organization. 2010. Clobal tuberculoris report 2010. World Health
- 686 2. World Health Organization. 2019. Global tuberculosis report 2019. World Health
 687 Organization, Geneva, Switzerland.
- 688 3. Coates AR, Halls G, Hu Y. 2011. Novel classes of antibiotics or more of the same? Br J
 689 Pharmacol 163:184-94.
- 690 4. Silver LL. 2011. Challenges of antibacterial discovery. Clin Microbiol Rev 24:71-109.
- 6915.Tommasi R, Brown DG, Walkup GK, Manchester JI, Miller AA. 2015. ESKAPEing the692labyrinth of antibacterial discovery. Nat Rev Drug Discov 14:529-42.
- 693 6. Bradshaw J. 2003. Cationic antimicrobial peptides : issues for potential clinical use.
 694 BioDrugs 17:233-40.
- 6957.Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in696bacteria? Nat Rev Microbiol 3:238-50.
- 697 8. Sochacki KA, Barns KJ, Bucki R, Weisshaar JC. 2011. Real-time attack on single
 698 Escherichia coli cells by the human antimicrobial peptide LL-37. Proc Natl Acad Sci U S A
 699 108:E77-81.
- 9. Omardien S, Brul S, Zaat SA. 2016. Antimicrobial Activity of Cationic Antimicrobial
 701 Peptides against Gram-Positives: Current Progress Made in Understanding the Mode of
 702 Action and the Response of Bacteria. Front Cell Dev Biol 4:111.
- 70310.Pfalzgraff A, Brandenburg K, Weindl G. 2018. Antimicrobial Peptides and Their704Therapeutic Potential for Bacterial Skin Infections and Wounds. Front Pharmacol 9:281.
- 70511.Hashemi MM, Holden BS, Durnas B, Bucki R, Savage PB. 2017. Ceragenins as mimics of706endogenous antimicrobial peptides. J Antimicrob Agents 3.
- 12. Li C, Peters AS, Meredith EL, Allman GW, Savage PB. 1998. Design and Synthesis of
 Potent Sensitizers of Gram-Negative Bacteria Based on a Cholic Acid Scaffolding. J Am
 Chem Soc 120:2961-2962.
- Piktel E, Levental I, Durnas B, Janmey PA, Bucki R. 2018. Plasma Gelsolin: Indicator of
 Inflammation and Its Potential as a Diagnostic Tool and Therapeutic Target. Int J Mol Sci
 19.
- Pollard JE, Snarr J, Chaudhary V, Jennings JD, Shaw H, Christiansen B, Wright J, Jia W,
 Bishop RE, Savage PB. 2012. In vitro evaluation of the potential for resistance
 development to ceragenin CSA-13. J Antimicrob Chemother 67:2665-72.
- T16
 15. Epand RF, Pollard JE, Wright JO, Savage PB, Epand RM. 2010. Depolarization, bacterial
 membrane composition, and the antimicrobial action of ceragenins. Antimicrob Agents
 Chemother 54:3708-13.
- Li C, Budge LP, Driscoll CD, Willardson BM, Allman GW, Savage PB. 1999. Incremental
 conversion of outer-membrane permeabilizers into potent antibiotics for Gram-negative
 bacteria. J Am Chem Soc 121:931-940.
- Guan Q, Li C, Schmidt EJ, Boswell JS, Walsh JP, Allman GW, Savage PB. 2000. Preparation
 and characterization of cholic acid-derived antimicrobial agents with controlled
 stabilities. Org Lett 2:2837-40.
- 72518.Lim B, Miyazaki R, Neher S, Siegele DA, Ito K, Walter P, Akiyama Y, Yura T, Gross CA.7262013. Heat shock transcription factor sigma32 co-opts the signal recognition particle to727regulate protein homeostasis in E. coli. PLoS Biol 11:e1001735.

728	19.	Becavin C, Bouchier C, Lechat P, Archambaud C, Creno S, Gouin E, Wu Z, Kuhbacher A,
729		Brisse S, Pucciarelli MG, Garcia-del Portillo F, Hain T, Portnoy DA, Chakraborty T, Lecuit
730		M, Pizarro-Cerda J, Moszer I, Bierne H, Cossart P. 2014. Comparison of widely used
731		Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic variations
732		underlying differences in pathogenicity. mBio 5:e00969-14.
733	20.	Champion PA, Champion MM, Manzanillo P, Cox JS. 2009. ESX-1 secreted virulence
734		factors are recognized by multiple cytosolic AAA ATPases in pathogenic mycobacteria.
735		Mol Microbiol 73:950-62.
736	21.	Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR, Jr. 1990. Isolation and
737		characterization of efficient plasmid transformation mutants of Mycobacterium
738		smegmatis. Mol Microbiol 4:1911-9.
739	22.	Otero J, Jacobs WR, Jr., Glickman MS. 2003. Efficient allelic exchange and transposon
740		mutagenesis in Mycobacterium avium by specialized transduction. Appl Environ
741		Microbiol 69:5039-44.
742	23.	Clinical and Laboratory Standards Institute. 2018. Methods for dilution antimicrobial
743		susceptibility tests for bacteria that grow aerobically. Approved standard. 11th edition.
744		Clinical and Laboratory Standards Institute, Wayne, PA.
745	24.	Lamontagne Boulet M, Isabelle C, Guay I, Brouillette E, Langlois JP, Jacques PE, Rodrigue
746		S, Brzezinski R, Beauregard PB, Bouarab K, Boyapelly K, Boudreault PL, Marsault E,
747		Malouin F. 2018. Tomatidine Is a Lead Antibiotic Molecule That Targets Staphylococcus
748		aureus ATP Synthase Subunit C. Antimicrob Agents Chemother 62.
749	25.	Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. limma powers
750		differential expression analyses for RNA-sequencing and microarray studies. Nucleic
751		Acids Res 43:e47.
752	26.	Huang da W, Sherman BT, Lempicki RA. 2009. Bioinformatics enrichment tools: paths
753		toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1-
754		13.
755	27.	Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large
756	_/ .	gene lists using DAVID Bioinformatics Resources. Nature Protoc 4:44-57.
757	28.	Bioinformatics and Evolutionary Genomics. Calculate and draw custom Venn diagrams.
758	20.	http://bioinformatics.psb.ugent.be/webtools/Venn/. Accessed 2020-02-01.
759	29.	Huerta AM, Glasner JD, Gutiérrez-Ríos RM, Blattner FR, Collado-Vides J. 2002. GETools:
760	25.	gene expression tool for analysis of transcriptome experiments in E. coli. Trends in
761		Genetics 18:217-218.
762	30.	Santos-Zavaleta A, Salgado H, Gama-Castro S, Sanchez-Perez M, Gomez-Romero L,
763	50.	Ledezma-Tejeida D, Garcia-Sotelo JS, Alquicira-Hernandez K, Muniz-Rascado LJ, Pena-
763 764		Loredo P, Ishida-Gutierrez C, Velazquez-Ramirez DA, Del Moral-Chavez V, Bonavides-
765		Martinez C, Mendez-Cruz CF, Galagan J, Collado-Vides J. 2019. RegulonDB v 10.5:
766		tackling challenges to unify classic and high throughput knowledge of gene regulation in
767		E. coli K-12. Nucleic Acids Res 47:D212-D220.
768	21	
768 769	31.	Budzik JM, Swaney DL, Jimenez-Morales D, Johnson JR, Garelis NE, Repasy T, Roberts AW, Popov LM, Parry TJ, Pratt D, Ideker T, Krogan NJ, Cox JS. 2020. Dynamic post-
770		translational modification profiling of M. tuberculosis-infected primary macrophages.
771 772	27	Elife 9.
772 772	32.	Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized
773 774		p.p.brange mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367-72.
//4		20.130/-72.

775	22	limonez Marales D. Campos AB. Van Dollan I. 2010. artMS: Analytical B tools for Mass
775 776	33.	Jimenez-Morales D, Campos AR, Von Dollen J. 2019. artMS: Analytical R tools for Mass Spectrometry. https://bioconductor.org/packages/release/bioc/html/artMS.html.
777		Accessed 2020-02-01.
778	34.	Choi M, Chang CY, Clough T, Broudy D, Killeen T, MacLean B, Vitek O. 2014. MSstats: an
779	54.	R package for statistical analysis of quantitative mass spectrometry-based proteomic
780		experiments. Bioinformatics 30:2524-6.
781	35.	Pristovsek P, Kidric J. 1999. Solution structure of polymyxins B and E and effect of
781	55.	binding to lipopolysaccharide: an NMR and molecular modeling study. J Med Chem
782		42:4604-13.
	26	
784 785	36.	Dominguez A, Munoz E, Lopez MC, Cordero M, Martinez JP, Vinas M. 2017. Transcriptomics as a tool to discover new antibacterial targets. Biotechnol Lett 39:819-
		828.
786 787	27	
787 789	37.	Briffotaux J, Liu S, Gicquel B. 2019. Genome-Wide Transcriptional Responses of
788 780	20	Mycobacterium to Antibiotics. Front Microbiol 10:249.
789 700	38.	Price NL, Raivio TL. 2009. Characterization of the Cpx regulon in Escherichia coli strain
790 701	20	MC4100. J Bacteriol 191:1798-815.
791 702	39.	Mitchell AM, Silhavy TJ. 2019. Envelope stress responses: balancing damage repair and
792 702	40	toxicity. Nat Rev Microbiol 17:417-428.
793	40.	Jishage M, Iwata A, Ueda S, Ishihama A. 1996. Regulation of RNA polymerase sigma
794 705		subunit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit
795 706	44	under various growth conditions. J Bacteriol 178:5447-51.
796	41.	Sun Z, Cagliero C, Izard J, Chen Y, Zhou YN, Heinz WF, Schneider TD, Jin DJ. 2019. Density
797 709		of sigma70 promoter-like sites in the intergenic regions dictates the redistribution of
798		RNA polymerase during osmotic stress in Escherichia coli. Nucleic Acids Res 47:3970-
799	40	3985.
800	42.	Erickson JW, Gross CA. 1989. Identification of the sigma E subunit of Escherichia coli
801		RNA polymerase: a second alternate sigma factor involved in high-temperature gene
802	40	expression. Genes Dev 3:1462-71.
803	43.	Alba BM, Gross CA. 2004. Regulation of the Escherichia coli sigma-dependent envelope
804		stress response. Mol Microbiol 52:613-9.
805	44.	Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA. 2006. Regulon and
806		promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted
807	45	cellular response to heat stress. Genes Dev 20:1776-89.
808	45.	Rolfes RJ, Zalkin H. 1988. Escherichia coli gene purR encoding a repressor protein for
809		purine nucleotide synthesis. Cloning, nucleotide sequence, and interaction with the purF
810		operator. J Biol Chem 263:19653-61.
811	46.	Cho BK, Federowicz SA, Embree M, Park YS, Kim D, Palsson BO. 2011. The PurR regulon
812		in Escherichia coli K-12 MG1655. Nucleic Acids Res 39:6456-64.
813	47.	Lamarche MG, Wanner BL, Crepin S, Harel J. 2008. The phosphate regulon and bacterial
814		virulence: a regulatory network connecting phosphate homeostasis and pathogenesis.
815		FEMS Microbiol Rev 32:461-73.
816	48.	Silvis MR, Gross CA. In preparation.
817	49.	Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, Hawkins JS, Lu CHS, Koo BM,
818		Marta E, Shiver AL, Whitehead EH, Weissman JS, Brown ED, Qi LS, Huang KC, Gross CA.
819		2016. A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in
820		Bacteria. Cell 165:1493-1506.

821 822 823	50.	Metzger LEt, Raetz CR. 2009. Purification and characterization of the lipid A disaccharide synthase (LpxB) from Escherichia coli, a peripheral membrane protein. Biochemistry 48:11559-71.
824 825 826	51.	Narita S, Tokuda H. 2009. Biochemical characterization of an ABC transporter LptBFGC complex required for the outer membrane sorting of lipopolysaccharides. FEBS Lett 583:2160-4.
827 828	52.	Bergler H, Fuchsbichler S, Hogenauer G, Turnowsky F. 1996. The enoyl-[acyl-carrier- protein] reductase (FabI) of Escherichia coli, which catalyzes a key regulatory step in
829 830		fatty acid biosynthesis, accepts NADH and NADPH as cofactors and is inhibited by palmitoyl-CoA. Eur J Biochem 242:689-94.
831 832 833	53.	Heath RJ, Rock CO. 1995. Enoyl-acyl carrier protein reductase (fabl) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli. J Biol Chem 270:26538-42.
834 835	54.	Rawlings M, Cronan JE, Jr. 1992. The gene encoding Escherichia coli acyl carrier protein lies within a cluster of fatty acid biosynthetic genes. J Biol Chem 267:5751-4.
836 837 838	55.	Heath RJ, Rock CO. 1996. Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J Biol Chem 271:27795-801.
838 839 840 841	56.	Biswas T, Yi L, Aggarwal P, Wu J, Rubin JR, Stuckey JA, Woodard RW, Tsodikov OV. 2009. The tail of KdsC: conformational changes control the activity of a haloacid dehalogenase superfamily phosphatase. J Biol Chem 284:30594-603.
842 843	57.	Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI. 1998. Activities of LL-37, a cathelin- associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother
844 845 846	58.	42:2206-14. Hajj Chehade M, Pelosi L, Fyfe CD, Loiseau L, Rascalou B, Brugiere S, Kazemzadeh K, Vo CD, Ciccone L, Aussel L, Coute Y, Fontecave M, Barras F, Lombard M, Pierrel F. 2019. A
847 848		Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone. Cell Chem Biol 26:482- 492 e7.
849 850	59.	Jackson M. 2014. The mycobacterial cell envelope-lipids. Cold Spring Harb Perspect Med 4.
851 852	60.	Raivio TL. 2014. Everything old is new again: an update on current research on the Cpx envelope stress response. Biochim Biophys Acta 1843:1529-41.
853 854 855	61.	Audrain B, Ferrieres L, Zairi A, Soubigou G, Dobson C, Coppee JY, Beloin C, Ghigo JM. 2013. Induction of the Cpx envelope stress pathway contributes to Escherichia coli tolerance to antimicrobial peptides. Appl Environ Microbiol 79:7770-9.
856 857 858	62.	Weatherspoon-Griffin N, Zhao G, Kong W, Kong Y, Morigen, Andrews-Polymenis H, McClelland M, Shi Y. 2011. The CpxR/CpxA two-component system up-regulates two Tat-dependent peptidoglycan amidases to confer bacterial resistance to antimicrobial
859 860 861	63.	peptide. J Biol Chem 286:5529-39. Zampieri M, Zimmermann M, Claassen M, Sauer U. 2017. Nontargeted Metabolomics Reveals the Multilevel Response to Antibiotic Perturbations. Cell Rep 19:1214-1228.
862 863	64.	Yang JH, Wright SN, Hamblin M, McCloskey D, Alcantar MA, Schrubbers L, Lopatkin AJ, Satish S, Nili A, Palsson BO, Walker GC, Collins JJ. 2019. A White-Box Machine Learning
864 865 866	65.	Approach for Revealing Antibiotic Mechanisms of Action. Cell 177:1649-1661 e9. Farris C, Sanowar S, Bader MW, Pfuetzner R, Miller SI. 2010. Antimicrobial peptides activate the Rcs regulon through the outer membrane lipoprotein RcsF. J Bacteriol
867		192:4894-903.

868	66.	Konovalova A, Mitchell AM, Silhavy TJ. 2016. A lipoprotein/beta-barrel complex
869		monitors lipopolysaccharide integrity transducing information across the outer
870		membrane. Elife 5.
871	67.	Zheng W, Sun W, Simeonov A. 2018. Drug repurposing screens and synergistic drug-
872		combinations for infectious diseases. Br J Pharmacol 175:181-191.
873	68.	Zimmermann GR, Lehar J, Keith CT. 2007. Multi-target therapeutics: when the whole is
874		greater than the sum of the parts. Drug Discov Today 12:34-42.
875	69.	Moellering RC, Jr. 1983. Rationale for use of antimicrobial combinations. Am J Med 75:4-
876		8.
877	70.	Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO. 1999. Mechanism of
878		triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274:11110-4.
879	71.	Bohl TE, Shi K, Lee JK, Aihara H. 2018. Crystal structure of lipid A disaccharide synthase
880		LpxB from Escherichia coli. Nat Commun 9:377.
001		

882 FIGURE LEGENDS

883 FIGURE 1. Ceragenins kills phylogenetically diverse bacteria. (A) Structures of the

- ceragenins CSA13 and CSA131. Minimal inhibitory concentrations (MIC) of colistin
- (COL), LL37, CSA13, CSA131 and ciprofloxacin (CIP) against E. coli MG1655 (B), L.
- 886 monocytogenes (Lmo) 10403S (C), *M. avium* mc²2500 (D), *M. avium* mc²2500D6 (E), *M.*
- 887 marinum M strain (F), M. smegmatis mc²155 (G) and M. tuberculosis Erdman (H). Dots
- and bars indicate results from independent experiments and median values, respectively.
- Time-kill experiments of *E. coli* MG1655 (I), *L. monocytogenes* 10403S (J) and *M.*
- smegmatis mc²155 (K) exposed to colistin (in red), LL37 (in blue), CSA13 (in yellow),
- 891 CSA131 (in green), ciprofloxacin (in purple) and/or erythromycin (ERY; in orange), a
- 892 bacteriostatic antibiotic. Untreated samples are in black and results are showed as means
- of two independent experiments. Shaded areas show standard error of the mean (SEM).
- 894 Serial passages of E. coli (L) and L. monocytogenes (M) exposed to CSA13 (in yellow),
- 895 CSA131 (in green) and ciprofloxacin (in purple). Bacteria were passaged daily in
- 896 presence of sub-inhibitory concentrations of antibiotics. Results are expressed as means

and SEM of two independent experiments.

898

899 **FIGURE 2. Transcriptomic response of** *E. coli* **exposed to ceragenins.** RNA from

900 exponentially growing *E. coli* bacteria exposed to supra-MIC concentrations of colistin

901 (COL), LL37, CSA13 and CSA131 was extracted and sequenced. (A-D) Replica plots

- showing the log_{10} of normalized number of reads per gene for bacteria exposed to
- antibiotics. Correlation coefficients (R) between replicates #1 and #2 (•) and #1 and #3
- 904 (•) are displayed. (E-H) Volcano plots that represent RNA expression as means of log₂

905	fold changes and $-\log_{10}$ adjusted P_{values} (adj. P_{value}) for bacteria exposed to antibiotics in
906	comparison to untreated control samples. Horizontal and vertical dotted red lines indicate
907	adjusted P values less than 0.05 (or $-\log_{10}$ (adj. P_{value}) greater than 1.3) and absolute \log_2
908	fold changes greater than 1. (I) Multidimensional scaling (MDS) plot showing the
909	separation between biological replicates and between untreated and antibiotic-treated
910	samples. (J) Annotation terms enriched for genes significantly up-regulated ($\log_2 FC > 1$
911	and adj. $P_{\text{value}} < 0.05$) following exposure to antibiotics. (K) Annotation terms enriched
912	for genes significantly down-regulated (log ₂ FC < -1 and adj. $P_{\text{value}} < 0.05$) following
913	exposure to antibiotics. Adjusted P_{values} of annotation terms associated with a false
914	discovery rate (FDR) value > 0.05 for at least one antibiotic are showed. Only the 8 most
915	statistically significant annotation terms are showed for each conditions. Annotation
916	terms are abbreviated and/or modified for a purpose of presentation (see Data Set S2 for a
917	more detailed information). Data are from 3 independent experiments.
918	

919 **FIGURE 3. Identification of pathways defining the transcriptional response of** *E*.

920 *coli* to ceragenins. (A) Venn diagram analysis of genes significantly up-regulated (log₂

921 FC > 1 and adjusted $P_{\text{value}} < 0.05$) in *E. coli* exposed to antibiotics. Annotation terms

associated with a false discovery rate (FDR) value > 0.05 for genes up-regulated by all

antibiotics, by CAMPs or by ceragenins are shown by dotted arrows. (B) Top 25 most

924 up-regulated genes for bacteria exposed to all antibiotics, to CAMPs or to ceragenins.

925 Genes belonging to the annotation terms «signal» (in red), «LPS», «colanic acid», «slime

926 layer» and «exopolysaccharide» (in blue) and «phosphate transport» (in green) are

927 indicated. (C) Venn diagram analysis of genes significantly down-regulated ($\log_2 FC < -1$

928	and adjusted $P_{\text{value}} < 0.05$) in <i>E. coli</i> exposed to antibiotics. Annotation terms associated
929	with a false discovery rate (FDR) value > 0.05 for genes down-regulated by all
930	antibiotics, by CAMPs or by ceragenins are shown by dotted arrows. (D) Top 25 most
931	down-regulated genes for bacteria exposed to all antibiotics or to ceragenins. Genes
932	belonging to the annotation terms «de novo IMP», «de novo UMP», «purine» and
933	«pyrimidine» (in orange) and «oligo/dipeptide transport» (in purple) are indicated.
934	Annotation terms are abbreviated and/or modified for the purpose of presentation (see
935	Data Set S3 for a more detailed information). Data are from 3 independent experiments.
936	
936 937	FIGURE 4. Identification of cis-acting elements that regulate the transcriptional
	FIGURE 4. Identification of cis-acting elements that regulate the transcriptional response of <i>E. coli</i> to ceragenins. Genes with known or predicted promoters or binding
937	
937 938	response of <i>E. coli</i> to ceragenins. Genes with known or predicted promoters or binding
937 938 939	response of <i>E. coli</i> to ceragenins. Genes with known or predicted promoters or binding sites for transcription factors are enumerated for genes commonly up-regulated (A) or
937 938 939 940	response of <i>E. coli</i> to ceragenins. Genes with known or predicted promoters or binding sites for transcription factors are enumerated for genes commonly up-regulated (A) or down-regulated (B) by all antibiotics (black bars), by CAMPs (red bars) or by ceragenins

944 FIGURE 5. Expression of the CpxR, PurR, RcsA and PhoB regulons in *E. coli*

exposed to ceragenins. Heat maps of log₂ fold changes for genes of the CpxR (A), PurR
(B), RcsA (C) and PhoB (D) regulons in bacteria exposed to antibiotics. Genes predicted
to be induced (in black), repressed (in blue) or both (in orange) by a specific transcription
factors are indicated. Data are from 3 independent experiments.

950 **FIGURE 6.** Proteomic response of *E. coli* exposed to colistin and CSA13. (A)

951 Number of unique proteins identified for each conditions. (B) Correlation coefficient (R)

- between the number of peptides per proteins between the biological replicates of
- 953 untreated bacteria and bacteria exposed to colistin (COL) or CSA13. Data are represented
- 954 as means and standard deviations. (C-D) Volcano plots that represent protein expression
- as means of \log_2 fold changes and $-\log_{10}$ adjusted P_{values} (adj. P_{value}) for bacteria exposed
- 956 to antibiotics in comparison to untreated controls. Horizontal and vertical dotted red lines
- 957 indicate adjusted *P* values less than 0.05 (or $-\log_{10}$ (adj. P_{value}) greater than 1.3) and
- absolute log₂ fold changes greater than 1. Some proteins that are members of the Cpx
- regulon (in red), involved in colanic acid biosynthesis (in blue) or members of the PhoB
- 960 regulon (in green) are highlighted. (E) Annotation terms enriched for proteins
- significantly up- or down-regulated (absolute $\log_2 \text{FC} > 1$ and adj. $P_{\text{value}} < 0.05$)
- following the exposure of *E. coli* to colistin and CSA13. Adjusted *P*_{values} of annotation
- terms associated with a false discovery rate (FDR) value > 0.05 for at least one antibiotic
- are showed. Annotation terms are abbreviated and/or modified for the purpose of
- presentation (see Data Set S6 for a more detailed information). Data are from 3

966 independent bacterial cultures for each conditions.

967

968 FIGURE 7. Identification of the genetic determinants of resistance to ceragenins in

- 969 E. coli. (A) Details and calibration of the E. coli CRISPRi system. dCas9 and sgRNA
- 970 expression cassettes were integrated into the chromosome (Tn7att and lambda att,
- 971 respectively) and controlled by weak constitutive (dcas9) or inducible (sgRNA)
- 972 promoters, as indicated. Right panels show that CRISPRi produces unimodal reduction in

973	expression when targeting chromosomal rfp (i.e. a gene encoding a red fluorescent
974	protein). Median percentages of knockdown are indicated in the right lower panel. (B)
975	Schematic of the pooled growth experiments of E. coli CRISPRi libraries in the presence
976	or absence of antibacterial compounds. The strain-specific metrics of fitness and
977	sensitivity (drug-specific) are calculated as the change in relative abundance of each
978	strain between the two time points or conditions, using the formulae as indicated.
979	Changes in abundance (Log ₂ FC) and adjusted P_{values} (-Log ₁₀ (adj. P_{value})) associated with
980	each strain following exposure to colistin (COL) (C), LL37 (D), CSA13 (E) and CSA131
981	(F) are shown. Horizontal and vertical dotted red lines indicate adjusted P values less
982	than 0.05 (or $-\log_{10}$ (adj. P_{value}) greater than 1.3) and absolute \log_2 fold changes greater
983	than 0.5. Genes associated with significant changes in abundance are labeled for each
984	compounds. (G) Mean fold changes in abundance and standard deviations (SD)
985	associated with significantly enriched or depleted CRISPRi strains (only one rpoE-
986	targeting strain is shown) following exposure to COL, LL37, CSA13 and CSA131 (*, $P <$
987	0.05 [Two-tailed unpaired <i>t</i> -test]). Means and SDs were calculated from counts
988	normalized to the total number of counts for each conditions. Data are from two
989	biological replicates.
990	

992 SUPPLEMENTAL MATERIALS

993 **Supplement Table S1.** Minimal inhibitory concentrations (MIC) of colistin, LL37,

- 994 CSA13, CSA131, CSA44, CSA144 and ciprofloxacin against E. coli, L. monocytogenes
- 995 and *Mycobacterium* spp.
- 996 Supplement Figure S1. Supplementary information related to CRISPRi screening.
- 997 Schematic of two examples of deep sequencing libraries from the strategy used to
- 998 multiplex growth experiments using 50bp single end reads. Each library is barcoded
- using aTruSeq i7 index (orange), and additionally incorporates a 4bp barcode (teal) that is
- 1000 read out by the TruSeq Read 1 primer. Each index (i7 and 4bp barcode) is introduced by
- 1001 the sequencing library PCR primers, enabling easy multiplexing. Library A incorporates
- 1002 a random offset at the start of Read 1 (NN) to ensure sequence diversity during cluster
- 1003 generation.
- 1004 **Data Set S1.** Transcriptomic response of *E. coli* exposed to colistin, LL37, CSA13 and
- 1005 CSA131 as determined by RNAseq. This file includes raw and normalized read counts,
- 1006 fold changes, P and adjusted P values as well as lists of genes significantly up- or down-
- 1007 regulated.
- 1008 **Data Set S2.** Annotation term enrichment analysis for significantly up- and down-
- 1009 regulated genes in *E. coli* exposed to colistin, LL37, CSA13 and CSA131. The analysis
- 1010 was performed with the DAVID Bioinformatics Resources using terms from UniProt
- 1011 keywords, COG ontology, GO and the KEGG pathway.
- 1012 **Data Set S3**. Lists and annotation term enrichment analysis of genes significantly up- and
- 1013 down-regulated in *E. coli* exposed to all antibiotics, CAMPs and ceragenins. The analysis

1014 was performed with the DAVID Bioinformatics Resources using terms from UniProt

- 1015 keywords, COG ontology, GO and the KEGG pathway.
- 1016 Data Set S4. Analysis of cis-acting elements associated with genes significantly up- and
- 1017 down-regulated in *E. coli* exposed to colistin, LL37, CSA13 and CSA131. This file
- 1018 includes lists of genes with a least one binding site for sigma factors or transcription
- 1019 factors as well as numbers of non-redundant binding sites for each conditions. Fold
- 1020 changes for genes of the CpxR, PurR, RcsA and PhoB regulons are also included.
- 1021 **Data Set S5.** Proteomic response of *E. coli* exposed to colistin and CSA13. This file
- 1022 includes fold changes and adjusted P values (including imputed values) as well as lists of
- 1023 proteins significantly up- and down-regulated following exposure to colistin and CSA13.
- 1024 Data Set S6. Annotation term enrichment analysis for proteins up- and down-regulated in
- 1025 E. coli exposed to colistin or CSA13. The analysis was performed with the DAVID
- 1026 Bioinformatics Resources using terms from UniProt keywords, COG ontology, GO and
- 1027 the KEGG pathway.
- 1028 **Data Set S7.** Changes in abundance and statistical significance associated with each
- 1029 strains of the CRISPRi library following exposure to colistin, LL37, CSA13 and
- 1030 CSA131.

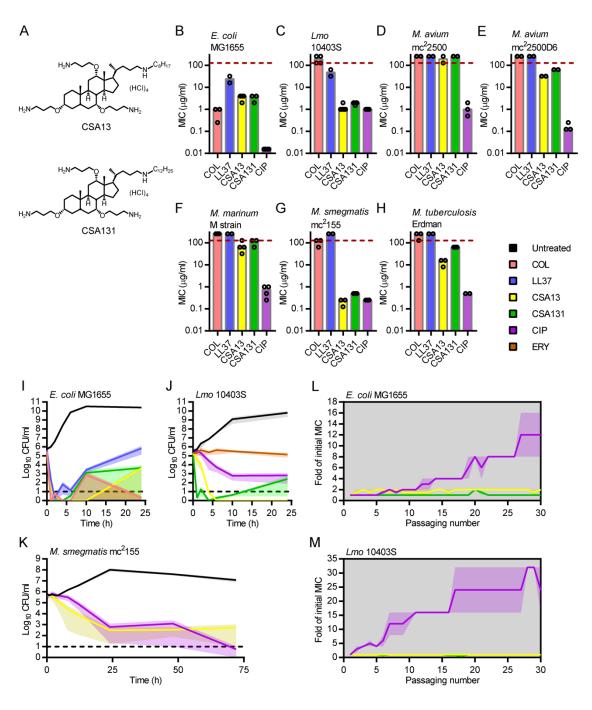


FIGURE 1.

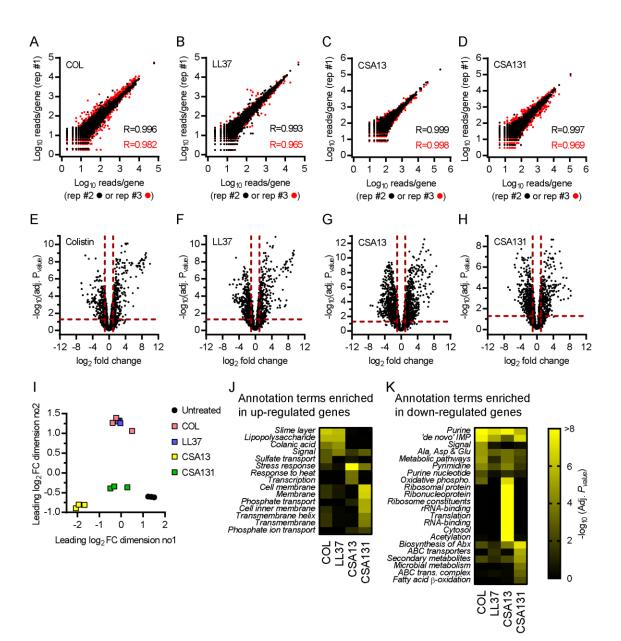
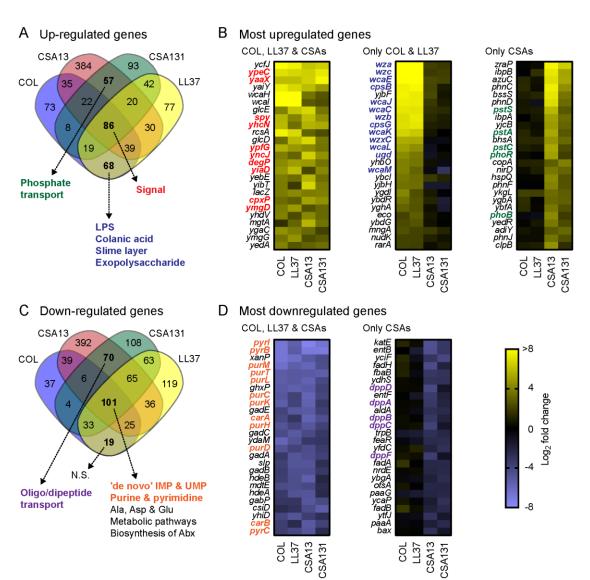



FIGURE 2.

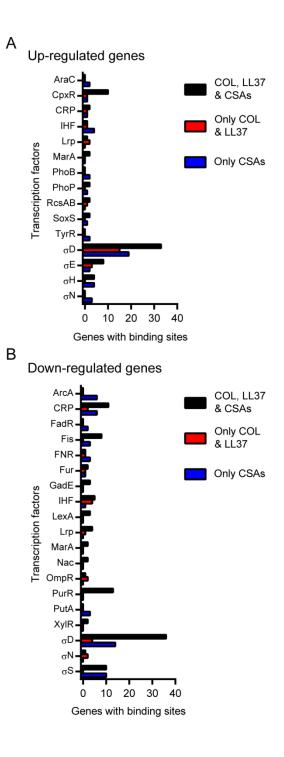
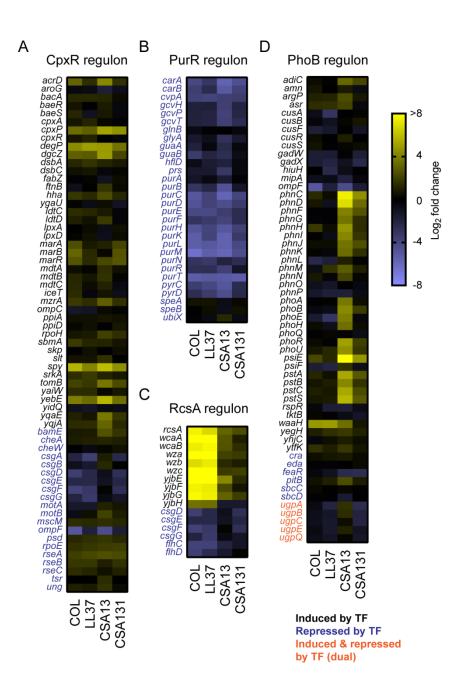



FIGURE 4.

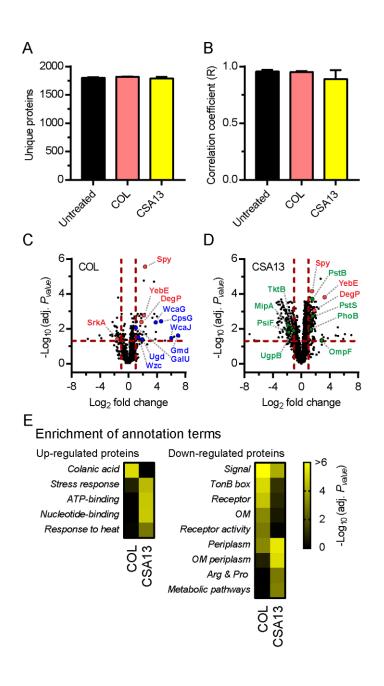
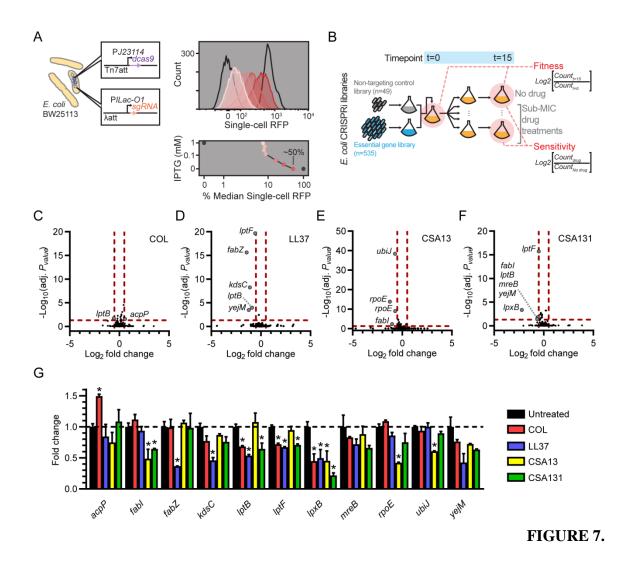



FIGURE 6.

