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 2 

Abstract 31 

Spatial transcriptomic is a technology to provide deep transcriptomic profiling by preserving the spatial 32 

organization. Here, we present a framework for SPAtial Transcriptomic Analysis (SPATA, 33 

https://themilolab.github.io/SPATA), to provide a comprehensive characterization of spatially resolved 34 

gene expression, regional adaptation of transcriptional programs and transient dynamics along spatial 35 

trajectories.  36 

 37 
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 3 

Brief Communication  39 

Deep transcriptional profiling of single cells by RNA-sequencing maps the cellular composition of tissue 40 

specimens regarding cellular origin, developmental trajectories and transcriptional programs1–3. 41 

However, information determining the spatial arrangement of specific cell types or transcriptional 42 

programs are lacking and thus can only be predicted indirectly4, which is a considerable drawback of 43 

this method. Spatial tissue organization was traditionally investigated by imaging technologies which 44 

provide information at high resolution but are strongly limited by the number of genes or proteins to be 45 

mapped. Several novel technologies such as MERFISH5, FISH-seq6, Slide-seq7 or spatial 46 

transcriptomics8,9 are able to preserve the spatial context of transcriptional data, however all these 47 

technologies are limited by either the spatial resolution or depth of transcriptional profiling. Further, data 48 

integration, visualization and analysis of transcriptomic and spatial information remains challenging. 49 

Here, we present a software tool to provide a framework for integration of high-dimensional 50 

transcriptional data within a spatial context. By combining user-friendly interfaces for visualization, 51 

segmentation or trajectory analysis and command-based pipe-friendly functions for data manipulation 52 

and modeling, we provide a broad range of applications for different analytical demands. In addition, we 53 

implemented interfaces to provide easy exchange of numerous external tools. Previously published 54 

tools focus mainly on the visualization of gene expression using known tools from scRNA-seq analysis 55 

rather than addressing gene expression within its spatial context10–12. In particular, we focus on transient 56 

changes of gene expression and aim to infer transcriptional programs that are dynamically regulated as 57 

a function of spatial organization.  58 

In order to present an overview of possible analytic capabilities of the SPATA workflow, Figure 1a, we 59 

generated spatial transcriptomic datasets from human cortex and human glioblastoma samples using 60 

the Visium technology (10X Genomics). The human cortex is separated into defined layers containing 61 

different types of neurons and cellular architecture. In a first step, we combine shared-nearest neighbor 62 

clustering and spatial pattern recognition by an external tool (spatial pattern recognition via kernels, 63 

“SPARK”13) in order to determine genes with a defined spatially resolved expression pattern. We found 64 

that the cortical layering is accurately reflected by our clustering approach. In order to gain insights into 65 

the spatial organization we provided a tool to compute the spatial distance within the defined layers or 66 

correspondent clusters. An increasing distance within individual clusters allows to differentiate between 67 

narrowly related or a widespread dispersion of spots within the cluster.  68 
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 69 

Figure 1: a) Illustration of the SPAtial Transcriptomic Analysis (SPATA) workflow containing Data Input and a predefined set of 70 

analysis which will be saved in a SPATA object. In the following step of the workflow, annotation of segment trajectories can be 71 

performed using a user-friendly interface. Additionally, multiple tools for visualization are available within the user interface. This 72 

also includes tools for geneset enrichment analysis (GSEA) and gene set variation (GSVA). After region of interests are defined, 73 

a list of analytic tools is provided which includes wrapper for external tools. b) H&E staining of a human cortex sample with the 74 

corresponding SNN clustering (bottom right). The annotation tool is used to draw a trajectory along all cortical layer (right side) c) 75 

Infer genes with defined peaks along the trajectory revealed genes with layer specific gene expression. d)Integrating an external 76 

package (monocle3) the pseudotime within the sample was computed and visualized by a 2D UMAP representation (left) and 77 

within its spatial context (right). e) Comparison of traditional markers (left) and markers given by our model (inferring transient 78 

gene expression) along the cortical layering. 79 

 80 

Next, the spatial overlap of transcriptional programs or gene expression was analyzed using a Bayesian 81 

approach, resulting in an estimated correlation which quantifies the identical arrangement of expression 82 

in space. In a further step, we aimed to analyze dynamic changes, which were annotated using 83 

pseudotime estimation or RNA-velocity. We directly implemented the pseudotime inference from the 84 

monocle314 package, but also allow the integration of any other tool such as “latent-time” extracted from 85 

RNA-velocity (scVelo15). Another option for dynamic gene expression analysis is the detection of defined 86 

transcriptional programs along a defined trajectory. In our example, we mapped different activation 87 

states of astrocytes and microglia within the cortical layering.  88 
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  89 

Figure 2: a) Illustration of the SPATA workflow integrating SPARK for pattern recognition into the analysis of human glioblastoma. 90 

SPARK will estimate to what extent a gene is present in a spatial pattern. The output is piped into a spatial overlap analysis and 91 

clustered to extract set of genes which belong to the same pattern. b) H&E staining of glioblastoma with 3 histological distinct 92 

regions. c) Predicted pattern visualized by the z-scored gene expression of all genes aligned into a pattern. d-e) Copy-number 93 

analysis of the sample and cluster annotation (e). f) Comparison of recognized pattern with known gene expression classification, 94 

here the Neftel classification. g) Expression of significantly expressed pathways within a pattern. h) Spatial trajectory analysis 95 

along the tumor infiltration region. i-j) Change of z-scored geneset expression along the trajectory (i) and marker genes of 96 

microenvironmental alterations and inflammation (j). 97 

 98 

Moreover, we provide the opportunity to screen for gene expression or transcriptional programs which 99 

transiently change along predefined trajectories by modelling gene expression changes in accordance 100 

to various biologically relevant behaviors. All genes or transcriptional programs which significantly 101 

followed one or multiple predefined models were ranked and visualized. The detection of dynamic 102 

spatially defined gene expression patterns is also of great interest in malignant specimens. In another 103 

example, we profiled tissue of a human glioblastoma, the most malignant tumor of the central nervous 104 

system (CNS) as SPATA provides numerous tools to analyze datasets with malignant origin. In a first 105 

step, integrating inferred copy-number alterations (CNV)2,16, spatial pattern recognition and shared-106 

nearest neighbor clustering provides a broad overview of spatially defined transcriptional programs 107 

within the subclonal architecture of tumor samples, Figure 2a-g. Using this information, specific 108 

segments can be specified and analyzed to gain insights into their spatially differentially expressed 109 

genes. We showed that segments of higher cellular density also contained increased signaling of the 110 

hypoxic pathway including expression of VEGFA, HIF1A and GAPDH. Additionally, mapping the 111 

subclonal architecture based on a CNV clustering allowed to screen for gene expression differences 112 

within regions of exclusive genetic context Figure 2d. Inferring spatially transient gene expression along 113 

trajectories connecting particular tumor regions, i.e. between tumor core and infiltration zone, provided 114 

the opportunity to map transcriptional programs executed during tumor infiltration and tumor-induced 115 
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microenvironment changes of the surrounding areas. Thus, we were able to show that immune related 116 

genes from myeloid cells and reactive astrocytes were localized in a “glial-scars” resembling structure, 117 

sharply separating normal brain from tumor regions Figure 2h. We observed a transient increase of 118 

macrophage and microglia activation directed towards the tumor boarder. Mapping transcripts that mark 119 

for lymphoid cells, we found more T cells abundance within the normal brain compared to tumor regions 120 

which is in line with the reported immunosuppressive environment within glioblastoma. Inferring 121 

pseudotime, we were able to confirm a dynamic adaptation of myeloid cells along our defined trajectory 122 

Figure 2i-j. Recently, Neftel and colleagues established a classification of 4 transcriptional states using 123 

single-cell RNA-sequencing, Figure 2f,i. Using these signatures, we were able to map the spatial 124 

distribution of assumed tumor heterogeneity. We implemented a 2D representation of all 4 states which 125 

could be used to map the distribution of all transcriptional states within defined segments or along spatial 126 

trajectories. Of utmost importance, our tool enables the usage of a variety of different biological data 127 

containing a spatial context such as spatially resolved mass-spectroscopy or imaging mass cytometry 128 

(IMC). SPATA is a resource developed from scientists for scientists incorporating the FAIR principles of 129 

providing findable, accessible, interoperable, and reusable data17. 130 

  131 
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Methods: 132 

SPATA software and functions 133 

A detailed overview of all included functions and the structure of the package is given at the package 134 

website (https://themilolab.github.io/SPATA/index.html). We implemented tutorials for all described 135 

analytic approaches to provide a simple-as-possible solution to trace the individual analytic steps.  136 

 137 

Data preparation, per-analysis and SPATA object implementation 138 

We offer two possible input options. On one side, we implemented the direct input from spaceranger by 139 

using the Seurat wrapper for spatial transcriptomics. On the other hand, we used the Seurat v3.0 140 

package to normalize gene expression values by dividing each estimated cell by the total number of 141 

transcripts and multiplied by 10,000, followed by natural-log transformation. As described for single cell-142 

RNA sequencing, we removed batch effects and scaled data using a regression model including sample 143 

batch and percentage of ribosomal and mitochondrial gene expression. For further analysis we used 144 

the 2000 most variable expressed genes and decomposed eigenvalue frequencies of the first 100 145 

principal components and determined the number of non-trivial components by comparison to 146 

randomized expression values. The obtained non-trivial components were used for SNN clustering 147 

followed by dimensional reduction using the UMAP and TSNE algorithm. After analysis all date will be 148 

saved in a SPATA object, detailed information of the S4 object structure is given at the package 149 

information. Another option is to provide 3 files that will be used to create a SPATA object, one file 150 

containing barcode information or other identifier of each spot with the given x and y coordinates 151 

determining the spatial position of each spot within the H&E image. The second file contains an 152 

expression or intensity matrix with identifier as colnames and genes or other features as rownames. The 153 

last file is an image with x and y coordinates corresponding to the identifier of file1. If the inputs are gene 154 

expression counts we run the standard pipeline (Seurat wrapper), otherwise (IMC, MALDI or MERFISH) 155 

we provide a data analysis pipeline which is designed for non-integer inputs and normal distributed data.  156 

 157 

Modeling of transient gene expression along spatial trajectories 158 

A given trajectory includes multiple spots summarized into predefine bins of the directed trajectory. In 159 

order to model the gene expression of single genes or genesets we created a set of mathematical 160 

models which represent defined biological behaviors, including linear, logarithmic or gradient 161 

ascending/descending expression pattern, one-, or multiple peak expression, detailed information in the 162 
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package description. The analysis is implemented into the function assessTrajectoryTrends(). Further, 163 

if a defined pattern is requested, we open the possibility to add a vector containing the requested model 164 

for which the algorithm will screen. Next, we fitted the summarized expression values of each bin using 165 

a non-parametric kernel estimation (Gaussian or Cauchy-Kernel), input vectors were normalized and z-166 

scored: (1)	𝑛!"# $ =
%!"# $&'$((%%&')

'+,(%%&')&'$((%%&')
	 (2)		𝑓-) *𝑛!"# $+ =

.
(
∑ 𝐾-(𝑛/,0 − 𝑛!"# $)(
$1.  K is the kernel and 0.7 > 167 

h > 0.3 is used to adjust the estimator. Next, we computed residuals for each input vector (gene 168 

expression) and estimated area under the curve (AUC) using the trapezoidal numerical integration. 169 

(3)	∫ 𝑓(𝑟𝑒𝑠)+
2 	𝑑𝑥	 ≈ 	∑ ((*%+,-.)0((*%+,)

1
(
31. ∆𝑟𝑒𝑠3 The distance and direction is defined by [a,b]	a=x0	<	x1<	,	170 

…	 ,<	 xn-1	<xn=b.	We use the AUC to rank the estimated models and predict genes that follow our 171 

predefined behavior. The implemented function plotTrajectoryFit() shows the model fit with respect 172 

to the given residuals.  173 

 174 

Enrichment analysis for SPATA 175 

Gene sets were obtained from the database MSigDB v7 and internally created gene sets are available 176 

at within the package. For enrichment analysis we provide multiple methods listed in the description of 177 

the plotSurface() function. Per default, we use a probability distribution fitting of the input values which 178 

could be genes or summarized gene sets and transformed the distribution to representative colors. 179 

Further adaptation of the applied color scale can be performed by using the 180 

confuns::scale_color_add_on(). Further additions for geneset enrichment analysis or gene set variation 181 

analysis are implemented by using the GSVA package. As input for a GSEA the normalized and 182 

centered expression data are used and further transformed to z-scores ranging from 1 to 0. Genes were 183 

ranked in accordance to the obtained differential expression values and used as the input for GSEA. 184 

 185 

Two-dimensional representation of cellular states 186 

Within the SPATA toolbox, we allow to plot a recently popular 2D presentation of multiple cellular states. 187 

As usual in SPATA, we provide two versions to acquire the data, on one side plotting from inside a 188 

SPATA-object is possible (plotFourStates()) and on the other hand, data can be used from outside (for 189 

example an expression matrix containing a single-cell dataset) by applying version 2 of the 190 

function(plotFourStates2()). Therefore, we aligned spots to variable states based on defined gene sets: 191 

GS(1,2,..n). We separated cells into GS(1+2) versus GS(2+4), using the following equation: 𝐴. =192 
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∥ 𝐺𝑆(.), 𝐺𝑆(4) ∥5−∥ 𝐺𝑆(6), 𝐺𝑆(7) ∥5 A1 defines the y-axis of the two-dimensional representation. In a next 193 

step, we calculated the x-axis separately for spots A1<0 and A1>0: A1 > 0:	𝐴4 = log 2 (𝐺𝑆(.)LLLLLLL −194 

M	𝐺𝑆(4)LLLLLLL + 1	O) A1 < 0:	𝐴4 = log 2 (𝐺𝑆(6)LLLLLLL − M	𝐺𝑆(7)LLLLLLL	O) For further visualization of the enrichment of subsets 195 

of cells according to gene set enrichment across the two-dimensional representation, using a probability 196 

distribution fitting - we transformed the distribution to representative colors. This representation is an 197 

adapted method published by Neftel and colleges recently2,3. 198 

 199 

Spatial distance measurement 200 

In order to measure the spatial distance, we use either a defined factorized input or a continuous vector. 201 

We fist measure the spatial distance from each spot to all other spots and compute a distance matrix 202 

with spots as rows and columns (nr=nc). If factorized input was applied, we factorize the matrix and 203 

calculate the mean distance per factor (f1 -> fi): 	(1)	𝑑𝑖𝑠𝑡8$ =	
∑ +2
,3.
4(

		(2)	𝑎 = 	 S
𝑠.
⋯

𝑠.
⋯

𝑠(: 𝑠(;
U. If a distance is 204 

numeric, we created bins of spots with common gene expression of gene set enrichment resulting in 205 

factorized values. Using the distance computation, we estimate to what extent a gene is expressed in 206 

exclusive spots (lower distance) or diffuse without spatial enrichment. 207 

 208 

Spatial overlap and correlation analysis 209 

Spatial overlap of spatial correlation was designed to estimate the similarity of gene expression pattern 210 

within the spatial organization. In order to map spatial correlated gene expression or gene set 211 

enrichments, we used z-scored ranked normalized expression values. We used a Bayesian approach 212 

to compute the correlation distribution within two different genes or gene sets (~5-20 minutes runtime, 213 

MacOS 2019). The spatial reference is given by the x and y coordinates of each spot. In order to provide 214 

an alternative method which is computationally less-intensive (~1-3 minutes runtime, MacOS 2019) we 215 

construct a trajectory of spots from lowest ranked to highest ranked spot (based on z-scored input 216 

vectors). The genes of interest (which were correlated with the spatial trajectory) were fitted by loess-fit 217 

from the stats-package (R-software) and aligned to the ranked spots and fitted by a probability 218 

distribution. Correlation analysis was performed by Pearson's product moment correlation coefficient. 219 

For heatmap illustration the gene order was computed by ordering the maximal peak of the loess fitted 220 

expression along the predefined spatial trajectory. 221 

 222 
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Implantation of external tools: SPARK 223 

For pattern recognition of spatially distinct expressed genes we integrated the R package SPARK13, 224 

which was shown to perform beneficial compared to other tools such as SpatialDE18. We transformed 225 

the required data into a SPARK object which is externally analyzed and reimported to SPATA. We add 226 

the possibility to group genes with a significant spatial pattern by overlap estimation and SNN clustering 227 

of the given correlation matrix. 228 

 229 

Implantation of external tools: InferCNV 230 

Copy-number Variations (CNVs) were estimated by aligning genes to their chromosomal location and 231 

applying a moving average to the relative expression values, with a sliding window of 100 genes within 232 

each chromosome, as described recently16. First, we arranged genes in accordance to their respective 233 

genomic localization using the CONICSmat package (R-software). As a reference set of non-malignant 234 

spots, we used cortex from epilepsy patients. To avoid the considerable impact of any particular gene 235 

on the moving average we limited the relative expression values [-2.6,2.6] by replacing all values 236 

above/below exp(i)=|2.6|, by using the infercnv package (R-software).	This was performed only in the 237 

context of CNV estimation as previously reported19.  238 

 239 

Implantation of external tools: Monocle3 or RNA-velocity 240 

We implemented a wrapper to easily switch between cds-objects (monocle3) and SPATA objects. First, 241 

we compute minimum spanning tree (MST) to estimate the most separate paths and order these cells 242 

to annotate pseudotime. By using the createPseudotime() function, a shiny-interface from 243 

monocle3 will give the possibility to select a root for pseudotime annotation. Further, we provide the 244 

possibility to implement each vector, for example “latent time” extracted from RNA-velocity using scvelo, 245 

to integrate into our SPATA object. 246 

 247 

Data acquisition of spatial transcriptomics 248 

All Visium Gene Expression experiments were performed according to 10X Genomics user guide 249 

‘Visium Spatial Gene Expression Reagent Kits’. In brief, 10µm thick, cryosectioned slices of fresh frozen 250 

brain tissue were applied onto capture areas of Visium Spatial Gene Expression Slide, hematoxylin and 251 

eosin stained and imaged for subsequent alignment with spatial RNA data. During permeabilization, 252 

mRNA was liberated from cells and captured by primers on the slide’s surface which enable downstream 253 
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reassignment of barcoded mRNA sequences to their former, spatial location. Permeabilization times 254 

had been determined in advance (Cortex: 18 min; Tumor: 12 min; Cerebellum: 12 min) according to 255 

manufacturer’s instructions (10X Genomics, Spatial Tissue Optimization Reagent Kit). After reverse 256 

transcription, second strand synthesis and denaturation of cDNA, second strands were amplified by 257 

PCR and desired cDNA fragments were selected via SPRIselect reagent. Successful amplification was 258 

confirmed by QC via Agilent Fragment Analyzer system. During the following fragmentation and double-259 

sided size selection via SPRIselect reagent, length of cDNA fragments was optimized for analysis via 260 

Illumina NextSeq Sequencing System. Each fragment was provided with unique, dual indexes as well 261 

as adapters binding to oligonucleotides on Ilumina flow cell. Post Library Construction QC via Agilent 262 

Fragment Analyzer system and Invitrogen Qubit Fluorometer was performed before normalization of 263 

libraries. For more information consult Illumina ‘Denature and Dilute Libraries Guide - Protocol A: 264 

Standard Normalization Method’. Phix control at a concentration of 1.8pM was added to each library in 265 

a dilution of 1:100. Sequencing was performed using the NextSeq 500/550 High Output Kit (150 Cycles). 266 

 267 

 268 

Data and code Availability  269 

Further information and requests for resources, raw data and reagents should be directed and will be 270 

fulfilled by the Contact: D. H. Heiland, dieter.henrik.heiland@uniklinik-freiburg.de. The source code of 271 

SPATA is available at https://github.com/theMILOlab/SPATA, additional functions are at 272 

https://github.com/heilandd/SPATA_Developer and https://github.com/kueckelj/confuns. Spatial 273 

Transcriptomic data will be provided at GEO (in preparation) and SPATAobjects at www.themilolab.com 274 

(in preperation). 275 
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