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Abstract

How organisms are able to maintain robust homeostasis has in recent years received
increased attention by the use of combined control engineering and kinetic concepts,
which led to the discovery of robust controller motifs. While these motifs employ kinetic
conditions showing integral feedback and homeostasis for step-wise perturbations, the
motifs’ performance differ significantly when exposing them to time dependent
perturbations. One type of controller motifs which are able to handle exponentially and
even hyperbolically growing perturbations are based on derepression. In these
controllers the compensatory reaction, which neutralizes the perturbation, is
derepressed, i.e. its reaction rate is increased by the decrease of an inhibitor acting on
the compensatory flux. While controllers in this category can deal well with different
time-dependent perturbations they have the disadvantage that they break down once
the concentration of the regulatory inhibitor becomes too low and the compensatory
flux has gained its maximum value. We wondered whether it would be possible to
bypass this restriction, while still keeping the advantages of derepression kinetics. In
this paper we show how the inclusion of multisite inhibition and the presence of positive
feedback loops lead to an amplified controller which is still based on derepression
kinetics but without showing the breakdown due to low inhibitor concentrations. By
searching for the amplified feedback motif in natural systems, we found it as a part of
the plant circadian clock where it is highly interlocked with other feedback loops.

Introduction 1

The concept of homeostasis [1], defined by Cannon in 1929 [2], is fundamental to our 2

understanding how organisms, including our body, work [3]. According to Cannon 3

homeostasis refers to the automatic, self-regulating processes that keep steady states 4

within certain, but narrow limits, despite internal or environmental perturbations [1–3]. 5

Although (negative) feedback is recognized as a central part in homeostatic 6

regulation [1, 4, 5], it is not the only dynamic component. The ’homeostatic response’ 7

may also include features such as anticipatory mechanisms [6], feedforward loops [7], or 8

positive feedbacks [3, 8, 9]. 9

In control engineering robust regulation of a variable A with set-point Aset can be 10

achieved by so-called integral control [10], which is able to (precisely) correct for 11

step-wise perturbations acting on a controlled variable A [10] (Fig 1). 12
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Fig 1. Scheme of a negative feedback with integral control regulating variable A. The
difference between the set-point Aset and the actual value of A (the error ε) is
integrated over time and fed back into the process which generates A. This procedure
ensures that A will precisely reach Aset for step-wise perturbations. Colors correspond
to molecular reactions shown later.

While in engineering integral control began to be applied in the beginning of the 13

twentieth century with the power steering of ships [11], its usage in physiology/biology 14

first appeared once cybernetics [12–14] made the analogies between engineered and 15

biological systems more explicit. Physiological models during this first era showed the 16

dynamical processes, loops, integrated errors, etc. mostly in terms of flow diagrams, 17

transfer functions, as engineered systems are described [15,16]. By the turn of the 18

century, when the molecular biology behind physiological processes became better 19

understood researchers began to describe the control process in terms of their reaction 20

kinetics, such as in integral rein control [17] (focussing on that physiological controllers 21

come in antagonistic pairs; see also the later analogous notion of inflow/outflow 22

controllers [18]), in the integral feedback formulation of robust bacterial 23

chemotaxis [19,20], or in the integral control approach of blood calcium homeostasis [21]. 24

It became evident that certain kinetic conditions within a negative feedback loop, 25

such as zero-order kinetics [18–20,22–24], autocatalysis [25–27], or second-order 26

(bimolecular/antithetic) kinetics [28,29] can lead to robust adaptation [30,31] by integral 27

control where an intrinsic integration of the error between set-point and the actual value 28

of the controlled variable is automatically performed. When these feedback motifs were 29

investigated towards time-dependent perturbations, it turned out that controller 30

performances can differ significantly, either due to the structure of the feedback loop or 31

due to the kinetics of how the integral controller is implemented [32,33]. 32

Feedback structures which have been found to perform well when exposed to 33

different time-dependent perturbations are based on derepression kinetics [32]. 34

A

E
k3k4

k1

+

k2

KI

−

, KM

Fig 2. Inflow controller based on derepression kinetics (motif 2, Ref. [18]). Red color:
reactions determining the set-point; orange: perturbation; blue: A-signaling; green:
E-signaling.

Fig 2 shows one of the motifs (motif 2) with derepression kinetics acting as an inflow 35

controller [18]. Reactions are color-coded and relate to the scheme in Fig 1. This motif, 36

unlike those not using derepression, is able to adapt perfectly to exponentially 37

increasing perturbations. Motif 2 can even balance hyperbolically increasing 38
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disturbances with doubling times which decrease exponentially [32]. In Fig 2 k1 39

represents a (time-dependent or constant) perturbation and k2 is the maximum fully 40

derepressed compensatory flux. E is subject to an enzymatic zero-order degradation 41

described by the rate parameters k3 (Vmax) and KM , while k4 represents a zero-order 42

synthesis rate with respect to E. KI is an inhibition constant. 43

The rate equations of the motif 2 controller are: 44

Ȧ =
k2

1+ E
KI

− k1·A (1)

45

Ė = k4·A−
k3·E
KM+E

(2)

where k2/(1 + (E/KI)) describes the compensatory flux, which opposes the perturbing 46

flux k1A. For step-wise changes in k1 and for low KM values (KM�E), E/(KM+E)≈1 47

and the steady state value in A is described by the set-point (setting Ė=0 and solving 48

for Ass) 49

Ass = Aset =
k3
k4

(3)

which will also be defended against time-dependent (increasing) k1 values (see later). 50

Metaphorically speaking, the activation of the compensatory flux by derepression is 51

somewhat like the static takeoff of an airliner, when the plane stands still at the 52

beginning of the runway, but having engines in full thrust with the breaks on. When the 53

brakes are released the plane starts to accelerate and rapidly reaches takeoff speed. 54

The controller in Fig 2 reaches its maximum compensatory flux when E≤KI ; any 55

further increase in the perturbation k1 cannot be opposed and will lead to the 56

controller’s breakdown. This is illustrated in Fig 3 for different KI values with k1 57

increasing exponentially. The k1 value at breakdown, kbd1 , can be estimated by setting 58

E=KI and solving for k1 from Eq 1 with Ȧ=0, i.e., 59

kbd1 ≈
k2

2Aset
(4)
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Fig 3. Behavior of the motif 2 zero-order controller (Fig 2) upon an exponential
increase of k1 and the influence of KI . Left panel shows k1 as a function of time.
Phase 1: k1=k1,p1=2.0 and constant. The controller is at steady-state at its set-point
Aset=5.0. Phase 2: k1 starts to increase exponentially at time tp1=10.0 according to
the inset Equation. Right panel shows the controller’s A and E values for different KI ’s,
where A1 is A when KI=10.0, A2 is A when KI=1.0, A3 is A when KI=0.1, and A4 is
A when KI=1×10−3. The other rate constants are: k2 (max compensatory
rate)=1×105, k3=5×103, k4=1×103, KM= 1×10−6. Initial concentrations: A1-A4=5.0,
E1=1×105, E2=1×104, E3=1×103, and E4=10.0. Controller starts to break down
when k1 is reaching 1×104 indicated by the red arrows in the left panel.
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The curves Ai and Ei in the right panel show the different A and E values when KI 60

takes the values 10.0 (A1), 1.0 (A2), 0.1 (A3), and 1×10−3 (A4). While the controller’s 61

”lifetime” (the time span until the controller breaks down) is practically not affected by 62

the different KI values, the controller’s ”aggressiveness”, i.e. its ability to rapidly 63

respond to perturbations and to keep A at Aset, is improved with decreasing KI values. 64

Goal of this work 65

While motif 2 and related controllers based on derepression can keep the controlled 66

variable A at its set-point even for rapidly increasing time-dependent 67

perturbations [32, 33] (Fig 3), they suffer from breakdown once the controller variable E 68

becomes close to or lower than KI . We wondered whether it would be possible to 69

circumvent this restriction to a controller where the control species’ concentration 70

increases with increasing perturbation strength, while still keeping the controller 71

properties based on derepression. Using the motif 2 controller as an example, we show 72

that implementation of a positive feedback loop based on autocatalysis combined with 73

multisite inhibition kinetics can avoid controller breakdown by low E values, but still 74

shows the properties of a controller based on derepression. 75

Materials and methods 76

Computations were carried out by using the Fortran subroutine LSODE [34]. Plots were 77

generated with gnuplot (www.gnuplot.info) and slightly edited with Adobe Illustrator 78

(adobe.com). To make notations simpler, concentrations of compounds are denoted by 79

compound names without square brackets. Time derivatives are generally indicated by 80

the ’dot’ notation. Concentrations and rate parameter values are given in arbitrary 81

units (au). In the Supporting Information a set of MATLAB (mathworks.com) scripts 82

are provided for illustration in comparison with corresponding Fortran calculations (S1 83

Matlab). 84

Results and Discussion 85

Effect of multisite inhibition on controller performance 86

In this section we investigate the effect of multisite inhibition. In mechanistic terms, we 87

consider an enzyme or transporter, which is responsible for the compensatory flux [33]. 88

In multisite inhibition E can bind to the enzyme or transporter at multiple sites with 89

different binding constants KI . To make things more straightforward, we assume that 90

one, two, or four molecules of E can bind to the enzyme/transporter, but always with 91

the same binding constant KI . In this case, Eq 1 is replaced by (see for example 92

Ref [35]) 93

Ȧ =
k2

1+( E
KI

)n
− k1·A (5)

where n is the number of inhibiting E molecules (n=1, 2, or 4). Taking Fig 3 with 94

KI=0.1 as a starting point, Fig 4 shows the results when n is changed from 1 to 2 and 95

to 4. 96
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Fig 4. Behavior of the motif 2 zero-order controller (Fig 2) upon an exponential
increase of k1 (left panel Fig 3 and the influence of multisite inhibition (Eq 5)). Phase 1:
the controller is at its set-point/steady state with constant k1=2.0. Phase 2: Response
of the controller with the different n values upon the exponential increase of k1. Rate
constants are: KI=0.1, k2(max compensatory rate)=1×105, k3=5×103, k4=1×103,
KM= 1×10−6. Initial concentrations: A=5.0 (for all n), E (n=2) =9.9, E (n=4)=0.9.

From Fig 4 it is clearly seen that multisite inhibition improves the controller’s 97

performance, i.e., makes the controller more aggressive by showing a more rapid 98

response and by keeping A closer to the controller’s set-point. However, despite the 99

better responsiveness of the controller when using multisite inhibition, the ”lifetime” of 100

the controller is not improved, i.e., the breakdown occurs at the same time/kbd1 value as 101

in Fig 3. 102

Increasing controller lifetime by increasing the maximum 103

compensatory flux 104

Eq 4 indicates that increasing the maximum compensatory flux k2 will increase kbd1 and 105

thereby increase the lifetime of the controller (upon increasing values of k1). To 106

automate this we have added a new variable C, shown in Fig 5, which is activated by 107

derepression from E, but with the effect to increase k2. 108
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E
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+

k2

KI

−

−

, KM

Ck5 k6

+

KI

Fig 5. Increasing controller lifetime by an E-dependent increase of the maximum
compensatory flux k2.

For the sake of simplicity the inhibition constant of the derepression of C by E is 109

assumed to be the same (KI) as for the E-induced derepression of the compensatory 110
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flux. The rate equations for this controller are 111

Ȧ =
k2C

1+( E
KI

)n
− k1·A (6)

Ė = k4·A−
k3·E
KM+E

(2)

Ċ =
k5

1+ E
KI

− k6·C (7)

Note that the rate equation for E remains unaltered. We also keep the multisite 112

inhibition of the compensatory flux by E, but consider only a single E-binding site for 113

the inhibition of the zero-order generation (k5) of C. Fig 6 shows the lifetime of 114

controllers with n = 4 and with different k5 and k6 values when k1 increases 115

exponentially as indicated in the left panel of Fig 3. As a reference, the blue solid and 116

dashed lines show respectively the A3 and E3 values from the results of Fig 4 with 117

n = 4, i.e., in the absence of C. For high k5/k6 ratios the lifetime of the controller is 118

clearly increased (see traces A1, E1 and A2, E2), while for a ratio of one (k5=k6=0.1, 119

traces A4, E4) the lifetime of the controller is slightly reduced. 120
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Fig 6. Activation of the compensatory flux for reaction scheme of Fig 5 and
corresponding Eqs 6, 2, and 7 with n=4. Left panel: Concentrations of A and E as a
function of time with different k5/k6 rate constants. Blue curves A3 and E3 correspond
to the calculations without C (Fig 4 with n=4). Right panel: Concentrations of C with
different k5/k6 rate constants as a function of time. Phase 1: the controller is at steady
state at its set-point Aset=5.0 at constant k1=2.0. Phase 2: k1 increases exponentially
according to the inset in the left panel of Fig 3. k5 and k6 values and initial
concentrations for the different Ai, Ei, Ci curves: i=1, k5=10.0, k6=0.01, A0=5.0,
E0=2.412, C0=39.81; i=2, k5=1.0, k6=0.1, A0=5.0, E0=0.9, C0=1.0; i=3, no C (Fig 4
with n=4); i=4, k5=k6=0.1, A0=5.0, E0=0.531, C0=0.158. Other rate constant values:
k2=1×105, k3=5×103, k4=1×103, KM= 1×10−6, KI=0.1.

Opposing E decrease by positive feedback 121

While the inclusion of C increases the compensatory flux k2C/(1+(E/KI)
n) and leads 122

to an improvement in the controller’s lifetime, the controller still suffers from the 123

general limitation that once E is driven down to values approaching KI , i.e., the 124

controller breaks down when (setting E=KI) 125

kbd1 ≈
k2C

2Aset
(8)
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(Fig 6). We found, that this trend can be circumvented by including a positive feedback 126

in the generation of C without loosing the dynamic properties of the motif 2 controller. 127

The positive feedback in C can be generated by first-order or second-order autocatalysis. 128

Fig 7 shows the scheme for both first-order and second-order autocatalysis 129

A

E
k3k4

k1

+

k2

KI

−

−

, KM

Ck5 k6

+

KI

+

Fig 7. Inclusion of autocatalysis in the generation of C.

In case of first-order autocatalysis Eq 7 is changed to 130

Ċ =
k5C

1+ E
KI

− k6·C (9)

while for the second-order case both the synthesis and degradation terms are 131

second-order with respect to C 132

Ċ =
k5C

2

1+ E
KI

− k6·C2 (10)

Note that for step-wise changes in k1 E becomes homeostatic controlled in addition 133

to A, because Ċ=0 in Eqs 9 or 10 implies that 134

Ess =

(
k5
k6
− 1

)
KI (11)

independent of the perturbation k1. 135

Comparing the influence of first-order and second-order autocatalysis in C 136

on controller performance 137

We have tested the influence of the first-order and second-order autocatalytic terms on 138

the controller performance for n=4. Considered were step-wise changes in k1, together 139

with linear, exponential, and hyperbolic increases of k1. For all these perturbation types 140

the controllers with both first-order and second-order autocatalysis show robust 141

homeostasis and defend their set-points Aset=k3/k4 successfully. It is interesting to 142

note that E no longer decreases, but approaches a steady state during the 143

time-dependent increase of k1! We show here the results for exponentially and 144

hyperbolically increasing k1 values. The controller’s behavior for step-wise and linear 145

changes are described in S1 Text. 146
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First-order autocatalysis in C 147

The controller is described by Eqs 2, 6, and 9. The perturbation k1 increases 148

exponentially as described in the left panel of Fig 3. 149

Fig 8, left panel, shows that C follows the exponential increase in k1 closely, while 150

the right panel shows that E goes into a steady state with A kept at its set-point 151

Aset=k3/k4=5.0. The steady state value in E can be calculated from Eq 9 by noting 152

that this equation can be written as 153

1

C
·dC

dt
=

d lnC

dt
=

k5

1+ E
KI

− k6 (12)

Inserting into Eq 12 the value of d lnC/dt (which is equal to k̇1/k1=0.2 and using 154

L’Hôpital’s rule) together with the values of the other rate constants and solving for E, 155

gives 156

Ess =

(
k5

d lnC
dt +k6

− 1

)
KI = 0.7333 (13)

in agreement with the numerical calculation. 157
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Fig 8. Controller performance with first-order autocatalysis in C (Eq. 9) and
exponential increase of k1. Phase 1: the controller is at steady state at its set-point
Aset=5.0 with constant k1=2.0. Initial concentrations: A0=5.0, E0=0.9, C0=1.0.
Phase 2: k1 increases exponentially (left panel of Fig 3), k2=1× 105, k3=5× 102,
k4=1× 102, k5=10.0, and k6=1.0. KM=1× 10−6, KI=0.1, n = 4 (Eq 6). Left panel: k1
and C as a function of time; right panel: A and E as a function of time.

One of the characteristic properties of the motif 2 derepression controller is its 158

capability to tackle rapidly increasing perturbations, like hyperbolic growth [32]. While 159

exponential growth in k1 has a constant doubling time the doubling time in hyperbolic 160

growth decreases exponentially and k1 will (formally) reach infinity at a certain time 161

point. We wondered whether the controller based on rate equations 2, 6, and 9 would 162

still show this property. 163

In Eq 14 k1 increases hyperbolically according to 164

k1 =
40.5

40.5
k1,p1

− (t− tp1)
(14)

where k1,p1 is the constant value of k1 during phase 1 (k1=2.0 as in the previous 165

calculations), while tp1 is the duration of phase 1 (here 1 time unit). When time t 166

reaches 21.25 (the infinity limit) the value of k1 goes formally to infinity. Fig 9 shows 167

the behavior of the controller close to the infinity limit. In the calculation t and k1 168

reach 21.249997 and 1.4× 107, respectively. During the last 0.25 time units k1 increases 169
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by approximately 5-orders of magnitude. Despite this rapid increase in k1 the controller 170

is able to maintain homeostasis, but finally breaks down before the infinity limit is 171

reached. 172

It is interesting to note that in case of hyperbolic growth the first-order 173

autocatalytic growth in C (left panel, Fig 9) is not able to maintain a constant E, i.e., 174

E decreases, but A is still kept at its set-point (right panel, Fig 9). 175
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Fig 9. Controller performance with first-order autocatalysis in C (Eq. 9) and
hyperbolic increase of k1. Phase 1 (not shown): the controller is at steady state at its
set-point Aset=5.0 with constant k1=2.0. Phase 1 lasts 1 time unit. Initial
concentrations: A0=5.0, E0=0.9, C0=1.0. Phase 2: k1 increases in a hyperbolic fashion
(Eq 14), k2=1× 105, k3=5× 105, k4=1× 105, k5=10.0, and k6=1.0. KM=1× 10−6,
KI=0.1, n = 4 (Eq 6). Left panel: k1 and C as a function of time just before k1 reaches
the infinity limit; right panel: corresponding A and E concentrations as a function of
time.

Second-order autocatalysis in C 176

We asked the question, how would the controller respond when the autocatalytic 177

generation of C becomes second-order (Eq 10), with other words, when the generation 178

of C is itself due to hyperbolic growth (S2 Text)? 179
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Fig 10. Controller performance with second-order autocatalysis in C (Eq. 10) and
exponential increase of k1. Phase 1: the controller is at steady state at its set-point
Aset=5.0 with constant k1=2.0. Initial concentrations: A0=5.0, E0=0.9, C0=1.0.
Phase 2: k1 increases exponentially (left panel of Fig 3), k2=1× 105, k3=5× 102,
k4=1× 102, k5=10.0, and k6=1.0. KM=1× 10−6, KI=0.1, n = 4 (Eq 6). Left panel: k1
and C as a function of time; right panel: corresponding A and E concentrations as a
function of time.
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Fig 10 shows the results when C is subject to second-order autocatalysis and k1 180

increases exponentially. Although there is no apparent change in A in comparison with 181

Fig 8 now E itself is under homeostatic control, besides A. E’s set-point can be 182

calculated by setting Eq 10 to zero, which leads to 183

Eset = KI

(
k5
k6
− 1

)
(15)

Inserting the rate constant values from Fig 10 into Eq 15 gives a value for Eset of 0.9 in 184

agreement with the numerical values for Ess. 185
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Fig 11. Controller performance with second-order autocatalysis in C (Eq. 10) and
hyperbolic increase of k1 (Eq 14). Phase 1 (not shown): the controller is at steady state
at its set-point Aset=5.0 with constant k1=2.0. Phase 1 lasts 1 time unit. Initial
concentrations: A0=5.0, E0=0.9, C0=1.0. Phase 2: k1 increases hyperbolically. Rate
constant values: k2=1× 105, k3=5× 102, k4=1× 102, k5=10.0, and k6=1.0.
KM=1× 10−6, KI=0.1, n = 4 (Eq 6). Left panel: k1 and C as a function of time just
before k1 reaches the infinity limit (blue dashed line). At time 21.249997 k1=1.4× 107,
C=5.4× 106. Right panel: A and E concentrations as a function of time.

Fig 11 shows the controller’s behavior when k1 increases hyperbolically with the 186

same second-order autocatalysis as in Fig 10. However, while the controller is still able 187

to keep A at its theoretical set-point, the value of Ess shows now an offset below Eset 188

(Eq 15). 189

In the case when k1 increases hyperbolically, we wondered how well motif 2 would 190

perform without the help of C in comparison with controllers that have first- or 191

second-order autocatalysis in C? 192
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Fig 12. Behavior of motif 2 controller (Fig 2) in comparison with a controller including
first-order and second-order autocatalysis in C (Fig 7). Rate constants for all three
controllers: k2=1× 105, k3=5× 105, k4=1× 105, KM=1× 10−6, KI=0.1, n = 4.
Additional rate constants for the autocatalytic controllers: k5=10.0, and k6=1.0. Initial
concentrations: A0=5.0, E0=0.9, C0=1.0 (when autocatalysis in C is included).

An answer to this question is given in Fig 12, which shows the performance of a 193

single motif 2 controller without C in comparison with controllers having first- and 194

second-order autocatalysis in C. Since the motif 2 controller without C is subject to the 195

limitation described by Eq 4, this controller breaks down earlier in comparison with 196

those controllers having autocatalysis in C. The second-order autocatalytic controller 197

performs best and keeps A longest at its set-point before breakdown occurs near the 198

infinity limit. 199

Oscillatory homeostats 200

This section is inspired by the fact that in physiology many cellular compounds or 201

tissues show oscillatory behaviors [36–40], but are also under a homeostatic regulation. 202

For example, circadian oscillations regulate hormones, blood glucose, and adapt 203

organisms to the light/dark and seasonal changes on earth [41–46]. Another interesting 204

example is the homeostatic stabilization of complex neural oscillations [47]. 205

The motif 2 controller (Fig 2) becomes oscillatory when degradations with respect to 206

A and E become zero-order. The resulting oscillator can maintain robust 207

homeostasis [48] of <A>, where 208

<A> =
1

τ

∫ τ

0

A(t) dt→ Aset (16)

and integration is taken over a certain time interval τ . 209

This oscillator is identical to Goodwin’s 1963 oscillator [49–51], although Goodwin 210

was probably not aware of the oscillator’s homeostatic property. The promotion of 211

oscillations by zero-order kinetics have also been recognized by Kurosawa and Iwasa [52] 212

in an alternative version of Goodwin’s equations [53]. 213

In case of motif 2, the oscillatory reaction scheme is shown in Fig 13 214
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A
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k3k4

+

k2

KI

−

, KM

k1 , KM

Fig 13. Motif 2 becomes an oscillatory homeostat when KM�E (condition for integral
control) and, in addition, KM�A. The resulting oscillator is identical to Goodwin’s
equations/oscillator from 1963 [49].

with the altered rate equation in A: 215

Ȧ =
k2

1+( E
KI

)n
− k1·A
KM+A

(17)

When KM�A and n=1, Eqs 2 and 17 can be combined into a quasi-harmonic form [48] 216

Ä
k2k4KI

(KI+E)2

+A = Aset =
k3
k4

(18)

When the values of k1 and k2 are close to each other, the resulting oscillations are 217

practically harmonic (sinusoidal) and the period P of the oscillator can be estimated as 218

Pharm =
2π√
k2k4KI

(KI+<E>)2

(19)

with 219

<E> =
1

τ

∫ τ

0

E(t) dt (20)

Table 1 shows three examples of numerically calculated periods Pnum in comparison 220

with the corresponding harmonic periods Pharm. It may be noted that when k1 and k2 221

become significantly different, the resulting oscillations become highly nonlinear and 222

Pharm can only qualitatively indicate the period’s dependence on rate constants and 223

<E>. 224

Table 1. Harmonic and numerical periods.

k1 k2 Pharm Pnum
9×10−3 1×10−2 22.0 22.1
9×10−2 0.1 7.01 6.99

0.9 1.0 2.21 2.22

KI=0.1, KM = 1×10−8, k2=k4=1.0,
A0=0.96, E0=3.3×10−3.

Fig 14 shows, as a reference, the behavior of the oscillatory m2 controller (Fig 13) 225

when k1 increases exponentially. The value of <A> is at the controller’s set-point (5.0) 226

and kept there, until, as in the non-oscillatory case (Fig 3), the controller breaks down 227

when E values become too low. 228

October 16, 2020 12/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.20.346809doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.346809
http://creativecommons.org/licenses/by/4.0/


0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100
102

A
,<

A
>

(a
u)

E
(a

u)

time (au)

10-2

10-1

100

101

0 20 40 60 80 100 120 140 160

pe
rio

d
(a

u)

time (au)

phase 2phase 1phase 1

A

phase 2

E

<A>

Fig 14. Response of oscillatory motif 2 (Fig 13) when k1 increases exponentially in
phase 2 by the growth law described in the left panel of Fig 3. Phase 1: k1 is at 2.0;
phase 2: At time t=80 k1 starts to increase exponentially. At the end of phase 2 k1 is
1.8×106. Left panel: values of A, <A>, and E as a function of time. Right panel:
Calculated period as a function of time. Rate constants: k2=1.0×105, k3=5.0, k4=1.0,
KI=1.0, KM=1.0×10−6, n=4. Initial concentrations: A0=1.56, E0=20.55. The rate
equations are given by Eqs 2 and 17.

In the case when C is included to improve controller performance (Fig 15), the 229

resulting controller shows an increased lifetime. This is shown in Fig 16. 230

A

E
k3k4

+

k2

KI

−

−

, KM

Ck5 k6

+

KI

k1 , KM

Fig 15. Inclusion of C in the oscillatory m2 controller.

The presence of C had no significant effect on the period (Fig 16, right panel) which 231

decreased practically in the same manner as in Fig 14 when C is absent. Despite the 232

controller’s increased lifetime in the presence of C, the controller will also in this case, 233

due to the decrease in E, eventually break down as in the nonoscillatory case (Fig 6). 234
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Fig 16. Response of oscillatory motif 2 containing C (Fig 15) when k1 increases
exponentially in phase 2 by the growth law described in the left panel of Fig 3. Rate
equations for A, E, and C are given by Eqs 17, 2, and 7, respectively. Phase 1: k1 is
kept constant at 2.0; phase 2: At time t=80 k1 starts to increase exponentially. At the
end of phase 2 k1 is 1.8×106. Controller breakdown occurs just after 160 time units
(data not shown). Left panel: values of A, <A>, and E as a function of time. Right
panel: Calculated period as a function of time. Rate constants: k2=1.0×105, k3=5.0,
k4=1.0, k5=50.0, k6=1.0, KI=1.0, KM=1.0×10−6, n=4. Initial concentrations:
A0=1.56, E0=20.55, C0=1.0.

When C is generated by first-order autocatalysis (described by Eq 9) the controller 235

is able to defend Aset for an extended time period (Fig 17a-c) and keeps <E> constant 236

(Fig 17d). After an induction period, the controller is able to follow the exponentially 237

increasing k1 by C (Fig 17e) and thereby becoming capable to defend Aset. Fig 17f 238

shows the exponential decrease of the calculated period. Since in phase 2 <E> is now 239

kept at a constant level the controller will remain operative as long as C can be 240

increased and the activation of A by C is maintained. 241

When C is generated by second-order autocatalysis (Eq 10) the resulting controller 242

is, as for first-order autocatalysis, able to defend Aset. Fig 18 shows the case when k1 243

increases exponentially. We found that an increase of k2 by one order of magnitude 244

during phase 2 was beneficial for the controller’s homeostatic behavior. To avoid 245

overcompensation, k5 was decreased by one order of magnitude during phase 2. Fig 18a 246

shows the time profiles of A and <A>. Once the controller is able to follow the 247

increasing k1 values (indicated by the downward arrows in the different panels) <A> is 248

at Aset, as indicated in panel a by the white outlined <A>. 249

In Fig 18b E is shown as a function of time going into a steady state once control 250

over the increasing k1 values have been taken. The takeover of control is most clearly 251

seen in Fig 18c when after the induction period C is able to follow the increasing k1. 252

Fig 18d shows that the period is decreasing exponentially in line with the exponential 253

increase of k1. Fig 18e shows the high frequency oscillations in A near the end of 254

phase 2 having a period of approximately 10−4 time units. Calculating the A-average 255

over the 10−3 time units shows that <A> is at Aset=5.0. 256

Finally we have tested a controller with second-order autocatalytic generation of C 257

when k1 increases hyperbolically according to Eq 14. We found that a reduction of the 258

unperturbed period in phase 1 to approximately 2 time units gave a good illustration of 259

an operational controller under these conditions. The reduced period was achieved by 260

increasing k4 to 50.0. This led to a decrease in Aset (=k3/k4) to 0.1. Fig 19a shows a 261

semilogarithmic plot of A and <A> as a function of time. At time t=50.0 k1 starts to 262

grow (Eq 14) with kp,1=2.0. The infinity limit is reached at 70.25 time units. Also here 263

we observe an induction period in which the controller adapts to the increasing k1. At 264

about 60 time units the controller is able to oppose the increasing k1 values. At the 265

same time <E> goes into a steady state (Fig 19b) and C is able to follow k1 (Fig 19c). 266
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The period decreases in a corresponding manner as k1 increases (Fig 19d), and the 267

controller is able to defend Aset. Fig 19e shows that <A>=0.0997 when <A> is 268

determined between 60 time units and close to the infinity limit. 269
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Fig 17. Response of oscillatory m2 controller with first-order autocatalytic generation
of C and exponential increase of k1. Phase 1 (0-80 time units): k1 = 2.0. Phase 2
(80-180 time units): k1 increases exponentially as shown in the left panel of Fig 3. Rate
equations are given by Eqs 17, 2, and 9. (a) A (in purple) and overall <A> (in green)
as a function of time. The white outlined <A> is the <A> value calculated from 120
(white vertical line) to 180 time units showing that <A>=Aset=5.0. (b) A, <A>, and
E for the time interval 179.0-180.0. (c) A, <A>, and E for the time interval
179.9-180.0. (d) E as a function of time. (e) k1 and C as a function of time. (f) The
period as a function of time. Rate constants: k2=1×105, k3=5.0, k4=1.0, k5=5.0
(phase 1), k5=50.0 (phase 2), k6=0.1 (phase 1), k6=1.0 (phase 2), KI=1.0, KM=
1×10−6. Initial concentrations: A0=2.684, E0=61.55, C0=86.21, n=4.
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Fig 18. Response of oscillatory m2 controller with second-order autocatalytic
generation of C and exponential increase of k1. Phase 1 (0-40 time units): k1=2.0.
Phase 2 (40-160 time units): k1 increases exponentially as shown in the left panel of
Fig 3. Rate equations are given by Eqs 17, 2, and 10. Downward arrows indicate the
starting point when the controller is able to compensate for the increasing k1 values. (a)
A (in purple) and overall <A> (in green) as a function of time. The white outlined
<A> is the <A> value calculated from 140 (white vertical line) to 160 time units
showing that <A>=Aset=5.0. (b) E as a function of time. (c) k1 and C as a function
of time. (d) The period as a function of time. (e) High frequency oscillations near the
end of phase 2. <A> is calculated for the time interval from 159.500 to 159.501 showing
that <A> (4.9989) is close to Aset=5.0. Rate constants: k2=1×105 (phase 1),
k2=1×106 (phase 2), k3=5.0, k4=1.0, k5=5×10−2 (phase 1), k5=1×10−3 (phase 2),
k6=1×10−3, KI=1.0, KM= 1×10−6. Initial concentrations: A0=9.6, E0=55.4,
C0=101.0, n=4.
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Fig 19. Response of oscillatory m2 controller with second-order autocatalytic
generation of C and hyperbolic increase of k1. Rate equations are given, as in Fig 18, by
Eqs 17, 2, and 10. Phase 1 (0-50 time units): k1 = 2.0. Phase 2 (50-70.24999992 time
units) k1 increases hyperbolically (Eq 14) from 2.0 to 5.8673×108. Aset=0.1. (a) A and
average <A> as a function of time. Aset=0.1. (b) Concentration of E as a function of
time. (c) k1 and C time profiles. (d) The period as a function of time. (e)
Concentration of A and calculated <A> (=0.0997) during phase 2 (time interval
60.0-70.24999992) when oscillations are present. Rate constants: k2=1×105 (phase 1),
k2=1×106 (phase 2), k3=5.0, k4=50.0, k5=5×10−2 (phase 1), k5=1×103 (phase 2),
k6=1×10−3 (phase 1), k6=1.57×102 (phase 2), KI=1.0, KM= 1×10−6. Initial
concentrations: A0=2.736×10−4, E0=4.793×101, C0=1.489×102, n=4.

Period homeostasis with respect to step-wise perturbations in k1 270

Since in some oscillatory physiologies, like circadian rhythms, period homeostasis is 271

observed with respect to certain step-wise environmental perturbations, for example in 272

temperature or pH [54,55], we wondered whether it would be possible to include an 273

additional variable to one of the above oscillatory controllers which would give 274

homeostasis not only in <A> but also in the oscillator’s period. We have previously 275

shown [48] how the basic oscillatory m2 motif (Fig 13) can show period homeostasis by 276

the addition of controller variables that keep E and the chemical fluxes through E at a 277
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constant level. Here we show that we can do the same by taking, as an example, the 278

controller described in Fig 15 (including autocatalytic formation of C). 279

A

E
k3k4

+

k2

KI

−

−

, KM

Ck5 k6

+

KI

+

k7 k8

I1 , KM

+

k9

+

k1 , KM

Fig 20. Reaction scheme of oscillatory m2 controller with autocatalytic generation of
C and period homeostasis with respect to step-wise perturbations in k1.

Fig 20 shows the controller’s reaction scheme with the additional variable I1, which 280

keeps <C> and thereby <E> under homeostatic control. The rate equations are: 281

Ȧ =
k2C

1+( E
KI

)n
− k1·A
KM+A

+ k9·I1 (21)

Ė = k4·A−
k3·E
KM+E

(22)

Ċ =
k5C

1+ E
KI

− k6·C (23)

İ1 = k7·C −
k8·I1
KM+I1

(24)

I1 acts as an additional inflow controller with the property to keep <C> at a 282

constant level. The two compensatory fluxes 283

j2 =
k2C

1+( E
KI

)n
(25)

and 284

j9 = k9·I1 (26)

act together such that <A>, <E>, and <C> are under homeostatic control, which 285

leads to regulated fluxes through A, E, and C such that the period of the oscillator 286

becomes constant. 287
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Fig 21 illustrates the period homeostasis for step-wise changes of k1 from 2.0 to 10.0. 288

The period length during phase 1 (k1=2.0) is approximately 18 time units. Directly 289

after the step in k1 the period drops to approximately 4 time units but then increases to 290

its original value due to the increase in I1 (panels a, e, and f). The set-point of <C> 291

can be calculated from Eq 24 by setting ˙<I1>=0, which leads to 292

<İ1> = <k7·C>−
〈

k8·I1
KM+I1

〉
= 0 ⇒ <C> =

k8
k7

(27)

by assuming that <I1/(KM + I1)>=1, i.e, KM�I1. 293
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Fig 21. Example of period homeostasis of the controller in Fig 20 when k1 changes
from 2.0 (phase 1) to 10 at time t=500. Panel a shows oscillatory A and the calculated
average <A> as a function of time. (b) Concentration of E as a function of time (in
blue) and <E> (orange lines). For phase 1 <E> was calculated for the entire phase,
i.e., for the time interval 0-500, while in phase 2 <E> was calculated for the time
interval 2000-2500. (c) Step-wise change of k1 from 2 to 10 (left ordinate, outlined in
black). Right ordinate: concentration of C as a function of time. Orange lines:
calculated average <C> for the time intervals given in panel b. (d) Time plot (in
purple) and average value (in green) of respectively KI/(KI+E) and <KI/(KI+E)>.
The average values are calculated for the time intervals as stated for panel b. For
visibility, ordinate values, which have maximum values of 1 are cut off at 0.02. (e)
Calculated period length as a function of time showing that I1 manages to keep period
homeostatically controlled. (f) I1 as a function of time. Rate constants: k2=1×105,
k3=500, k4=k5=100, k6=1.0, k7=100, k8=0.1, k9=8×10−2, KI=1.0, KM= 1×10−6.
Initial concentrations: A0=2.683, E0=4.463×103, C0=4.108×10−6, I1,0=2.705, n=1. 294

Fig 21c shows that the calculated <C> value (=0.001) is in perfect agreement with 295

Eq 27. Applying <Ċ>=0 in Eq 23 leads to the condition 296〈
KI

KI + E

〉
=
k6
k5

= 0.01 (28)

which is obeyed, as seen in Fig 21d. However, despite the fact that Eq 28 is fulfilled, we 297

were not able to extract an analytical value for <E>. To get <E> (Fig 21b) we used 298

the numerical solution of the rate equations. 299

An interesting aspect is whether period homeostasis can also be obtained when the 300

perturbation becomes time-dependent. We will deal with this situation more generally 301

in another paper. 302

Controller breakdown due to saturation 303

We have shown that the breakdown of the simple derepression m2 controllers (Figs 2 304

and 13) can be delayed or even circumvented by including a component C which is 305

activated by derepression from E, but itself activates the generation of E via A (Fig 5). 306

However, there is the question how saturation may affect the performance of the 307

controllers. For example, although the controllers containing a first-order autocatalysis 308

in C are apparently able to follow exponentially increasing k1 values (Figs 9 and 17) 309

they eventually will break down since neither the perturbation k1 nor the increase in C 310

can continue ad infinitum. 311

In this respect, the models presented here need to be considered as idealizations. For 312

example, concerning the growth of k1 and C, k1 and C will eventually approach 313

saturation levels. In the case of k1, the removal of A may be due to an enzyme or a 314

transporter, which eventually will go into saturation. Likewise, C will be generated by 315

corresponding enzymatic processes and will be subject to saturation (see for example 316

Ref [18] (Supporting Material) and Ref [56]). 317

A brief overview over these breakdown scenarios are now given. When k1, i.e. the 318

removal of A, goes into saturation before the production of C and before the 319

C-signaling to the compensatory flux, the controller will be able to keep homeostasis of 320

A at its set-point, at a high but constant level of k1. When C-signaling goes into 321

saturation before k1 and C become saturated, then the controller will break down due 322

to an unbalanced exponential increase of C. Finally, when C production becomes 323
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saturated, but the removal of A by k1 and C-signaling are still operative, then 324

breakdown of the controller occurs, because the kinetics of the C production are not 325

able to oppose the rapid decrease of A and A levels will go to zero. 326

Example: The TOC1/PRR5-RVE8 negative feedback loop 327

A question natural to ask, is whether the above ”A-E-C” regulatory circuits can be 328

found in physiology. Would the properties be the same as in the isolated case, i.e., as 329

studied here? Since circadian rhythms are based on transcriptional-translational 330

negative feedback loops, the Goodwin oscillator and the m2-scheme has served as a 331

basic model to describe circadian oscillations [49–51,57,58]. We have taken the plant 332

circadian clock organization and looked for the A-E-C motif (Fig 5) there. In plants the 333

circadian organization is complex [59,60] and consists of several interlocked negative 334

feedback loops where each of them can approximately be described by a basic 335

m2-scheme (Fig 13). Plants have a morning oscillator based on the genes LHY (Late 336

Elongated Hypocotyl) and CCA1 (Circadian Clock Associated 1) and an evening 337

complex (EC) which also contains an autoregulatory negative feedback loop. In 338

addition, there appear to be transcriptional-translational negative feedbacks in the 339

organization of pseudo-response regulators (PRR’s). The PRR gene family consists of 340

five paralogue genes (PRR1, 3, 5, 7, and PRR9). PRR1 (also known as Timing of CAB 341

expression 1 (TOC1)) is presently one of the best characterized gene in the PRR family. 342

They are implicated in clock function and act as period controlling factors [61]. TOC1 343

and PRR5 are interlocked with the morning oscillator components LHY and CCA1 344

and the evening complex. It is in the TOC1/PRR5 feedback structure including the 345

RV E8 (REV EILLE8) gene we find the A-E-C motif. 346

LWD

TOC1/PRR5

LHY/CCA1

TOC1/PRR5

RVE8/LNKs

PRR7/9

LHY/CCA1
−

+

−−

−

+

GI-ZTL

−
+

+

EC

Fig 22. Part of the plant circadian clock involving the TOC1 m2-type feedback loop.
The A-E-C motif (Fig 5) is outlined in red.

Fig 22 shows part of the plant circadian network including TOC1/PRR5 and RV E8. 347

The TOC1 and RV E8 genes, when mutated, affect the period of the plant circadian 348

clock. In addition, RV E8 has also an influence on the circadian period with respect to 349

temperature (temperature compensation) [62]. RV E8 interacts with LHY , CCA1, and 350

the EC, which in their turn also have an influence on the plant circadian rhythm. The 351

TOC1/PRR5-mRNA’s are part of a negative feedback loop where the proteins TOC1 352
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and PRR5 feed negatively back on their transcription. RVE8 is a MYB-like 353

transcription factor and activates the transcription of TOC1/PRR5, but needs NIGHT 354

LIGHT-INDUCIBLE AND CLOCK-REGULATED 1 and 2 (LNK1 and LNK2) [63,64] 355

to do that. TOC1/PRR5 on their side inhibit the production of RVE8 possibly by 356

transcriptional repression [65]. Our results with the A-E-C motif suggests, in agreement 357

with experimental implications [62], that RV E8 may take part in the homeostasis of the 358

TOC1/PRR5 negative feedback loop, to stabilize homeostatic properties of the plant 359

circadian clock, including the period. For example, overexpression of RVE8 leads to a 360

shorter circadian period. In analogy, increase of k5 in Fig 5 leads also to a shorter 361

period. However, the TOC1/PRR5 circuits are highly interlocked with other clock 362

components. Thus, other roles of the TOC1/PRR5-RV E8 loop may emerge when 363

detailed models of the plant circadian clock are considered. 364

While we started to find an improvement of the m2-regulatory loop, we arrived at the 365

A-E-C motif. We feel that this or similar feedback structures may be found in other 366

physiological regulations, but more investigations are needed in this respect. 367

Supporting information 368

S1 Matlab. Matlab programs. A zip-file with Matlab programs showing results 369

from Fig 4 (n=4), Fig 6 (n=4, i=1), Fig 8, Fig 10, Fig 14, 370

S1 Text. Controller performance towards step-wise changes in k1 and 371

linearly increasing k1 values. Comparison between controllers (Fig 7) having 372

first-order and second-order autocatalytic generation of C. 373

S2 Text. Hyperbolic growth by higher-order autocatalysis. It is shown that 374

autocatalysis with an order larger than one shows hyperbolic growth. 375
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