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Abstract 

In a sample of highly anxious individuals, the relationship between gray matter volume brain 

morphology and attentional bias to threat was assessed. Participants performed a dot-probe 

task of attentional bias to threat and gray matter volume was acquired from whole brain 

structural T1-weighted MRI scans. The results replicate previous findings in unselected samples 

that elevated attentional bias to threat is linked to greater gray matter volume in the anterior 

cingulate cortex, middle frontal gyrus, and striatum. In addition, we provide novel evidence that 

elevated attentional bias to threat is associated with greater gray matter volume in the right 

posterior parietal cortex, cerebellum, and other distributed regions. Lastly, exploratory analyses 

provide initial evidence that distinct sub-regions of the right posterior parietal cortex may 

contribute to attentional bias in a sex-specific manner.  Our results illuminate how differences 

in gray matter volume morphology relate to attentional bias to threat in anxious individuals. 

This knowledge could inform neurocognitive models of anxiety-related attentional bias to 

threat and targets of neuroplasticity in anxiety interventions such as attention bias 

modification.  

Keywords: attention bias; anxiety; gray matter; structural MRI; anterior cingulate; cerebellum; 

parietal cortex; prefrontal cortex  
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Introduction 

The human brain is consistently inundated by a multitude of competing sensory inputs, 

especially within the visual domain. Due to a limited processing capacity, the brain cannot 

process all sensory input equally and has developed mechanisms by which certain inputs are 

prioritized for more elaborative processing at the expense of non-prioritized inputs (Desimone 

& Duncan, 1995). One class of stimuli that are thought to receive prioritized processing are 

those stimuli that hold biological or emotional significance (Vuilleumier, 2005). This is especially 

true for emotionally negative or threat-related stimuli that signal the presence of danger 

(Ohman, Flykt, & Esteves, 2001). The prioritized processing of threat-related stimuli is referred 

to as a threat bias and the preferential allocation of attentional resources to threatening stimuli 

is referred to as an attentional bias to threat.  This attentional bias to threat appears to occur 

automatically in the absence of conscious awareness (Carlson & Mujica-Parodi, 2015; Carlson & 

Reinke, 2008; Fox, 2002; Mogg & Bradley, 2002). Although an attentional bias to threat is 

adaptive, elevated attentional bias to threat is associated with elevated anxiety (Bar-Haim, 

Lamy, Pergamin, Bakermans-Kranenburg, & van Ijzendoorn, 2007) and genetic risk for anxiety 

(Beevers, Gibb, McGeary, & Miller, 2007; Carlson, Mujica-Parodi, Harmon-Jones, & Hajcak, 

2012; Fox, Ridgewell, & Ashwin, 2009).  

 Given the adaptive and maladaptive significance of attentional bias to threat, its 

underlying neural mechanisms have been extensively studied. Evidence from human lesion and 

neuroimaging studies indicate that the amygdala plays a critical role in the modulation of 

spatial attention by threatening stimuli (Anderson & Phelps, 2001; Bach, Hurlemann, & Dolan, 

2014; Fu, Taber-Thomas, & Perez-Edgar, 2015; Monk et al., 2008); in part by communicating 
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with visual cortex to prioritize threat-related stimuli (Adolphs, 2004; Amaral & Price, 1984; 

Carlson, Reinke, & Habib, 2009; Vuilleumier, Richardson, Armony, Driver, & Dolan, 2004). The 

structural and functional connectivity between the amygdala and areas of the prefrontal cortex 

(PFC)—such as the anterior cingulate cortex (ACC)—is linked to individual differences in 

attentional bias to threat such that greater connectivity is associated with elevated attentional 

bias to threat (Carlson, Cha, Harmon-Jones, Mujica-Parodi, & Hajcak, 2014; Carlson, Cha, & 

Mujica-Parodi, 2013). The ACC and other PFC regions are also engaged in task-based studies of 

attentional bias to threat (Armony & Dolan, 2002; Bush, Luu, & Posner, 2000; Fu et al., 2015; 

Price et al., 2014; White et al., 2016). In addition, greater gray mater volume (GMV) in the basal 

forebrain/striatum, ACC, and other PFC regions is linked to increased attentional bias to threat 

(Carlson, Beacher, et al., 2012).  

 Although research into the neural mechanisms of attentional bias to threat is abundant, 

the functional significance of individual differences in brain structure has been understudied. To 

the best of our knowledge, only a single study has explored the relationship between GMV and 

attentional bias to threat in an unselected sample (Carlson, Beacher, et al., 2012). No studies 

have explored this relationship in high anxiety individuals—despite the fact that attentional bias 

to threat is critical in cognitive models of anxiety (Mathews & Mackintosh, 1998) and plays a 

causal role in the development of anxiety (MacLeod, Rutherford, Campbell, Ebsworthy, & 

Holker, 2002). Moreover, the efficacy of interventions for anxiety, such as attention bias 

modification (ABM), are more effectively assessed by tracking changes in brain structure and 

function following training (Abend et al., 2019; Aday & Carlson, 2017; Britton et al., 2015; 

Browning, Holmes, Murphy, Goodwin, & Harmer, 2010; Hilland et al., 2020; Hilland, Landro, 
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Harmer, Maglanoc, & Jonassen, 2018; Taylor et al., 2014). Therefore, identifying the neural 

mechanisms underlying attentional bias to threat will also be important for tracking the 

neuroplastic effects of ABM and other anxiety interventions.  

This study aimed to assess the relationship between brain structure and attention bias 

behavior in a sample of highly anxious individuals. To this end, participants performed a dot-

probe task of attentional bias to threat in a laboratory setting outside the MRI environment. 

Both traditional attention bias scores and newer trial level bias score measures (Zvielli, 

Bernstein, & Koster, 2015) from the dot-probe task were utilized. Given the association 

between elevated anxiety and attentional bias to threat discussed above, participants were 

selected for heightened levels of attentional bias to threat and anxiety. During a separate 

testing session, whole brain structural T1-weighted MRI scans were acquired. Based on previous 

research (Carlson, Beacher, et al., 2012), we hypothesized that greater attentional bias to 

threat would be linked to greater GMV in the ACC and other PFC regions.  

Method 

Participants  

One-hundred and eleven right-handed adults (female = 75) between 18 and 38 (M = 

21.90, SD = 4.71) years of age participated in the study. Participants provided written informed 

consent and received monetary compensation for their participation. The study was approved 

by the Northern Michigan University Institutional Review Board. Participants included in this 

report were recruited for a clinical trial assessing the effects of attention bias modification on 

changes in brain structure (NCT03092609). All data included in this manuscript were collected 
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during the pre-training session. The determination of our sample size was based on the 

availability of this dataset.  

To be included in the study, participants were screened to meet the following criteria (1) 

right-handed, (2) 18 – 42 years of age, (3) normal (or corrected to normal) vision, (4) no current 

psychological treatment, (5) no recent history of head injury or loss of consciousness, (6) no 

current psychoactive medications, (7) not claustrophobic, (8) not pregnant, (9) no metal in the 

body or other MRI contraindications (10) trait anxiety scores ≥ 40 on the STAI-T (see below for 

questionnaire information), and (11) attentional bias scores ≥ 7ms in the dot-probe task (see 

below for task details).  

State-Trait Anxiety Inventory 

State and trait anxiety were measured with the Spielberger State-Trait Anxiety Inventory 

(STAI; Spielberger, Gorsuch, & Lushene, 1970). The STAI-S consists of 20 items and yields a 

measure of state anxiety (how anxious one currently feels). The STAI-T also consists of 20 items 

and yields a measure of trait anxiety (how anxious one generally feels). Participants’ STAI-T 

levels ranged from 40 to 71 (M = 51.58, SD = 7.31), indicative of a high trait anxious sample. 

Dot-Probe Task 

  The dot-probe task (MacLeod & Mathews, 1988) was programmed using E-Prime2 

(Psychology Software Tools, Pittsburg, PA) and displayed on a 60 Hz 16” LCD computer monitor. 

Stimuli consisted of 20 fearful and neutral grayscale faces of 10 different actors1 (half female; 

from Gur et al., 2002; Lundqvist, Flykt, & Öhman, 1998) that were cropped to exclude 

extraneous features. Ratings from a separate sample (N = 85) indicate that the fearful faces 

                                                           
1
 Fearful and Neutral face stimuli were from actors: 207, 208, 213, and 217 (Gur et al., 2002) as well as AF14, AF19, 

AF22, AM10, AM22, AM34 (Lundqvist, Flykt, & Öhman, 1998). 
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were perceived as more negative (M = 3.83, SD = .30) than the neutral faces (M = 4.45, SD = 

.52), t (18) = 3.23, p = .005 (Carlson & Fang, 2020).  

Each trial started with a white fixation cue (+) in the center of a black screen for 1000 

ms. Two faces were randomly presented simultaneously on the horizontal axis for 100 ms. 

Participants were seated 59 cm from the screen. Facial stimuli were 5cm × 7cm in size. The 

target dot appeared at one of the two face locations immediately after the faces disappeared 

and remained on the screen until a response was made. Responses were recorded with a 

Chronos E-Prime response box. Participants indicated left-sided targets by pressing the first, 

leftmost button using their right index finger and indicated right-sided targets by pressing the 

second button using their right middle finger. Participants were instructed to focus on the 

central fixation throughout the trial and respond to the target dot as quickly and accurately as 

possible. The task included five blocks. At the end of each block, participants received feedback 

about their overall accuracy and reaction times to encourage accurate rapid responses.   

 The task included congruent trials (dot on the same side as the emotional face), 

incongruent trials (dot on the same side as the neutral face), and baseline trials (two neutral 

faces). Faster responses on congruent compared to incongruent trials was considered 

representative of attentional bias towards the respective emotion. The task consisted of five 

blocks with 450 trials in total. Each block contained 30 congruent, 30 incongruent, and 30 

baseline trials presented in a random order.  

Behavioral Data Preparation and Processing 

 Data were filtered to include correct responses between 150 and 750 ms post-target 

onset (Torrence, Wylie, & Carlson, 2017). Attention bias scores were calculated as the mean 
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incongruent – congruent difference in reaction time (in ms). In addition, trial-level bias scores 

(TLBS) were computed using the steps outlined by Zvielli and colleagues (2015) and Carlson and 

colleagues (2019). Using these TLBSs, several summary variables were calculated including 

Meantoward (Mean of TLBSs > 0 ms; i.e., mean bias towards emotional stimuli), Meanaway (Mean 

of TLBSs < 0 ms; i.e., mean bias away from emotional stimuli), and variability. TLBS variability 

was calculated as the summed distance of succeeding TLBS divided by the total number of trial 

level bias scores. Correlations between attention bias measures can be seen in Table 1. 

Table 1. Correlations between Attention Bias Measures (N = 111) 

 Attention Bias TLBS Variability TLBS Toward TLBS Away 

Attention Bias -- .34** .57** -.11   

TLBS Variability  -- .90** -.86** 

TLBS Toward   -- -.70** 

TLBS Away    -- 

Note: TLBS, trial-level bias score. ** p < .001 

MRI Data Acquisition and Analysis 

MRI data were collected with a 1.5 Tesla General Electric whole body scanner2 within 1-

2 weeks following the behavioral session. High-resolution 3D FSPGR T1-weighted images were 

obtained using the following acquisition parameters: TR/TI = min/450, flip angle = 9°, FOV = 

250, matrix =256 × 256, voxel size = 0.98 × 0.98 mm, slice thickness = 1.2 mm.. 

We used the automated user-independent voxel-wise measurement approach, known 

as voxel based morphometry (VBM), to assess the association between regional brain volumes 

and individual differences in attention bias behavior. The VBM methodology used here is similar 

to the approach described by Ashburner and Friston (2000). Three-dimensional T1-weighted 

FSPGR MRIs were visually examined for artifacts or abnormalities and manually adjusted to a 

                                                           
2
 MRI data were collected on two identical scanners (scanner 1 n = 64 & scanner 2 n = 47). A comparison of whole 

brain GMV (p = .86) and ICV (p = .55) across scanners indicated no systematic differences in scanning location. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.20.346981doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.346981
http://creativecommons.org/licenses/by-nd/4.0/


9 

 

common origin at the anterior commissure. Images were then pre-processed using established 

VBM methods in SPM12 (http://www.fil.ion.ucl.ac.uk/spm). Images were first segmented into 

gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) tissue types. Segmented 

gray matter images were normalized to MNI space and smoothed using an 8mm FWHM 

Gaussian kernel. Measures of intracranial volume (ICV) were obtained from summed global 

signal of segmented images of GM, WM, and CSF. 

Within SPM12 a multiple regression analysis was run which included participants' (1) 

Attention Bias, (2) TLBS Meantoward, (3) TLBS Meanaway, and (4) TLBS Variability scores as 

predictors of GMV. This regression model also included age and ICV as covariates to control for 

potential confounding effects on regional gray matter (Ge et al., 2002; Tisserand et al., 2004). 

We tested for a positive relationship between attention bias measures and GMV. In addition, 

this model allowed us to compare and contrast different attention bias measures in predicting 

GMV. An initial whole brain threshold was set to uncorrected p < .001 with a 50 voxel cluster 

threshold. A family-wise error (FWE) small volume correction (SVC) at p < .05 was applied to the 

ACC and other regions of interest (ROIs) previously shown to have GMV correlate with 

attention bias (i.e., MFG, SFG, IFG, and striatum). The SVC was applied using an 18mm sphere 

centered on the ROI coordinates reported in Carlson et al (2012). Given recent work exploring 

sex differences in attentional bias to threat at a behavioral level (Campbell & Muncer, 2017; 

Carlson, Aday, & Rubin, 2019), exploratory analyses assessing sex differences in the neural 

correlates of attentional bias are included in the Supplementary Material. 
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Figure 1. Attentional bias to threat correlated with regional gray matter volume (GMV) in the 

anterior cingulate cortex (ACC), anterior insula (AI), anterior temporal lobe (ATL), caudate, 

cerebellum, medial orbitofrontal cortex (mOFC), middle frontal gyrus (MFG), motor cortex (MC), 

parahippocampal gyrus (PHG), posterior cingulate cortex (PCC), posterior parietal cortex (PPC), 

posterior superior temporal sulcus (pSTS), temperoparietal junction (TPJ), and regions of the 

visual cortex (VC). Greater GMV was associated with greater attentional bias to threat. Images 

thresholded at uncorrected p < .001, k > 50 voxels. 

 

Results 

Attentional bias to threat was found to positively correlate with GMV in a number of 

regions using the initial uncorrected threshold (i.e., p < .001, k > 50; see Table 2 & Figure 1). 

SVC of ROIs indicated significant associations in the ACC: t(104) = 4.02, k = 90, xyz = -9, 35, 20, 

middle frontal gyrus (MFG):  t(104) = 3.85, k = 73, xyz =  29, 59, 5, and striatum: t(104) = 3.93, k 

= 127, xyz = 11, 20, -8. Beyond these a priori ROIs, whole brain cluster-level FWE associations 

were observed in the right posterior parietal cortex (rPPC): t(104) = 4.11, k = 1013, xyz = 56, -53, 

38 and bilateral cerebellum: t(104) = 4.01, k = 943, xyz = -6, -59, -9. No negative associations 

between attentional bias to threat and GMV were found. In addition, no significant associations 
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were observed for TLBS Meantoward, Meanaway, or Variability. However, conjunction analysis 

between attention bias and TLBS Variability revealed overlapping neural correlates (see 

Supplementary Table 2) and a direct comparison of attention bias scores with TLBSs (i.e., 

attention bias > TLBS) did not result in any significant differences. Finally, results of exlporatory 

analyses of sex differences in the neural correlates of attentional bias to threat can be found in 

the Supplementary Materials. 

Table 2: GMV Correlates of Attentional Bias to Threat 

  MNI Coordinates  Peak  

Region Hemisphere X Y Z Voxels t value Sig. 

Parietal Cortex L -56 -41 53 155 4.05 * 

 L -38 -47 50 144 4.54 * 

 L -60 -27 24 55 3.76 * 

 R 56 -53 38 1013 4.11 *** 

Cerebellum L-R -6 -59 -9 943 4.01 *** 

 L -21 -45 -57 545 4.26 * 

 L -35 -75 -47 137 3.56 * 

Anterior Cingulate Cortex L -9 35 20 90 4.02 ** 

Posterior Cingulate Cortex L -12 -36 50 104 3.96 * 

 R 15 -38 54 130 4.33 * 

 L-R 3 -60 27 88 3.50 * 

Temporal Parietal Junction L -53 -62 21 169 4.53 * 

 R 62 -57 14 92 3.57 * 

Superior Temporal Sulcus L -63 -42 -2 379 4.22 * 

 R 71 -23 -2 258 3.65 * 

Visual Cortex L -9 -95 -3 388 4.28 * 

 R 42 -80 21 130 4.18 * 

 R 32 -74 44 197 3.76 * 

Striatum  R 11 20 -8 192 3.93 ** 

Middle Frontal Gyrus R 29 60 -9 112 3.92 * 

 R 29 59 5 73 3.85 ** 

 R 32 56 23 57 3.48 * 

Anterior Insula L -47 26 -2 149 3.88 * 

Posterior Insula L -45 -3 9 175 3.53 * 

Parahippocamal Gyrus L -36 -23 -27 203 3.85 * 

 R 36 -27 -18 97 3.72 * 

Medial Prefrontal Cortex R 14 65 20 71 3.82 * 

Superior Frontal Gyrus L -21 12 68 56 3.78 * 
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Medial Orbitofrontal Cortex L -8 47 -26 105 3.65 * 

 R 8 57 -24 97 3.72 * 

Anterior Temporal Lobe L -53 -3 -39 72 3.51 * 

 R 24 15 -32 82 3.55 * 

Precentral Gyrus L -54 -18 53 50 3.53 * 

 L -41 -20 60 71 3.5 * 

* p < .001 uncorrected voxel-level, ** p < .05 SVC cluster-level, *** p < .05 FWE cluster-level 

Discussion 

 In a sample of high trait anxious individuals, we found that individual differences in 

attentional bias to threat correlated with regional differences in GMV. Consistent with previous 

research in unselected samples (Carlson, Beacher, et al., 2012), cluster-level FWE corrected ROI 

analyses suggest that greater GMV in the ACC, MFG, and basal forebrain/striatum are linked to 

elevated attentional bias to threat. Furthermore, in our high anxiety sample, whole brain FWE 

corrected analyses indicate that elevated attentional bias to threat is additionally associated 

with greater GMV in the rPPC and cerebellum. A number of additional regions displayed this 

same association at an uncorrected level (see Table 2). No regions showed the opposite (i.e., 

negative) association. In our exploratory analyses, we observed sex differences in distinction 

sub-regions of the rPPC. In a relatively more medial and dorsal cluster, there was a negative 

correlation between GMV and attentional bias in males, but not females. On the other hand, in 

a relatively more lateral and ventral cluster, there was a negative association between GMV 

and attentional bias in females, but not males (see Supplementary Material for more 

information). In sum, we present novel evidence that GMV in distributed brain regions such as 

the ACC, MFG, striatum, rPPC, and cerebellum (among other regions) is linked to attentional 

bias. 
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The associations between GMV and attentional bias to threat observed here builds on 

earlier research in unselected samples (Carlson, Beacher, et al., 2012). Consistent with this 

previous work, we found that greater GMV in the ACC, MFG, and basal forebrain/striatum was 

related to greater attentional bias to threat. Not only did this earlier research use an unselected 

sample, but also used a backward masking procedure to restrict the processing of the fearful 

face cues. Thus, our findings generalize the association between attentional bias to threat and 

GMV in the ACC (among other regions) to high anxiety individuals and unmasked threat signals 

afforded more elaborative processing. The ACC is thought to play a role in conflict monitoring 

and resolution (Botvinick, Cohen, & Carter, 2004; Botvinick, Nystrom, Fissell, Carter, & Cohen, 

1999). In the context of attentional bias to threat, the ACC may detect conflict between the 

location of the threat-related stimulus and the goal-relevant target stimulus (i.e., incongruent 

trial types; Fu et al., 2015; Price et al., 2014). Indeed, conflict related ERPs (i.e., N2) are elicited 

in the dot-probe task (Andrzejewski & Carlson, 2020). When conflict is detected, the ACC and 

other PFC regions (e.g., MFG) may regulate the duration of attentional focus on the threat 

stimulus as well as the eventual disengagement and reengagement of attention to the goal-

relevant target stimulus. 

In addition to these previously implicated regions, novel associations between 

attentional bias to threat and GMV were observed in the rPPC and bilateral cerebellum. The 

rPPC is traditionally thought to play a role in spatial cognition including spatial attention 

(Culham & Kanwisher, 2001). It is part of a frontoparietal network involved in attentional 

control (Scolari, Seidl-Rathkopf, & Kastner, 2015). Interestingly, patients with lesions to the 

rPPC generally neglect (or fail to attend to) visual stimuli in the contralateral hemi-field, but do 
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not neglect emotional or threat-related stimuli in the contra-lateral hemi-field (Vuilleumier & 

Schwartz, 2001). Suggesting that the rPPC is involved in spatial attention, but is not necessary 

for emotional attention. Yet, although not necessary, structural variability in this structure 

appears to be linked to individual differences in attentional bias to threat in high anxiety 

individuals. In addition, the cerebellum has recently been implicated in anxiety-related 

symptoms and behaviors (Moreno-Rius, 2018). Cerebellar GMV differences and hyperactivity to 

threat-related stimuli have been observed in a variety of anxiety disorders (Moreno-Rius, 2018). 

Our results suggest that it is also involved in attentional bias to threat. Consistent with this 

notion, many cerebellar sub-regions are functional connected to the amygdala, ACC, PPC, and 

other regions involved in the allocation of spatial attention to threat (O'Reilly, Beckmann, 

Tomassini, Ramnani, & Johansen-Berg, 2010; Sang et al., 2012).  

 At an uncorrected threshold, we observed more widespread associations with 

attentional bias to threat with GMV in regions of the PFC, temporal lobes, and visual cortex. 

Many of these structures, including the ACC, insula, temperoparietal junction (TPJ), posterior 

superior temporal sulcus (pSTS), parietal cortex, and visual processing regions reveal patterns of 

intrinsic functional connectivity with the amygdala that are linked to attentional bias to threat 

and structural connectivity (Carlson et al., 2013). That is, greater amygdala connectivity in these 

regions has been linked to greater attentional biases to threat. However, consistent with 

previous research (Carlson, Beacher, et al., 2012), we did not find an association between 

amygdala GMV and attention bias. Evidence from animal models indicates that differences in 

VBM measures of GMV are linked to dendritic spine density (Keifer et al., 2015).  Given that 

increased dendritic spine density is associated with fear learning and represents the capacity 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.20.346981doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.346981
http://creativecommons.org/licenses/by-nd/4.0/


15 

 

for afferent signals into a structure, differences in GMV may reflect the connectivity or 

processing capacity of a region. If this is indeed true, it may explain why we do not see GMV 

differences in the amygdala. That is, differences in ACC, insula, TPJ, pSTS, parietal cortex, and 

visual cortical GMV may (at least in part) be due to the number of synapses from amygdala 

efferents. However, this hypothesis remains untested and future research is needed to assess 

its validity.  

 We included both traditional and newer measures of attentional bias. However, the 

newer TLBS measures of attentional bias did not correlate with GMV (at p < .001, k > 50). These 

null effects are likely reflective of similar, but weaker effects in these measures. Indeed, 

conjunction analysis indicates some overlap in GMV correlates between TLBS variability and the 

traditional measure of attentional bias (see Supplementary Table 2). In addition, the traditional 

attention bias > TLBS measures contrast in SPM did not reveal any significant differences. 

Indeed, attentional bias was moderately correlated with TLBS variability and TLBS Mean 

Positive, but all TLBS measures were highly correlated (see Table 1). Thus, TLBS measures are 

related to attentional bias, but appear to be more related to variability and this additional 

component may result in weaker associations with GMV.      

Our results implicate a widespread network of regions where brain morphology is 

related to an anxiety-related symptom—attentional bias to threat. It should be emphasized 

that the direction of this relationship is unclear. That, is variability in regional GMV in this 

network may be an underlying risk factor for elevated attentional bias to threat, which has 

been shown to be a causal mechanism for the development of anxiety (MacLeod et al., 2002). 

Or, these GMV differences may be the consequence of this behavior. Future longitudinal 
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research will be needed to test these two possibilities. It has been hypothesized that tracking 

changes in GMV following anxiety reducing interventions such as ABM may be an effective way 

to gauge the success of the treatment in reorganizing the brain (Aday & Carlson, 2017). Indeed, 

recent research suggests that ABM produces structural changes in the brain (Abend et al., 

2019). The regions identified in the current report (see Table 2) may be utilized as a priori ROIs 

for future studies assessing neuroplasticity in ABM. In addition, GMV in these regions could 

potentially be used to predict who is most likely to benefit from such treatments. That is, 

understanding how brain structure relates to attentional bias across individuals could be 

essential for understanding how ABM may induce neuroplasticity. 

Limitations, Strengths, and Conclusions  

Like any study, this study had several strengths and weaknesses. A strength of our study 

is the relatively large sample size. However, this sample included more female than male 

participants and was comprised of primarily younger adults. Future research is needed to 

determine if the effects observed here generalize to younger and older age groups. In addition, 

given the well-established association between elevated anxiety and attentional bias to threat 

(Bar-Haim et al., 2007), we selected participants for heightened levels of attentional bias to 

threat and anxiety. On one hand, the composition of our sample is a strength as the 

relationship between GMV and attentional bias is highly relevant in neurocognitive models of 

anxiety. On the other hand, by selecting only individuals at the higher ends of each spectrum, 

we limited the range/variability of our measures, which precludes us from generalizing these 

findings to low anxiety individuals with low levels of attentional bias. Although it should be 

noted that many of our findings are consistent with earlier work using an unselected sample 
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(Carlson, Beacher, et al., 2012). Nevertheless, future research should explore the association 

tested here across a broader spectrum of anxiety levels. 

In conclusion, we found that greater GMV in the ACC, MFG, and basal 

forebrain/striatum is linked to greater attentional bias to threat in high anxiety individuals, 

which replicates such associations in unselected samples (Carlson, Beacher, et al., 2012). We 

provide additional novel evidence that elevated attentional bias to threat in high trait anxious 

individuals is associated with greater GMV in the rPPC, cerebellum, and a number of other 

regions (see Table 2). Exploratory analyses provide initial evidence that distinct sub-regions of 

the rPPC may contribute to attentional bias to threat differently across the sexes (see 

Supplementary Material). Collectively, these findings add to our understanding of how 

differences in brain structure relate to attentional bias to threat in anxious individuals. Such 

knowledge may be informative for neurocognitive models of attentional bias in anxiety and for 

tracking neuroplasticity in interventions (e.g., ABM) for anxiety.  
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