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1 Abstract24

Being able to anticipate events before they happen facilitates stimulus processing. The anticipa-25

tion of the contents of events is thought to be implemented by the elicitation of prestimulus tem-26

plates in sensory cortex. In contrast, the anticipation of the timing of events is typically associated27

with entrainment of neural oscillations. It is so far unknown whether temporal expectations interact28

with feature-based expectations, and, consequently, whether entrainment modulates the generation29

of content-specific sensory templates. In this study, we investigated the role of temporal expecta-30

tions in a sensory discrimination task. We presented participants with rhythmically interleaved visual31

and auditory streams of relevant and irrelevant stimuli while measuring neural activity using mag-32

netoencephalography. We found no evidence that rhythmic stimulation induced prestimulus feature33

templates. However, we did observe clear anticipatory rhythmic pre-activation of the relevant sensory34

cortices. This oscillatory activity peaked at behaviourally relevant, in-phase, intervals. Our results35

suggest that temporal expectations about stimulus features do not behave similarly to explicitly cued,36

non-rhythmic, expectations; yet elicit a distinct form of modality-specific pre-activation.37

Keywords: rhythmic temporal expectations, feature-based expectations, oscillatory entrainment,38

multivariate pattern analysis, MEG39

2 Significance Statement40

The brain extracts temporal regularities from the environment to anticipate upcoming events in time.41

Furthermore, if prior knowledge about the contents of upcoming events is available, the brain is42

thought to leverage this by instantiating anticipatory sensory templates. How and whether both types43

of predictions (regarding time and content) share common mechanisms is still unclear. We investigated44

if neural sensory templates occur in response to a rhythmic stimulus stream with predictable temporal45

structure, and whether these templates follow the rhythmic structure of the task. We found that46

temporal rhythmic predictions did not induce sensory templates, but rather modulated the excitability47

in early sensory cortices. We thereby shed light on the neural mechanisms underlying perception with48

multidimensional expectations.49
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3 Introduction50

Predicting upcoming events enables efficient resource allocation and can lead to behavioural benefits51

and neural processing improvements (Summerfield and De Lange, 2014; de Lange et al., 2018). These52

predictions, or expectations, can come from various sources. For example, predictions can be the53

result of an explicit instruction (“when you see X, expect Y”), they can be (implicitly) inferred from54

the statistics of the world (Oliva and Torralba, 2007; Bar, 2004; Seriès and Seitz, 2013; Spaak and de55

Lange, 2020), or they can stem from temporal regularities in the sensory input (de Lange et al., 2018;56

Nobre and Van Ede, 2018). One proposed mechanism of how expectations can modulate perception57

is by inducing sensory templates through prestimulus baseline increases in sensory neurons tuned58

to the features of expected stimuli (SanMiguel et al., 2013; Kok et al., 2014; Kok et al., 2017). A59

recent study using multivariate decoding techniques in MEG signal showed that an auditory cue60

that allowed observers to form an expectation of a particular grating orientation induced a visual61

prestimulus activation similar to the feature-specific response evoked by the actual visual stimulation62

(Kok et al., 2017).63

It is unknown whether a similar mechanism is at play in anticipating the likely time of relevant64

events. Several studies have found faster and more accurate responses when stimuli are expected in65

time (Nobre et al., 2007; Rohenkohl et al., 2012; Nobre, 2001). Studies in human and non-human66

primates have shown that neural populations in primary cortical regions can synchronise in frequency67

and phase to external rhythmic temporal patterns (Lakatos et al., 2008; Schroeder and Lakatos, 2009;68

Lakatos et al., 2013; Besle et al., 2011; Cravo et al., 2013; Henry et al., 2014). High and low neuronal69

ensemble excitability states could be entrained to stimulus timing in such a way that optimal phases70

of processing become aligned with the expected moments of task-relevant stimuli (Lakatos et al., 2008;71

Schroeder and Lakatos, 2009; Lakatos et al., 2013).72

Generally, entrainment is marked by a strong phase coherence of neural signals at the stimulated73

frequency and by correlations between phase and attention and/or behavioural performance. How-74

ever, there is no consensus on the definition of neural oscillatory entrainment (Obleser et al., 2017;75

Breska and Deouell, 2017; Lakatos et al., 2019; Haegens, 2020). Critically, most previous studies have76

used a stimulus-driven paradigm (i.e., testing entrainment at the same time when driving stimuli are77

present), which makes conclusions about the underlying mechanism hard to interpret, especially in78

non-invasive human studies (Haegens and Golumbic, 2018). There is an increasing debate whether79

the oscillatory modulation is purely due to superimposed evoked responses (Capilla et al., 2011;80

van Diepen and Mazaheri, 2018) or to true endogenous oscillatory entrainment (Doelling et al., 2019).81
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A few studies have reported behavioural and neural oscillatory modulations persisting after the offset82

of rhythmic stimulation (Lakatos et al., 2013; Spaak et al., 2014), thus providing stronger evidence83

for the importance of neural entrainment.84

The existence of these two mechanisms for preparing for upcoming stimuli (prestimulus templates85

in response to explicit cues, neural entrainment in response to rhythmically induced temporal expecta-86

tions) raises the interesting question of whether and how these two mechanisms interact or complement87

each other. We here aim to shed light on this question. Specifically, we hypothesized that stimulus-88

specific sensory templates might emerge at the relevant phases of the entraining signal, i.e., the time89

points of expected stimulation, while fading at the unexpected time points. Previewing our results, we90

did not find evidence that rhythmic temporal expectations elicit feature-specific prestimulus templates.91

We found instead a clear modality-specific (yet stimulus-non-specific) oscillating representation in the92

neural signals, demonstrating entrained rhythmic pre-activation of relevant sensory cortices. This93

sensory entrainment persisted after the offset of rhythmic stimulation. Our results demonstrate the94

existence of rhythmic nonspecific sensory pre-activation in the brain, highlighting the multitude of95

ways in which expectations can modulate neural activity.96

4 Materials and Methods97

4.1 Data and script availability98

All data, as well as all presentation and analysis scripts, will be made freely available online upon99

publication, at the Donders Repository.100

4.2 Participants101

Forty-two adult volunteers (16 male, average 27 years) participated in the experiment. Volunteers102

were excluded when they had more than 20% of no response trials (n=7) or low signal-to-noise ratio103

in MEG recordings (n=1, dental wire noise). Thirty-four were included for the behavioural and104

MEG analyses. All participants had normal or corrected-to-normal visual acuity, normal hearing,105

and health conditions consistent with the experiment. This study was approved under the general106

ethics approval (“Imaging Human Cognition”, CMO 2014/288) by CMO Arnhem-Nijmegen, Radboud107

University Medical Centre. All participants provided written informed consent.108
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4.3 Apparatus109

Computational routines were generated in MATLAB (The MathWorks) and stimuli were presented110

using “Psychtoolbox” (Brainard, 1997). A PROpixx projector (VPixx Technologies, Saint-Bruno, QC111

Canada) was used to project the visual stimuli on the screen, with a resolution of 1920x1080 and112

a refresh rate of 120 Hz, and the audio stimuli were presented through MEG-compatible ear tubes.113

Behavioural responses were collected via a MEG-compatible response box.114

MEG was recorded from a whole-head MEG system with 275 axial gradiometers (VSM/CTF Sys-115

tems, Coquitlam, BC, Canada) in a magnetically shielded room and digitized at 1200 Hz. Eye position116

data was recorded during the experiment using an Eyelink 1000 eye tracker (EyeLink, SR Research117

Ltd., Mississauga, Ontario, Canada) for further eye blink and saccade artefact rejection. During the118

session, head position was recorded and monitored online (Stolk et al., 2013) by coils placed at the119

nasion, left and right ear. At the end of each block, participants were asked to reposition the head120

in case they moved more than 5 mm away from the initial position. MEG analyses were performed121

using FieldTrip software (Oostenveld et al., 2011) and repeated measures ANOVA were performed in122

JASP, Version 0.9.0 (JASP Team, 2018).123

4.4 Stimuli and general task124

Participants performed auditory and visual discrimination tasks. In visual trials, the target was a125

grating of 3 degrees of visual angle, with a spatial frequency of 2 cycles per degree (cpd), random126

phase, and with one of six possible orientations (15, 45, 75, 105, 135, 165 degrees) surrounded by a127

magenta circle and presented centrally for 100 ms. In auditory trials, one of six possible pure tones128

(501, 661, 871, 1148, 1514, 1995 Hz) was presented for 100 ms as a target.129

The target was always followed by a delay period, after which a probe stimulus was presented.130

The probe was similar to the target with the exception of the pitch/orientation feature. Participants131

had to judge whether the probe was tilted clockwise (CW) or counterclockwise (CCW) relative to the132

target in visual trials or whether the probe had a frequency higher or lower than the target in auditory133

trials. They always responded with a button press of either the index (lower/CCW) or middle finger134

(higher/CW) of their right hand.135

Stimulus presentation timing was either non-rhythmic or rhythmic, in order to manipulate temporal136

expectations. The experimental session started with the non-rhythmic trials and the rhythmic trials137

were presented subsequently.138
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4.4.1 Non-rhythmic trials139

The non-rhythmic trials began with a central white fixation point (0.4 degrees of visual angle) with a140

surrounding cyan circle (3 degrees), and after a random inter-trial interval (ITI) chosen from a uniform141

distribution between 0.6 s and 1.6 s, a target was presented for 100 ms. Three seconds after target142

onset, the probe was presented, and participants had to indicate their response. There was no time143

limit for the responses. Participants received performance feedback for 400 ms and a new ITI started144

immediately (Figure 1 A). There were 24 trials in each block. Six blocks were randomly presented to145

participants (three auditory and three visual), resulting in a total of 72 trials per attended sensory146

modality. To ensure participants understood the task, they performed at least six easy practice trials147

for each condition before the procedure. Practice trials were not included in analysis.148

Performance in non-rhythmic trials was also used to calibrate visual and auditory parameters for the149

following rhythmic experimental manipulation. The staircase method was QUEST as implemented150

in the Palamedes Toolbox (Prins and Kingdom, 2018). For both conditions, a Cumulative Normal151

function with a lapse rate of 0.1 and the mean of the posterior were used as the staircase parameters.152

For the visual condition, the beta value was 1 and the prior alpha range was a normal distribution with153

mean of 10 degrees, standard deviation of 5, ranging from 0 to 20 degrees. During the experiment,154

the chosen alpha value plus a random value from a normal distribution function (mean 0, std 1) was155

added or subtracted from the target orientation value. For the auditory condition, the beta value was156

100, and the prior alpha range was a normal distribution with mean of 0.1, standard deviation of 0.1,157

ranging from 0 to 0.2. During the experiment, the chosen alpha value plus a random value from a158

normal distribution function (mean 0, std 0.01) were multiplied with the target pitch value and the159

resulting value was added or subtracted from the target value. Beta and alpha prior values were based160

on prior piloting results.161

4.4.2 Rhythmic trials162

In rhythmic blocks, each trial started with a fixation point and a cyan circular border (Figure 1 A).163

Half a second later, the first attended-modality target stimulus was presented for 0.1 s. This stimulus164

was presented several times (3 to 6, balanced and randomly chosen per trial) with a fixed interval165

between them (1 s) to create a rhythmic stream. Interleaved and irrelevant to the task, a second166

stream of stimuli in the other sensory modality stimuli was presented. Therefore, the interval between167

adjacent stimuli was 0.5 s. The last relevant stimulus of the sequence (target) was marked by a change168

in an irrelevant feature to warn participants that the next presented stimulus would be the probe.169
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The warning signal was a higher volume sound (auditory trials, equal to staircase target volume) or a170

magenta outline (visual trials, instead of cyan outline). After 500 ms of the last target presentation,171

an irrelevant modality stimulus was always presented. Probes had a positive or negative difference in172

orientation or pitch based on the output from the previous staircase procedure and were also marked173

by the magenta outline or by the volume increase. The interval between target and probe (SOA) could174

be 1, 1.5, 2, 2.5 or 3 s with the respective probabilities: 25%, 12.5%, 25%, 12.5%, 25%. Participants175

were informed at the beginning of the experimental session that the timing of the probe was most176

likely to follow the relevant rhythm, i.e., it would likely to occur in phase with it. A new trial with a177

new relevant stimulus would appear 2 s after the probe. Each block consisted of 12 trials.178

There were 16 auditory and 16 visual rhythmic blocks. There were 192 trials for each sensory179

modality. Volunteers performed 48 trials for each in-phase delays (1,2,3 s) and 24 trials for each anti-180

phase SOAs (1.5, 2.5 s) in each sensory modality condition. The blocks were always presented in a181

pseudo-random order, where no more than 3 same type blocks could be presented in a row.182

4.5 Behavioural analysis183

Trials where participants did not respond within 3 s post-probe range were treated as incorrect trials184

in accuracy analyses and were excluded from reaction time (RT) analyses. Accuracy scores were185

arcsin-transformed before all statistical tests to improve normality. Both measures were submitted to186

a 2x5 repeated measures ANOVA with modality (auditory or visual) and the five SOAs as factors.187

Mauchly’s test of sphericity was performed, and Greenhouse–Geisser correction was applied in case of188

sphericity violation. Holm correction for multiple comparisons was performed for all post-hoc analyses,189

when applicable.190

4.6 MEG pre-processing191

An anti-aliasing low-pass filter at 600 Hz was used during the online MEG recordings. Non-rhythmic192

trials were segmented between 0.2 s before the target until 0.5 s after the probe. Rhythmic trials193

were segmented between 0.2 s before the first stream stimulus until 0.5 s after the probe. After194

segmentation, synthetic 3rd order gradient correction was applied and the channel- and trial-wise mean195

was subtracted from the traces. Trials with eye movements, muscular activity and with an unusually196

high variance were excluded from the further analyses using a semi-automatic procedure (rejected197

trials: mean = 7.2%, SD = 3.3%). Sensors showing an unusually high variance were rejected following198

the same procedure (rejected sensors: mean = 2.8%, SD = 1.2%). After artifact rejection, data199

were off-line downsampled from 1200 Hz to 400 Hz to speed up analyses, followed by an independent200
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component analysis to identify and remove residual eye, heart and other muscular components. A201

discrete Fourier transform was used to suppress line noise at 50 Hz and its harmonics, 100 Hz and 150202

Hz.203

4.7 Planar combined event related fields204

For the analysis of event-related fields (Figure 2), all trials were low pass filtered at 35 Hz and baseline205

corrected from -0.1 to 0 s. All non-rhythmic trials (approximately 72 per participant) were considered206

from -0.2 s to 2.5. For rhythmic trials, only 2.5 and 3 SOAs (approximately 72 per participant) trials207

were considered from -2.2 s to 2.5 s, including the 3 repetitions of relevant and irrelevant stimuli208

in a trial. For each participant, trials were time-lock averaged. MEG axial gradiometers were then209

transformed to planar configuration (Bastiaansen and Knösche, 2000) and combined as the root-210

mean-square of horizontal and vertical sensors. The combined planar activity from participants were211

averaged in the end.212

4.8 Multivariate pattern analyses213

MVPA were performed using linear discriminant analysis (LDA) as implemented in MVPA-Light214

toolbox (https://github.com/treder/MVPA-Light). Features consisted of activity in the MEG sensors215

(267 ± 3 sensors). Feature scaling was performed as pre-processing step in all analyses: data were216

normalized using z-score transformation based only on the training set. Final scores were calculated217

based on the distances estimated by LDA from the six classes’ centroids in multiclass classification or218

from the hyperplane in the two-class classification.219

4.8.1 Specific feature classification: Temporal generalisation220

Only the rhythmic trials with the longest delay periods (2.5 s and 3 s) were used in the testing set221

here, as well as all non-rhythmic trials. Testing trials were locked to the target and were segmented222

from -.1 s to 2.5 s in rhythmic trials and from -.1 s to 3 s in non-rhythmic trials. The training set223

was the presentation time window (-.1 to .5) from the rhythmic shortest trials (SOA 1, 1.5, 2 s).224

Segments were baseline corrected based on pre-target window (-.1 to 0 s). Given that each model had225

six different classes for orientations (visual) and tones (auditory), a multiclass LDA was used.226

For non-rhythmic trials, only the attended-modality sensory model was tested. At the end, the227

average between auditory and visual trials was computed. For rhythmic trials, both models were228

tested since all rhythmic trials contained one visual and one auditory presented feature. Depending229

on the test trial task, the auditory and visual scores were assigned an attended or unattended label.230
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For example, in an orientation discrimination (attend-visual) trial, the grating to be decoded was231

the visual attended feature and the tone was the auditory unattended feature, while in a pitch task232

(attend-auditory) trial the labels were attended auditory and unattended visual. At the end, scores233

from visual and auditory models were averaged in relation to their rhythmic attention labels.234

4.8.2 Specific feature classification: Temporal decoding235

Trials were locked to the target and segmented until the probe moment. Subsampling by averaging236

32.5 ms temporal windows (13 points in time) was applied to improve the signal-to-noise ratio. We237

performed classification in a leave-one-trial-out cross-validation approach. Accordingly, excluding the238

rhythmic test trial, all stimuli segments from rhythmic and non-rhythmic trials were used for training.239

Segments were baseline corrected based on pre-target window (-.1 to 0 s). The activity used in the240

training set was the average activity of each axial sensor from 0.1 to 0.2 s after a stimulus presentation.241

This training time period was chosen based on a previous study showing that the visual template effect242

(Kok et al., 2017) resembles the ERF peak activity (Figure 3 B). Depending on the test trial task,243

the auditory and visual scores were assigned an attended or unattended label. Trial length was SOA-244

condition dependent.245

4.8.3 Specific feature classification: Score246

The scores were the estimated rho from a Spearman rank correlation test between the estimated247

distances and an “ideal distances matrix” (Auksztulewicz et al., 2019). This ideal matrix was the248

expected trial distance, or rank, for each of the six classes’ centroids. For the visual condition, with249

orientation being a circular variable, the expected distance rank was the lowest, 0, for the correct250

label (i.e. 15 degrees), 1 to the two closest label neighbours (165 and 45 degrees), 2 for the middle251

far two classes (135 and 75 degrees) and 3 for the further class (105 degrees). The auditory condition252

matrix was different from the visual given that frequency is a linear variable. The lowest distances253

were drawn along the diagonal and gradually higher ones for further off-diagonal positions.254

4.8.4 Sensory modality nonspecific classification255

Only longest-delay trials (2.5 s and 3 s) for rhythmic and non-rhythmic conditions were used in this256

analysis. They were target locked, cut between -0.2 s until the probe moment, and baseline corrected257

based on pre-target window (-.1 to 0 s). Here we used a two-class LDA, again with a temporal258

generalisation approach. To keep computational time manageable, data was downsampled to 200 Hz259

before this analysis. The scores here were the distances to the decision hyperplane calculated by LDA.260
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4.8.5 Statistics261

Scores from trials were averaged within each time point for each participant. To assess significant262

differences from chance, we used cluster-based permutation tests based on paired t-scores (Maris and263

Oostenveld, 2007), with 1000 random permutations.264

5 Results265

We investigated the role of temporal expectations in a multisensory task. In different blocks, par-266

ticipants (n = 34) had to perform either a pitch (Auditory blocks) or orientation (Visual blocks)267

discrimination task. The first part of the experimental session consisted of simple discrimination tri-268

als, where participants were presented with a single visual or auditory target followed by a unisensory269

probe of the same modality (Figure 1 A). Participants had to judge whether the probe was titled270

clockwise or anti-clockwise relative to the target in visual trials or whether the probe had a frequency271

higher or lower than the target in auditory trials. We refer to these trials as the “non-rhythmic” trials.272

During these non-rhythmic trials, difficulty was adjusted according to an adaptive staircase procedure273

(Watson and Pelli, 1983), in order to titrate the difference in grating angle and tone frequency to an274

appropriate difficulty level for the rest of the experiment.275

In the second part of the experimental session, targets and probes were preceded by a stream of276

2 Hz alternating visual and auditory stimuli (rhythmic trials). In a blockwise fashion, participants277

had to either pay attention to the visual stream (1 Hz) and perform the visual orientation task or278

pay attention to the auditory stream (1 Hz) and perform the pitch discrimination task. Critically,279

probes could appear after one of five possible stimulus onset asynchrony (SOA) intervals: 1, 1.5, 2,280

2.5, or 3 s. Integer intervals were in-phase relative to the attended stream, while 1.5 and 2.5 s were281

in anti-phase. The probability of presentation at the in-phase SOAs was 25%, whereas it was 12.5%282

at the anti-phase SOAs, making it more likely that the target would be presented in-phase with the283

relevant stream (Figure 1 A).284

Visual and auditory stimuli presented in the stream had the same orientation and pitch as the285

target (or, one could also say, there was a rhythmic stream of multiple identical targets). They could286

have one of six possible orientations and one of six possible pitches. The last target in the stream287

was identifiable to the participant by either a coloured ring (visual) or increased volume (auditory),288

thereby prompting the beginning of the delay. With this design, including a clear delay period, we289

could test whether specific (i.e. decodable orientation and tone signals) and/or non-specific sensory290

activation continued after the stimulation period.291
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5.1 Behavioural performance292

We first tested whether, in the present task, rhythmic presentation of targets resulted in a rhythmic293

modulation of perceptual performance. We measured performance based on accuracy and reaction294

time (RT) (Figure 1 B). Accuracy was lowest for the earliest SOA (mean = 76.7%, SEM = 1.8%),295

an effect most pronounced for the attend-auditory blocks. This was backed up by a significant main296

effect of SOA (F(4,132) = 6.37, p <0.001, ω2 = 0.03), as well as an interaction of SOA and attended297

modality (F(4,132) = 5.02, p <0.001, ω2 = 0.02). Despite this interaction, SOA affected accuracy298

in both the attend-visual and attend-auditory blocks (simple main effects analysis of SOA, auditory:299

F(1) = 7.45, p <0.001; visual: F(1) = 2.89, p = 0.025). However, only the first SOA differed from300

the other intervals (1.5 s: 81.3 ± 1.8%, t(33) = -3.39, p = 0.015, d = -0.582; 2 s: 81.8 ± 1.8%, t(33)301

= -4.76, p <0.001, d = -0.82; 3 s: 80.7 ± 1.8%, t(33) = -3.93, p = 0.004, d = -0.67), except from 2.5302

s (79.9 ± 1.9%, t(33) = -2.34; p = 0.181, d = -0.4). Overall accuracy was not different between the303

modalities (main effect of sensory modality: F(1,33) = 0.02, p = 0.886, ω2 = 0).304

Reaction times decreased with increasing SOA (1 s: 896 ± 38 ms; 1.5 s: 780 ± 28.5 ms; 2 s: 743 ±305

24.5 ms; 2.5 s: 730 ± 23.5 ms; 3 s: 735 ± 23.6 ms; main effect of SOA F(4,132) = 32.27, p <0.001, ω2
306

= 0.12). Reaction times were not significantly different between attended sensory modalities (F(1,33)307

= 0.09, p = 0.763, ω2 = 0). We did observe an interaction of SOA and attended modality (F(4,132)308

= 7.57, p <0.001, ω2 = 0.02), while SOA affected reaction time in both the attend-visual and attend-309

auditory blocks (simple main effects analysis of SOA, auditory: F(1) = 28.98, p <0.001; visual: F(1) =310

12.36, p <0.001). Responses for the shortest SOA (1 s) were slower than for the other SOAs (post-hoc311

t-tests, 6.05 <t(33) <7.32, all p <0.001; 1.04 <d <1.26), and responses for the 1.5 s SOA were slower312

than those for the longer SOAs (2 s: t(33) = 2.82, p = 0.032, d = 0.48; 2.5 s: t(33) = 3.29, p = 0.014, d313

= 0.56; 3 s: t(33) = 3.18, p = 0.016, d = 0.55), while response times for the SOAs >1.5 s did not differ314

among one another (-0.59 <t(33) <1.31, all p >0.05, -0.1 <d <0.22). Taken together, behavioural315

performance provides no evidence for a significant rhythmic modulation of perceptual performance,316

but instead points toward a hazard rate effect.317

5.2 Stimulus-specific information is decodable from MEG sensors during stimulation318

only319

Next, we turned our attention to the neural consequences of interleaved multisensory rhythmic stimu-320

lation. Figure 2 shows the event-related fields for MEG sensors approximately overlying auditory and321

visual cortices, in all different conditions. As expected, auditory and visual stimuli elicited pronounced322
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event-related fields at the auditory and visual associated sensors. The evoked activity returned to323

baseline levels approximately 1 s after stimulus presentation.324

To quantify whether the neural signals contained stimulus-specific information (i.e., information325

about which of the six auditory pitches or visual orientations was present), we performed a multivariate326

pattern analysis. Specifically, we trained classifiers on the target stimulus period (-100 to 500 ms)327

from rhythmic trials with SOAs 1, 1.5, and 2 s, and quantified how well these generalised to both the328

stimulus and delay periods of the rhythmic trials with the longest SOAs (2.5 s and 3 s), as well as329

to the non-rhythmic trials. Train and test data here are thus fully independent. We investigated the330

cross-temporal generalisation of these signals between the full stimulus training period to the combined331

stimulus and delay testing period.332

We observed a strong feature-specific signal when training and testing the classifier on similar time333

points (Figure 3 A). In all conditions, there were high levels of stimulus information in the diagonal334

(non-rhythmic: from 55 ms to 305 ms post-stimulus, p <0.001; attended rhythmic: from 50 ms335

to 295 ms post-stimulus p <0.001; unattended rhythmic: from 75 ms to 275 ms post-stimulus, p336

<0.05; p-values estimated using cluster-based permutation tests). However, we found no evidence of337

a generalisation of this activity to other time points in the delay period or in anticipation of relevant338

events.339

This first analysis suggested that sensory representations elicited by a specific feature did not gen-340

eralise to the delay period. We found a momentary and transient feature-specific signal that peaked341

after stimulus presentation. To test whether increasing the size of the training set might increase our342

sensitivity to a potentially missed result, we repeated the classification procedure within the rhythmic343

conditions only. In this new analysis: (1) data from all trials (excluding a single trial) were used as a344

training set (i.e. we used a leave-one-trial-out procedure); (2) we used as the training time the period345

around the ERF peak activity (100 to 200 ms). Similar to our previous analysis, we found that only346

periods around stimulus presentation had scores higher than chance (auditory attended: from 155 ms347

to 220 ms, p <0.001; auditory unattended: 143 ms to 240 ms, p <0.001; visual attended: from 123348

ms to 155 ms, p = 0.008; visual unattended: from 143 ms to 175 ms, p = 0.004; Figure 3 B). We did349

not find feature-specific sensory activation during the delay period and patterns evoked by specific350

orientations and tones were restricted to periods of stimulus-driven activity.351

5.3 Sensory cortices pre-activate rhythmically during delay periods352

It is known that rhythmic stimulation can entrain neural activity in related sensory areas. Having353

found no evidence that this entrainment is feature-specific, we next explored whether multimodal354
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rhythmic stimulation induced non-specific, yet modality-specific, rhythmic pre-activation of sensory355

cortices.356

We again used a temporal generalisation approach, this time to decode the attended modality (visual357

or auditory). The attended sensory modality was significantly decodable from the signal across several358

time points in both rhythmic and non-rhythmic trials (cluster-based permutation tests: non-rhythmic359

p <0.001; rhythmic p <0.001, Figure 4 A). Importantly, the modality signal extended throughout360

the delay periods in both types of trials (Figure 4 A), indicating a pre-activation signal related to361

temporal expectation that was not immediately driven by any stimulus. The negative values during362

early training periods in rhythmic trials can be explained by noting that the irrelevant (i.e., different363

modality) stimulus was presented at those times.364

In both types of trials, we observed an early pattern of activity (training time 0.08 s to 0.13 s) that365

was strong and generalised to different testing times throughout the delay period (Figure 4 A). To366

study the temporal dynamics of this activity in more detail, we further analysed performance over time367

for a classifier trained on this time window, in both types of trials. Figure 4 B shows how modality368

activity evolves. We observed a clear oscillatory modulation of decoding scores, which can be seen369

during the delay period for rhythmic trials, and which was absent for non-rhythmic trials. Critically,370

the last stimulus presented in this period was at 0.5 s, with no other stimulation after that.371

An oscillatory modulation of the modality signal was clearly present in the grand-averaged data372

(Figure 4 B). We next assessed whether this rhythmicity was reliably present across participants, by373

fitting two models to the activity in the delay period for each participant. The first was a linear model374

with intercept and slope as free parameters. The second model was a combination of a linear function375

with a 1 Hz sine and 1 Hz cosine function (which is equivalent to a 1 Hz sinusoid with phase as a free376

parameter) (Zoefel et al., 2019). The combined 1Hz-linear model provided a significantly better fit377

of the data for 26 out of 34 participants in the non-rhythmic condition (Wald test controlling for the378

extra degree of freedom; F values range: 0.88 to 76.72, critical F(2,295): 3.03), and for 31 out of 34379

in the rhythmic condition (F values range: 0.61 to 189.47, critical F(2,295): 3.03). As the critical test380

of whether stimulus periodicity induced a rhythmic modulation of sensory cortex activation during381

delay periods, we compared the improvement in model fit that resulted from adding the sinusoid term382

between the rhythmic and non-rhythmic trials. The improvement of adding an oscillatory function383

was considerably higher for rhythmic than non-rhythmic trials (Wilcoxon signed-rank test of relative384

F-values across participants; Z = 3.77, p <0.001; Figure 4 C, top left). Furthermore, the model fits for385

the rhythmic trials had significantly higher 1 Hz amplitudes than those for non-rhythmic (Wilcoxon386

signed-rank test of 1Hz amplitudes across participants; Z = 3.86, p <0.001; Figure 4 C, top right).387
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If the delay-period oscillatory modality signal is the result of entrainment by the rhythmic stimuli,388

one would expect the phases of this signal to be consistent across participants, specifically for the389

rhythmic (and not the non-rhythmic) condition. This is indeed what we observed: phases were not390

significantly different from uniform in non-rhythmic trials (Rayleigh test; Z(33) = 0.07, p = 0.93), but391

we observed a clear phase concentration in rhythmic trials (average phase = 0.525 rad, Z(33) = 9.37,392

p <0.001; Figure 4 C, bottom panels).393

Taken together, these results demonstrate that the rhythmic stimulation resulted in a rhythmic394

pre-activation of sensory cortices, which was consistent across participants. Importantly, this pre-395

activation was observed during the delay period, i.e. without any ongoing sensory stimulation, sug-396

gesting a true entrainment of endogenous neural signals.397

6 Discussion398

In the present study, we investigated whether rhythmic temporal prediction interacts with feature-399

based expectations to induce rhythmic sensory templates for anticipated stimuli. Behaviourally, we400

found that temporal expectations improved performance, but not in a rhythmic manner. Using multi-401

variate pattern analysis of feature-specific signals, we found that stimulus information was present only402

during stimulation and not during the delay period, contrary to our expectations. Instead, we observed403

feature-unspecific but modality-specific activity during the delay, reflecting a rhythmic pre-activation404

of the relevant sensory cortices that peaked at the expected, behaviourally relevant, moments.405

Contrary to what we expected, performance was not modulated in line with the rhythm of the406

task. Although participants exhibited worse performance for the first SOA (both in response times407

and in accuracy), performance was not different between the other SOAs. According to Dynamic408

Attending Theory (DAT) (Jones and Boltz, 1989; Jones et al., 2002), in-phase intervals should lead409

to faster and more accurate responses than anti-phase intervals. In this study, we only found a410

general increase in performance as a function of delay. This is a well-known result called the variable411

foreperiod effect that can be explained by the increasing conditional probability of target occurrence412

with increasing SOAs, also known as the “hazard function” (Näätänen, 1970; Nobre et al., 2007;413

Nobre, 2010).414

Several studies have found evidence in support of the DAT: performance is improved in rhythmic415

compared to arrhythmic conditions (Rohenkohl et al., 2012; Morillon et al., 2016), and the phase416

of entrained neural oscillations by an external rhythm influences auditory (Henry and Obleser, 2012;417

Bauer et al., 2018) and visual perception (Cravo et al., 2013; Chota and VanRullen, 2019). Thus, there418
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is a large literature suggesting that environmental rhythms can entrain attentional (i.e., endogenous,419

neural) rhythms and modulate perception (Henry and Herrmann, 2014). Nevertheless, results are not420

as clear when analysing post-entrainment effects, i.e., after the offset of the rhythm. Different studies421

have shown behavioural impairments (Hickok et al., 2015; Spaak et al., 2014), benefits (Jones et al.,422

2002; Barnes and Jones, 2000) or effects that were highly participant-dependent (Bauer et al., 2015;423

Jones, 2019) for in-phase versus anti-phase time points. Differences in the task (detection/discrimina-424

tion), the sensory modality (time/auditory/visual), and the stimulated frequency range (alpha/delta)425

could have led to this variety of different effects. Together with our null result regarding rhythmicity in426

post-entrainment behaviour, these results highlight the necessity for additional studies to understand427

the factors that determine the influence of rhythms on behaviour.428

Previous studies have shown that feature-based expectations about an event can induce anticipatory429

activation templates in sensory cortex (Kok et al., 2014; Kok et al., 2017). Here we tested this430

possibility in different modalities (vision and audition), conditions (rhythmic and non-rhythmic), and431

levels of task relevance (attended or unattended). In all conditions, we found a similar pattern:432

stimulus-specific information could be decoded during the stimulation period only, and not during433

the following delay period. There are several differences between our and previous experiments,434

which might explain this discrepancy. One important difference may be the information to be stored.435

In previous studies, stimulus-specific pre-activation was found after an informative cue presented436

in anticipation of the target stimulus. Our task, in contrast, required the maintenance of target437

information (tone frequency or grating orientation) that needed to be later compared to a probe; thus,438

participants had already seen the target itself before the period of interest. Classifiers were always439

trained on the activity evoked by the target stimulus, since we were trying to detect anticipatory440

activity similar to stimulation, as in previous work. It has been argued that such stimulus-identical441

delay activity is not strictly necessary for working memory maintenance, and that information might442

have been stored in a different, possibly silent, format (Wolff et al., 2015; Mongillo et al., 2008;443

Stokes, 2015). It is possible that templates may be instrumental for automatic associations between444

two events, while our paradigm favours a more prospective, silent, coding scheme. This would also fit445

with the behavioural task: unlike previous works, in our task, participants had to compare upcoming446

stimulation with what came before, thus an exact stimulus-specific pre-activation of the earlier stimulus447

might even impair behavioural performance. In line with this interpretation, it has been reported that448

neural reactivation increases serial biases (Barbosa et al., 2020), which would impair performance here.449

Although we did not find stimulus-specific anticipatory information, there was a clear pre-activation450

of the relevant sensory cortices. The early modality-specific signal was decodable in a rhythmic fashion451
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in rhythmic trials, and it was also present close to the end of the delay period in non-rhythmic trials.452

Thus, the pre-activation was locked to the temporal structure of the task and peaked at the time453

points of expected stimulation. This modality-specific pre-activation is consistent with recent results454

that showed that even task-irrelevant information was better decoded when presented at moments455

close to a highly likely target presentation (Auksztulewicz et al., 2019). Analogous to these previous456

results, this boosting of early sensory modality representations in the MEG signal during the delay457

could be explained by increases in baseline excitability of task-relevant sensory areas (as opposed to458

task-irrelevant ones). Thus, the modality-specific decoding reflects a relative measure of neuronal459

excitability between auditory and visual cortex. It has previously been shown that endogenous neural460

oscillations in visual cortex bias perception through rhythmic fluctuations in baseline excitability (Iemi461

et al., 2017). Our results suggest that similar fluctuations can be leveraged in a cross-modal setting462

to optimally prepare the brain for upcoming stimuli, specifically of a task-relevant modality.463

Previous studies have shown that neuronal population excitability states can be entrained to external464

rhythms as a preparatory mechanism for optimally processing upcoming stimuli (Lakatos et al., 2008;465

Schroeder and Lakatos, 2009; Henry and Obleser, 2012; Lakatos et al., 2013; Herrmann et al., 2016),466

which is, in turn, under strong top-down control (Lakatos et al., 2019). It is important to distinguish467

entrainment from other factors such as superimposed evoked responses, resonance, and endogenous468

predictions (Guevara Erra et al., 2017; Helfrich et al., 2019), which may interact with entrainment469

(Haegens, 2020). In the present study, we used a decoding analysis of the expected sensory modality470

as a slightly different than usual approach to evaluate entrainment. We analysed the engagement of471

early sensory cortices during a silence period after two conditions: a single evoked stimulus, and a 1472

Hz stream. Instead of computing the traditional Fourier transform to evaluate oscillatory power and473

phase consistency in neural data, we computed the relative neuronal excitability between visual and474

auditory cortex. We investigated whether rhythmic excitability shifts at 1 Hz were enhanced at post-475

entrained compared to post single stimulus periods. Our results are in line with previously published476

work in monkeys (Lakatos et al., 2008), which we extended by showing that: (1) the oscillatory477

pattern is present in the absence of external stimulation, and (2) the oscillatory pattern more strongly478

arises after a rhythmic stream than after a single stimulus. These two points, combined, strongly479

suggest that our results were not due to superposition of responses or a simple resonance mechanism.480

Although the combined sinusoid-linear model was also a better fit than the purely linear model for481

non-rhythmic trials, this improvement was considerably stronger in rhythmic trials. Furthermore,482

phase was scattered uniformly for the non-rhythmic trials, but consistent in rhythmic trials.483

Lastly, in our experimental setup, in-phase moments were also moments in which there was a484
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higher probability of target presentation. For this reason, it is not possible to dissociate the effects of485

locally stimulus-driven oscillatory entrainment from globally generated predictive signals introduced486

by the probability manipulation. Given that we observed a (non-rhythmic) increase of decoding scores487

towards the end of the delay period in non-rhythmic trials, globally generated predictions might explain488

part of our results. Whether these endogenous predictions are enhanced in the presence of rhythms,489

and/or whether they interact with local sensory oscillatory entrainment is still an open question that490

should be addressed in future studies.491

In summary, our results add to the body of evidence showing that the brain extracts temporal492

regularities from the environment to optimally prepare in time for upcoming stimuli. Importantly, we493

demonstrate that one specific mechanism for such temporal attunement in a visual/auditory cross-494

modal setting is the phasic modulation of excitability in early visual and auditory cortex, in lockstep495

with the environment. We furthermore show that the occurrence of stimulus-specific, actively main-496

tained, early sensory anticipatory templates, as reported previously, appears to depend on the specifics497

of the task at hand, and is not a universal phenomenon.498
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Figure 1: Experimental design and behavioural results. A) Schematic of the non-rhythmic and
rhythmic trials. In both tasks, there were visual and auditory blocks. In visual blocks
(V trial), participants had to discriminate whether the probe had a counterclockwise or
clockwise tilt compared to the target(s). In auditory blocks (A trials), they had to judge
whether the pitch was lower or higher. The non-rhythmic trials had a fixed configuration
of one target followed by one probe. In rhythmic trials, the relevant target stimulus was
presented several times (3 to 6) with a fixed interval between presentations (1s) in order to
induce a 1Hz entrainment. Interleaved and irrelevant to the task, a second stream of stimuli
in the unattended sensory modality stimuli were presented. The last relevant target stimulus
of the sequence was marked by a change in an irrelevant feature to warn participants about
the oncoming probe presentation. The warning signal was a higher volume sound (illustrated
by a larger sound icon, A trials) or a magenta outline (V trials). The interval between target
and probe could be 1, 1.5, 2, 2.5 or 3 s with the respective probabilities: 25%, 12.5%, 25%,
12.5%, 25%. B) Accuracy and reaction times (mean and standard error of the mean in bold)
for the rhythmic task, as a function of SOA and attended modality. Individual participant
data are shown in lighter grey.
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Figure 2: Event related field (mean and standard error of the mean) of non-rhythmic, attended (blue)
and unattended (red) rhythmic longest-SOA trials in auditory and visual sensors. Time 0
represents the target presentation. Inset topographies illustrate the average activity related
to non-rhythmic (auditory and visual) targets from 100 to 200 ms (lighter grey box period),
and the white dots represent the most active sensors within this time window. The cor-
responding sensors were selected for representing the ERFs. Vertical dashed line (yellow)
indicates a stimulus occurrence.
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Figure 3: Multivariate decoding of stimulus-specific information (pitch/orientation). A)
Temporal generalisation matrices for non-rhythmic, attended and unattended longest-SOA
rhythmic trials. Target presentation occurred at 0 s, and the unattended stimulus (rhythmic
trials) at 0.5 s. Significant clusters (p <0.05) are contoured in black, thus illustrating a
momentary transient feature-specific signal after stimulus presentation. B) Leave-one-trial-
out cross-validation results using the averaged sensor activation from 0.1 to 0.2 s as training
data. Vertical dashed line (yellow) indicates attended (t = 0 s) and unattended (t = 0.5 s)
stimulus occurrence and the black bars indicate the significant clusters (all p <0.01). Only
actual stimulus periods, and not the stimulus-absent delay period, had scores higher than
chance.
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Figure 4: Multivariate decoding of relevant modality information (visual/auditory). A)
Temporal generalisation matrices indicating a generalised sustained activation (significant
clusters surrounded by a black line). In non-rhythmic trials, a significant cluster (training
time 0.08 to 0.13 s) illustrates that an early sensory representation pops out at the end of the
interval. B) Temporal evolution of such early sensory representation in both non-rhythmic
and rhythmic conditions. Significant clusters are indicated as grey bars. In rhythmic trials,
modality signal oscillated after stimulation period. Two models were fitted into the no-
stimulus delay data (1 s to 2.5 s, inset) for non and rhythmic conditions. C) F-stats of
nested models and the amplitude of the fitted sinusoid. This indicates that 1Hz oscillation
model explains better the modality signal behaviour in rhythmic than in non-rhythmic trials.
Furthermore, there is no phase preference in non-rhythmic trials, but phases are highly
clustered in rhythmic trials, indicating a better representation at in-phase/highly expected
delays.
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