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Highlights 

• Transcriptomic changes are more similar within mutant mice that show either 

lengthened or shortened lifespan  

• The major transcriptomic differences between long- and short-lived mice are in 

genes controlling mitochondrial metabolism 

• Gene expression changes in short-lived, progeroid, mutant mice resemble those 

seen during normal ageing 

Abstract 

Genetically modified mouse models of ageing are the living proof that lifespan and 

healthspan can be lengthened or shortened, yet the molecular mechanisms behind 

these opposite phenotypes remain largely unknown. In this study, we analysed and 

compared gene expression data from 10 long-lived and 8 short-lived mouse models 

of ageing. Transcriptome-wide correlation analysis revealed that mutations with 

equivalent effects on lifespan induce more similar transcriptomic changes, especially 
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if they target the same pathway. Using functional enrichment analysis, we identified 

58 gene sets with consistent changes in long- and short-lived mice, 55 of which were 

up-regulated in long-lived mice and down-regulated in short-lived mice. Half of these 

sets represented genes involved in energy and lipid metabolism, among which 

Ppargc1a, Mif, Aldh5a1 and Idh1 were frequently observed. Based on the gene sets 

with consistent changes and also the whole transcriptome, we observed that the gene 

expression changes during normal ageing resembled the transcriptome of short-lived 

models, suggesting that accelerated ageing models reproduce partially the molecular 

changes of ageing. Finally, we identified new genetic interventions that may 

ameliorate ageing, by comparing the transcriptomes of 51 mouse mutants not 

previously associated with ageing to expression signatures of long- and short-lived 

mice and ageing-related changes.  

Keywords: ageing, gene expression, lifespan, mouse, progeria, mitochondria, 

metabolism. 

1. Introduction 

Ageing is a complex phenotype. In humans, it causes a gradual decline in 

physiological function, and it is the major risk factor for many serious diseases in 

developed countries (MacNee et al., 2014; Niccoli and Partridge, 2012; Partridge et 

al., 2018). The rate of ageing is influenced by hundreds of genes, but it can be 

modulated in mice and other model organisms by single gene mutations (Bartke, 

2011; Folgueras et al., 2018; Kenyon, 2005; Piper and Partridge, 2018; Uno and 

Nishida, 2016). Genetically modification of mice has been used to target each of the 

hallmarks of ageing (Folgueras et al., 2018; López-Otín et al., 2013). For example, 

mutations in genes encoding components of the nutrient sensing pathways can 

generate mice that outlive their wild-type littermates and display lower incidence of 

age-related diseases (Brown-Borg et al., 1996; Coschigano et al., 2000; De 

Magalhaes Filho et al., 2017; Flurkey et al., 2001; Hofmann et al., 2015; 

Holzenberger et al., 2003; Selman et al., 2009; Sun et al., 2013). In contrast, mutant 

mouse models of increased genomic instability have been suggested to be 
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characterised by accelerated ageing, with shortened lifespan and early onset of age-

associated pathologies (Dollé et al., 2011; Osorio et al., 2011; Van Der Pluijm et al., 

2007; Weeda et al., 1997). 

Transcriptomic studies have been widely used to identify molecular mechanisms 

associated with mammalian ageing, for example by comparing different species (eg. 

Fushan et al. 2015, Yu et al. 2011) or mouse strains (Houtkooper et al., 2013; 

Swindell, 2007) with different lifespans. Additionally, several studies in mice have 

revealed differentially expressed genes and pathways in response to genetic 

(Boylston et al., 2006; Rowland et al., 2005; Selman et al., 2009; Zhang et al., 2012), 

pharmacological (Fok et al., 2014b; Martin-Montalvo et al., 2013) and dietary (Rusli 

et al., 2015; Swindell, 2009) interventions that affect ageing. The transcriptomes of 

pairs of lifespan-extending interventions have also been compared, for instance, 

treatment with rapamycin and caloric restriction (CR) (Fok et al., 2014a), long-lived 

Ames and Little dwarf mice (Amador-Noguez et al., 2004) and CR and Ames dwarf 

mice (Tsuchiya et al., 2004), revealing conserved changes in gene expression. 

Comparison of multiple lifespan-extending interventions, including Snell, Ames, and 

Little dwarf mice together with CR and CR-mimetic compounds have shown that 

gene signatures associated with increased lifespan are enriched for steroid 

metabolism, cell proliferation, and cellular morphogenesis (Swindell 2007) or 

oxidative phosphorylation, drug metabolism and immune response (Tyshkovskiy et 

al., 2019). Comparison of mouse models with accelerated ageing revealed conserved 

gene expression changes in genes involved in lipid and carbohydrate metabolism, 

cytochrome P450s and developmental regulation of transcription (Kamileri et al., 

2012). 

A further approach to pinpoint the molecular mechanisms that are causal for changes 

in lifespan is to identify genes and pathways whose expression changes in opposite 

directions in long- and short-lived mouse strains. Paradoxically, one study making 

such comparisons found that long- and short-lived mice share a reduction in growth 

hormone/insulin-like growth factor 1 signalling and an increase in antioxidant 
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responses, with no major transcriptomic differences (Schumacher et al., 2008). Since 

that study, further transcriptomic studies of mouse models of ageing have been 

published, providing the opportunity for further comparison of the changes in gene 

expression in long- and short-lived strains.  

An additional layer of information to identify molecular mechanisms associated with 

lifespan is the changes in gene expression that occur during ageing. Several studies 

have been made of various mouse tissues (reviewed in Stegeman & Weake 2017; 

Frenk & Houseley 2018). For instance, Jonker et al. 2013 analysed 5 tissues (liver, 

kidney, spleen, lung and brain) at 6 time points (13, 26, 52, 78, 104 and 130 weeks) 

and found that, besides expression changes in immune response genes, most 

transcriptomic changes are organ-specific and involve alterations in the cell cycle, 

DNA repair, energy homeostasis and reactive oxygen species. More recently, single-

cell RNA sequencing of kidney, lung and spleen mouse cells across age revealed a 

conserved down-regulation of protein translocation and up-regulation of antigen 

processing and inflammatory pathways (Kimmel et al., 2019). 

In recent years, several in silico methods have been developed for the prediction of 

genetic interventions to delay ageing (reviewed in Fabris et al. 2017). For example, 

Huang et al. (2012) used protein interaction networks and machine learning 

approaches to predict the effect of gene deletions on yeast lifespan. Wan et al. (2015) 

used gene ontology terms comprising ageing-related genes to classify Caenorhabditis 

elegans genes into anti- or pro-longevity. We have taken a slightly different 

approach, by comparing the transcriptomes of long- and short-lived mice against 

gene expression data from genetic interventions not previously associated with 

ageing. 

Here, we analysed and compared transcriptomic data from long- and short-lived 

mutant mice to identify molecular mechanisms associated with lengthening and 

shortening of lifespan. By further comparing the transcriptomes of mouse models of 

ageing to the transcriptomic changes observed during normal ageing, we determined 

which interventions resemble or reverse normal ageing-related changes. Finally, we 
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identified novel genetic interventions with the potential to ameliorate ageing, by 

comparing all transcriptomic data publicly available from genetic interventions in 

mice against the changes in gene expression observed in mice with delayed, 

accelerated and normal ageing. 

2. Results and discussion 

2.1. Similarities and differences in patterns of transcriptional changes in long- and 

short-lived mutant mice  

We first asked if genetic interventions that lengthen or shorten lifespan show 

characteristic transcriptomic changes, by comparing publicly available microarray 

and RNA-seq data from 10 long-lived and 8 short-lived mouse models of ageing 

(Figure 1). The data came from 26 independent studies and included samples from 

adipose, brain, liver and muscle. To avoid potential batch effects, we derived 57 

independent datasets using each study, genotype, tissue, sex and age, and performed 

differential expression analysis (Supplementary Table 1). We then calculated the 

Spearman’s rank correlation coefficient (rs) between the gene expression fold 

changes (Supplementary Figure 1). Given that the transcriptomes from several 

mutants were measured in multiple studies and within each study in multiple datasets, 

we averaged the correlations for the same genetic interventions (see Methods 4.3). 

Since thousands of genes were used to calculate these correlations, even small 

correlations were statistically significant. To better estimate a threshold of 

significance for transcriptome-wide correlations, we analysed and correlated 65 

transcriptomic datasets covering 51 genetic interventions in mice not previously 

associated with ageing (Supplementary Table 2). We observed that 5% of the 

comparisons between the various genetic interventions had an absolute correlation 

coefficient higher than 0.15 (Supplementary Figure 2). Thus, transcriptome-wide 

correlations above this value were considered statistically significant for the mutants 

affecting lifespan (black squares in Figures 2A, C-E).  
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Figure 1. Pathways and processes modulated by the mouse models of ageing with 

transcriptomic data available. Genes whose mutation lengthen or shorten lifespan are 

coloured in green and yellow, respectively. Figure created with BioRender.com. 

In the liver, 65% of correlations between interventions with equivalent effects on 

lifespan (i.e. long-lived vs long-lived and short-lived vs short-lived), were positive, 

reaching similarities as high as rs = 0.64 (Ghr-/- vs Pou1f1dw/dw) within long-lived 

mice and rs = 0.47 (Ercc6m/mXpa-/- vs Ercc1-/-) within short-lived mice (Figure 2A). 
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In long-lived mice, mutations in genes controlling the synthesis and release of growth 

hormone and the growth hormone receptor (Figure 1, top left) induced remarkably 

similar transcriptomic changes (mean rs = 0.33). Fgf21 over-expression also induced 

a similar transcriptome to the growth-hormone-related mutants, probably due to its 

well-known role in inhibiting growth hormone signalling (Inagaki et al., 2008). There 

were also positive correlations between interventions in the insulin signalling 

pathway, particularly between Irs1-/- and Rps6kb1-/- mutants, which is interesting 

considering that Rps6kb1 directly phosphorylates and inhibits Irs1 (Zhang et al., 

2008). Although it is well known that growth hormone activates the insulin signalling 

pathway via Irs1, we did not detect any significant correlation between Irs1-/- and the 

growth-hormone-related mutants, possibly because of effects of growth hormone 

signalling on additional downstream targets to insulin signalling. Heterozygous 

mutation of Akt1, which is also involved in insulin signalling, did not induce a similar 

expression pattern to other long-lived mice, possibly reflecting the pleiotropic effects 

of Akt1 function and hence alternative mechanisms to prolong lifespan. Among short-

lived models, the highest correlation was observed between interventions in the DNA 

repair system (Figure 1, bottom), including Ercc6m/mXpa-/-, Ercc1-/- and Ercc1-/d7 

(mean rs = 0.24). Sirt6-/- also showed similarity with Ercc1-/d7 and Ercc6m/mXpa-/-, 

which may be explained by the recently discovered function of Sirt6 as a DNA strand 

break sensor and activator of the DNA damage response (Onn et al., 2020). The only 

statistically significant negative correlation we found was between Tert and Sirt6 

knockout mice. With some exceptions, these results suggest that mutations in genes 

whose product participate in the same process or directly interact within the same 

signalling pathway are more likely to induce similar transcriptomic changes.  

Surprisingly 78% of the correlations between interventions leading to opposite effects 

on lifespan (i.e. long-lived vs short-lived) were also positive, but smaller than 

interventions with similar lifespan effects. The maximum correlation observed of this 

type was an unreported one between LmnaG609/G609G and Rps6kb1-/- (rs = 0.23). We 

also observed a correlation between interventions in the DNA repair system (i.e. 

Ercc6m/mXpa-/-, Ercc1-/- and Ercc1-/d7) and mutants of genes regulating the synthesis of 
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growth hormone (i.e. Pou1f1dw/dw and Prop1df/df), which has been previously 

attributed to similar gene expression patterns on the somatotropic axis and anti-

oxidant responses (Schumacher et al., 2008). In summary, although many 

correlations were positive even when the effects on lifespan were opposite, 

correlations between interventions with equivalent effects on lifespan were more 

likely to reach the threshold of significance (Figure 2B).  

 

Figure 2. (A) Spearman’s rank correlation coefficients between the liver 

transcriptome of the mouse models of ageing.  The intensity of the colours represents 

the magnitude of the correlations. Bars adjacent to the heatmaps indicate the effect on 

lifespan from each intervention. Diagonals show the number of datasets associated 

with each intervention. Black squares mark statistically significant correlations (i.e. 
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|rs| > 0.15). (B) Pairwise correlations between the liver transcriptomes of 

interventions with equivalent or opposite impact on lifespan. Error bars represent one 

standard deviation from the mean. P-values below were calculated using a t-test with 

a population mean equal to zero as the null hypothesis. Statistical significance at the 

top is for the difference between the groups calculated using unpaired, two-samples 

Wilcoxon-test. Points circled in black represent statistically significant correlations. 

Transcriptome correlations between mouse models of ageing in the (C) adipose, (D) 

muscle and (E) brain. Heatmaps follow the same scheme used in panel A. 

We next assessed if the correlations we observed in the liver were also present in 

other tissues. From the 51 pairwise correlations in the other tissues, 22 (43%) 

followed the same direction as in the liver, but 18 (35%) were in the opposite 

direction. The remaining 11 pairwise correlations corresponded to comparisons with 

the mutant PolgD257A/D257A, for which there was no data available from the liver. 

Among the positive and significant correlations observed in the liver (i.e. rs > 0.15) 

only the comparisons between LmnaG609G/G609G vs Rps6kb1-/- and Irs1-/- vs Rps6kb1-/- 

were significant in other tissues (Figure 2C, rs = 0.46 and 0.22, respectively). The 

only negatively correlated interventions in the liver involved Tert-/-, which was not 

measured in other tissues. We also found tissue-specific correlations that were not 

significant in the liver, including Rps6kb1-/- vs Sirt6-/- in the muscle (rs = 0.27) 

(Figure 2D) and Irs1-/- vs LmnaG609G/G609G in the adipose tissue (rs = 0.21). Likewise, 

some correlations found in the liver were not detected in the brain such as Pou1f1dw/dw 

vs Prop1df/df and Ercc1-/- vs Ercc6m/mXpa-/- (Figure 2E).  This analysis indicates that 

interventions into ageing may induce tissue-specific effects. 

2.2. Functional analysis of transcriptional changes in mutant mouse models of ageing  

We next sought to identify pathways enriched in the gene expression changes 

observed in the mutant mouse models of ageing. We only employed the liver data for 

this analysis, as it was the only tissue with enough interventions to identify 

statistically significant trends. We performed functional enrichment analysis on each 

dataset using Gene Ontology (GO) terms and a Gene Set Enrichment Analysis 
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(GSEA). To identify gene sets (i.e. GO terms) with consist changes, we calculated 

their median rank based on enrichment scores across interventions and then we 

compared it against a random distribution of median ranks from the same number of 

interventions (see Methods 4.4). 

After multiple testing correction, we identified 470 gene sets in long-lived mice 

(Supplementary Table 3), and 99 gene sets in short-lived mice showing consistent 

changes (Supplementary Table 4). Remarkably, 93% of the gene sets found in 

short-lived mice were down-regulated, whereas 57% of the gene sets identified in 

long-lived mice were up-regulated. Surprisingly, 58 gene sets showed consistent 

changes in both groups of mice (Figure 3A), of which 55 were up-regulated in long-

lived mice and down-regulated in short-lived mice. These gene sets included 36 

biological processes, 10 of which were linked with energy metabolism and 6 with 

lipid metabolism. We also observed the same trends in several processes associated 

with the metabolism of drugs, nucleic acids, amino acids and carboxylic acid. 

Consistent with the alteration in energy metabolism, we found similar gene 

expression patterns in genes forming the mitochondrial membrane and the electron 

transport chain, as well as genes coding for proteins with NADH dehydrogenase 

activity. Overall, these transcriptomic changes match well with previous studies in 

long-lived mice reporting an increase in protein levels and activity of several 

components of the electron transport system, as well as increased physiological 

markers of mitochondrial metabolism (Anderson et al., 2009; Brown-Borg et al., 

2012; Westbrook et al., 2009). Also, the increased expression of genes controlling 

lipid metabolism is biologically meaningful, considering that previous studies have 

found that long-lived mice tend to use fat as an energy source, instead of 

carbohydrates (Westbrook et al., 2009).  

Based on a leading-edge analysis, we asked which genes contributed the most to the 

changes in gene expression observed in energy and lipid metabolism and if some 

genes were acting as hubs between both sets of processes. As a filter, we selected 

genes causing the enrichment of more than one process in at least half of the mice. 
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Interestingly, we observed that Ppargc1a (Peroxisome proliferator-activated receptor 

gamma, coactivator 1 alpha), a transcriptional coactivator, was frequently involved in 

the up-regulation of energy and lipid metabolism in long-lived mice (Figure 3B, red 

labels). Given that cells ectopically expressing Ppargc1a display resistance to 

oxidative stress (St-Pierre et al., 2006; Valle et al., 2005), activation of Ppargc1a in 

long-lived mice may explain why these mice maintain a high activity of the electron 

transport chain without causing oxidative damage. 

Also involved in the up-regulation of energy and lipid metabolism we found Mif 

(Macrophage migration inhibitory factor), a cytokine whose increased expression has 

been noticed not only in long-lived dwarf mice but also in caloric and methionine 

restricted mice (Miller et al. 2002; Miller et al. 2005). In short-lived mice, Aldh5a1 

(aldehyde dehydrogenase family 5) and Idh1 (isocitrate dehydrogenase 1) were 

down-regulated and involved in several processes associated with energy and lipid 

metabolism (Figure 3C, red labels). Consistently, mice with mutations in these 

genes display premature death and increased oxidative stress (Hogema et al., 2001; 

Itsumi et al., 2015; Latini et al., 2007).  

We further compared the genes leading the regulation of energy and lipid metabolism 

in long- and short-lived mice (Figure 3B-C) and we identified 5 genes in common: 

cytochrome c oxidase subunit 5A (Cox5a), cytochrome c-1 (Cyc1), 

NADH:ubiquinone oxidoreductase subunit B10 (Ndufb10), NADH:ubiquinone 

oxidoreductase core subunit V2 (Ndufv2) and ubiquinol-cytochrome c reductase 

(Uqcrfs1). We directly compared their normalised fold change in long- and short-

lived mice using an unpaired two-sample Wilcoxon test. The expression of all 5 

genes was regulated in opposite directions between both groups of mice and the 

differences were statistically significant (p < 0.05) (Supplementary Figure 3). 

In short-lived mice, most of the differentially expressed processes were down-

regulated and linked with the mitochondria, which may be indicative of mtDNA 

damage. To probe this idea, we analysed the gene sets enriched in polymerase γ 

mutant mice (PolgD257A/D257A), which display a 2500-fold increase in mtDNA 
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mutations compared to wild-type mice (Khrapko and Vijg, 2007). Indeed, we 

observed that in muscle and brain, the gene sets in Figure 2A were strongly down-

regulated, showing that short-lived mice induce a transcriptomic signature matching 

that mutant mice with exacerbated mtDNA mutations (Supplementary Figure 4).   

We also identified gene sets changing expression specifically in long- or short-lived 

mice. In long-lived mice, consistent with the up-regulation of the electron transport 

chain, we also observed an up-regulation of processes linked with ATP synthesis 

(Supplementary Figure 5). This result is in line with a previous study reporting an 

increase in ATPase activity in long-lived mice (Choksi et al., 2011). We also 

observed up-regulation of expression of genes involved in thermogenesis, another 

process activated by Ppargc1a in response to cold exposure (Gill and La Merrill, 

2017) (Puigserver et al., 1998). Thus, Ppargc1a may be activated by the reduced core 

body temperature typical of long-lived dwarf mice due to a higher body surface to 

body mass ratio (Ferguson et al., 2007; Hauck et al., 2001; Hunter et al., 1999). 

Another well-recognised stimulator of oxidative metabolism and ATP production is 

calcium (Glancy et al., 2013; Griffiths and Rutter, 2009; Tarasov et al., 2012). 

Consistently, we observed an up-regulation of several genes involved in calcium 

homeostasis. Unfortunately, there is currently no evidence of the effect on longevity 

of calcium treatment in mammals. Among the down-regulated gene sets in long-lived 

mice, we observed several linked with the response to endoplasmic reticulum (ER) 

stress, including the unfolded protein response (UPR) (Supplementary Figure 6). 

This down-regulation may reflect lower levels of ER stress, as it has been observed in 

long-lived daf-2(e1370) worms and under caloric restriction (Henis-Korenblit et al., 

2010; Matai et al., 2019). In short-lived mice, we only identified two additional 

groups of gene sets down-regulated and they were related to nucleic acid metabolism 

and biosynthesis (Supplementary Figure 7).  In line with this observation, previous 

studies have demonstrated a correlation between mitochondrial dysfunction and 

aberrant biosynthesis of nucleotides (Desler et al., 2007). 
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Figure 3. (A) Gene sets showing consistent changes in long- and short-lived mice 

(FDR < 0.05). The heatmap colours represent the statistical significance of the 

enrichment and the direction of the change. The ‘Ageing’ column represents the 

enrichment scores associated with the transcriptomic changes during ageing. The 

‘Group’ column indicates different groups of gene sets with similar function. Genes 

involved in the regulation of biological processes linked with energy and lipid 

metabolism in (B) long-lived and (C) short-lived mice. Labelled in red are genes 

involved in both sets of processes. Nodes representing genes are coloured in grey, 

and nodes from biological processes are coloured based on the groups in panel A. 

2.3. Interventions that shorten lifespan resemble the ageing transcriptome 

We next compared the transcript profiles of the long-and short-lived mutant mice 

with profiles characteristic of normal ageing in multiple tissues. We performed 

functional enrichment analysis using age-related genes from wild-type mice (see 

Methods 4.2). Changes during normal ageing resembled mostly the transcriptomes of 
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the short-lived mouse models (Figure 3A, ‘Ageing’ column). To test if these 

similarities also existed at the gene level, we calculated the transcriptome-wide 

correlations between each mouse model of ageing and the ageing transcriptome. On 

average, we observed a positive and statistically significant correlation between the 

transcriptomes of short-lived mice and the changes during ageing (Figure 4, left 

panel), while interventions that lengthened life displayed a correlation close to zero 

(mean rs = 0.005). We further analysed the correlations at the pathway level using 

enrichment scores and obtained a similar result (Figure 4, right panel). Overall, this 

analysis supports the hypothesis that accelerated ageing models reproduced partially 

the molecular changes observed during normal ageing. 

 

Figure 4. Gene and pathway-based correlations between the transcriptome of ageing-

related interventions and that induced by ageing. Each point represents one 

intervention, and the shapes indicate the tissue from which the transcriptome was 

derived. Transcriptomic changes in the mouse models of ageing were compared with 

the changes during ageing on the same tissue. Error bars show one standard deviation 

from the mean. P-values below were calculated using a t-test with a population mean 

equal to zero as the null hypothesis. P-values at the top are for the difference between 

the groups using an unpaired, two-samples Wilcoxon-test. 
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2.4. Identification of potential novel genetic interventions affecting lifespan 

We next investigated the possible use of gene sets consistently associated with 

lifespan (Figure 3A) to identify other genetic interventions that could affect ageing. 

We identified publicly available datasets for other mouse mutants and examined their 

correlation with the transcriptomes of long-lived mice, short-lived mice and normal 

ageing (Figure 5). We predict that genetic interventions more positively correlated 

with long-lived mice will lengthen lifespan, whereas mutants more strongly 

correlated with short-lived mice and ageing will shorten lifespan. From the 51 gene 

mutants analysed, 23 showed a higher correlation with long-lived mice and 28 a more 

positive correlation with short-lived mice. Among the 27 mutants with positive 

correlation with the ageing transcriptome, 21 (77%) were positively correlated short-

lived mice, and 18 (66%) were negatively correlated with long-lived mice. Similarly, 

from the 24 mutants negatively correlated with ageing, 14 (58%) showed the same 

trends in short-lived mice, and 21 (87%) displayed the opposite trend in long-lived 

mice.  

To determine if the correlational approach we used to identify potential genetic 

interventions into ageing had external validity, we investigated whether the mutants 

were previously associated with changes in lifespan in the literature and the GenAge 

database (De Magalhães and Toussaint, 2004). We also determined if mutations in 

the orthologues of these genes in C. elegans and Drosophila melanogaster showed 

effects on lifespan. Among the 51 gene mutants analysed, we found experimental 

evidence matching our predictions in 9 cases (Fisher’s exact test p = 0.017). All 

genetic interventions with experimental evidence to lengthen lifespan showed a more 

strongly positive correlation of changes in gene expression with those seen in long-

lived mice. For instance, the transcriptome of Jak2 knockout mice showed an average 

rs = 0.18 with long-lived mice, but a correlation close to zero against short-lived mice 

(rs = 0.002). Consistently, fruit flies with a loss of function mutations in the hop gene 

(orthologue of Jak2) live on average 17% longer than wild-type flies (Larson et al., 

2012). Similarly, transcriptomic changes induced by Keap1 knockout in mice were 
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positively correlated with long-lived mice (rs = 0.17) and negatively correlated with 

short-lived mice (rs = -0.13). As expected, keap1 loss of function mutations extends 

lifespan of fruit flies by 8-10% (Sykiotis and Bohmann, 2008). The transcriptome of 

Ahr and Dbi knockout mice also displayed a positive correlation with long-lived mice 

and negative correlation with short-lived mice and ageing. Confirming our 

predictions, C. elegans carrying a loss of function allele of ahr-1 (Ahr in mice), 

display extended lifespan and increase motility and stress resistance (Eckers et al., 

2016). Similarly in worms, knockdown of either acpb-1 or acbp-3 (Dbi in mice), 

extends lifespan (Shamalnasab et al., 2017). Among the interventions with a more 

positive correlation with short-lived mice and ageing, we found evidence of 

premature death in 6 cases, including Sirt7, Dicer1, Pdss2, Rb1 and Sgpl1 knockout 

mice (Frezzetti et al., 2011; Lin et al., 2011; Lyon and Hulse, 1971; Schmahl et al., 

2007; Vakhrusheva et al., 2008). The negative effects on lifespan of Dicer1 and 

Sgpl1 have been also shown in C. elegans, as loss of dcr-1 (Dicer1 in mice) shorten 

maximum lifespan by 20% (Mori et al., 2012) and RNAi knockdown of spl-1 (Sgpl1 

in mice), reduces median lifespan by 22% (Samuelson et al., 2007). Overall, the 

experimental evidence matching with our predictions support the use of gene sets 

describing mitochondrial metabolism to predict the effects of genetic interventions on 

lifespan.  
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Figure 5. Correlation between the transcriptomes of long- and short-lived mice and 

that induced by 51 different gene knockouts. Correlations were calculated using 

enrichments scores of the gene sets in Figure 3A. The colours of the dots represent 

the correlations with the ageing transcriptome. Labels represent the name of the gene 

knocked out. Gene knockouts known to lengthen or shorten lifespan in animal models 

are coloured in green and yellow, respectively.  
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3. Conclusion 

In this study, we collected and analysed publicly available microarray and RNA-seq 

data of 18 interventions that affect the ageing process and cause changes in lifespan, 

together with transcript profiles of normal ageing. The transcriptomes were more 

similar between interventions with the equivalent effects on lifespan, especially if 

they targeted the same pathway or process. We also detected positive, but weaker, 

correlations between interventions with opposite effects on lifespan, in line with 

previous studies (Schumacher et al., 2008). The biggest correlation found in this case, 

was an undiscovered one between LmnaG609G/G609G and Rps6kb1-/-, in the liver and 

adipose tissue. Interventions like Akt1+/- (long-lived), Myc+/- (long-lived) and Terc-/- 

(short-lived) did not produce changes in gene expression that correlated with those 

from other interventions, suggesting the existence of different mechanisms to 

lengthen and shorten lifespan.  

Based on functional enrichment analysis, we identified 58 gene sets (i.e. GO terms), 

which behaved consistently and showed opposite changes in gene expression in long- 

and short-lived mouse models. The data implicated mitochondrial metabolism as a 

key determinant of lifespan. As in short-lived mice, we also detected a transcriptomic 

down-regulation of mitochondrial metabolism with age in wild-type mice, confirming 

its relevance for normal ageing and supporting the hypothesis that models of 

accelerated ageing approximate normal ageing at the molecular level. 

Finally, comparing the gene sets associated with lifespan and ageing with those from 

mouse mutants with no known association with ageing, we found several gene 

knockouts that were positively correlated with expression changes in long-lived mice 

and showed consistent experimental evidence from the literature. Our predictions will 

therefore inform future work on the ageing of these mutant mice. 

3.1 Limitations and future perspectives 

An inherent limitation of the study is that is biased towards interventions in the 

nutrient-sensing pathways or the DNA repair system, which have been most 
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extensively studied. However, this allowed us to establish a clear relationship 

between ‘genomic instability and deregulated nutrient sensing’ and ‘mitochondrial 

dysfunction’, another hallmark of ageing. To develop a complete picture of the 

interconnections between the hallmarks of ageing, transcriptomic data from 

interventions targeting other hallmarks of ageing are required.  

Also, most of our observations are extracted from the liver transcriptome because it 

was the only tissue with enough transcriptome data to identify robust trends across 

interventions. However, as we reported in Section 2.1, genetic interventions may 

have tissue-specific effects, meaning that the comparison of transcriptomic profiles is 

likely to be useful only when is done between the same tissue or cell type. Thus, 

further research in other tissues is necessary to determine the level of conservation of 

the mechanisms we found associated with lifespan.  

4. Methods 

4.1. Dataset collection 

We obtained a list of short-lived and long-lived mouse models of ageing from 

Folgueras et al. (2018) (Folgueras et al., 2018). Then, using the gene symbol of each 

mutant we searched in the meta-databases OmicsDI (Perez-Riverol et al., 2017) and 

All of gene expression (Bono, 2020) for microarray and RNA-seq datasets from 

mice.  Using the Mouse Genome Database (Bult et al., 2019), we only included 

studies with raw data available where the genotype of the wild-type matched the 

genotype of the mouse model of ageing and where multiple samples per condition 

were available. We focused on datasets from liver, adipose, muscle and brain as these 

were the most common tissues among the datasets we found. The samples in each 

study were grouped into datasets with the same sex, age and tissue, resulting in 57 

datasets from 26 studies that were processed separately (Supplementary Table 1). 

To investigate the gene expression changes during ageing, we used the dataset with 

the largest sample size for each tissue (Supplementary Table 5).  
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4.2. Differential expression analysis 

For microarrays, we obtained the raw data from the Gene Expression Omnibus 

(GEO) and Array Express database using the R packages GEOquery (Davis and 

Meltzer, 2007) and ArrayExpress (Kauffmann et al., 2009), respectively. Affymetrix 

array data were processed using the RMA algorithm from the package oligo 

(Carvalho and Irizarry, 2010) to perform background correction, quantile 

normalisation and summarization. We carry out the summarization using the core 

genes for exon and gene arrays. For Illumina and Agilent microarrays, we employed 

background correction and quantile normalisation using the limma package (Ritchie 

et al., 2015). We removed probes mapping to multiple genes and kept the probe with 

the highest average expression across samples if multiple probes mapped to one gene. 

We then fitted a linear model of gene expression versus genotype for each gene and 

calculated the summary statistics using empirical Bayes. P-values were adjusted for 

multiple testing using the Benjamini-Hochberg method (Benjamini and Hochberg, 

1995) to obtain the false discovery rate. We calculated the gene expression changes 

of age in the same way, with the difference that chronological age was used as the 

independent variable instead of genotype. 

RNA-seq reads were obtained from the Sequence Read Archive (Leinonen et al., 

2011). We mapped raw reads to the mouse genome sequence (GRCm38.p6) using 

STAR (Dobin et al., 2013) and counted mapped reads using featureCounts from the 

package Rsubread (Liao et al., 2019). We removed genes with less than 10 counts on 

average across samples. Differential expression analysis was then performed using 

DESeq2 (Love et al., 2014) controlling the false discovery rate using the Benjamini-

Hochberg method. 

We further performed a principal component analysis on each dataset using the 

normalised gene expression values (Supplementary Figure 8) and did not observe 

any sample with outlier levels of expression sufficient to warrant exclusion from the 

analysis. We also examine which experimental variables (i.e. study, genotype, tissue, 

sex, age, lifespan effect, technology) accounted for the transcriptional differences 
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between the datasets. We performed a principal component analysis of the quantile 

normalised fold changes of 4074 genes detected across all 57 datasets 

(Supplementary Figure 9) and then tested which variables explained the differences 

observed in the first two principal components, applying a multivariate analysis of 

variance (MANOVA). As expected, datasets from the same study, genotype and 

tissue tended to correlate more than expected by chance (Supplementary Table 6). 

To obtain gene expression data from genetic interventions not previously associated 

with ageing we downloaded the metadata from all single gene perturbation signatures 

for mice from the CREEDS database 

(http://amp.pharm.mssm.edu/CREEDS/#downloads) (Wang et al. 2016). We 

manually removed interventions not coming from mouse liver or already included in 

our study. The remaining interventions were processed with GEO2R 

(https://www.ncbi.nlm.nih.gov/geo/geo2r/).  

4.3. Transcriptome-wide correlation analysis 

Using the log2 fold changes from the differential expression analysis, we calculated 

the correlation between the datasets using Spearman’s rank method (Spearman, 1904) 

considering genes in common between the pair of datasets. On interventions with 

multiple datasets, we averaged the correlations first between datasets from the same 

study and intervention, and then with the same intervention across different studies. 

Heatmaps visualising correlations were created using ComplexHeatmap (Gu et al., 

2016).  

4.4. Functional enrichment and consistency analysis 

We performed functional enrichment analysis of each dataset separately using the 

function gseGO from the package ClusterProfiler (Yu et al., 2012) on genes ranked 

by the sign of the log2 fold changes multiplied by the logarithm of the p-values from 

the differential expression analysis. Based on this rank-ordered list of genes, we 

further assessed if genes in each gene ontology term were more likely to be up or 

down-regulated than what is expected by chance based on 10,000 permutations. We 
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calculated an enrichment score for each pathway and each intervention by 

multiplying the obtained log10(p-value) by the 1 or -1 depending on the direction of 

the change. To identify GO terms with consistent changes, we calculated for each GO 

term the median rank of the enrichment score across short-lived or long-lived mice 

and we compare it against a random distribution of median ranks with the same 

number of interventions. P-values were obtained by dividing the observed median 

rank by the total number of random median ranks generated (i.e. 1e6). We adjusted 

the p-values for multiple testing using the Benjamini-Hochberg method.  

To visualise gene ontology terms specific to long- or short-lived mice, we calculated 

the similarity between the consistently varying terms using the overlap coefficient 

(oc). We constructed a network connecting the terms (nodes) were edges represent 

pairs of terms with an oc > 0.4. Clusters with less than 5 nodes were excluded. 

�� �
 |���|

���	|�|,|�|�
, where A and B represent gene ontology terms 
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