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Abstract 
Recent development of spatial transcriptomics (ST) is capable of associating spatial information 
at different spots in the tissue section with RNA abundance of cells within each spot, which is 
particularly important to understand tissue cytoarchitectures and functions. However, for such 
ST data, since a spot is usually larger than an individual cell, gene expressions measured at each 
spot are from a mixture of cells with heterogenous cell types. Therefore, ST data at each spot 
needs to be disentangled so as to reveal the cell compositions at that spatial spot. In this study, 
we propose a novel method, named DSTG, to accurately deconvolute the observed gene 
expressions at each spot and recover its cell constitutions, thus achieve high-level segmentation 
and reveal spatial architecture of cellular heterogeneity within tissues. DSTG not only 
demonstrates superior performance on synthetic spatial data generated from different protocols, 
but also effectively identifies spatial compositions of cells in mouse cortex layer, hippocampus 
slice, and pancreatic tumor tissues. In conclusion, DSTG accurately uncovers the cell states and 
subpopulations based on spatial localization. 

Introduction 
Cells of different types are spatially and structurally organized within tissues to perform their 
functions. Uncovering the complex spatial architecture of heterogenous tissue is significant for 
understanding the cellular mechanisms and functions in diseases. The fast advance of single-cell 
RNA sequencing technologies (scRNA-seq) attracts the attention to elucidate the heterogenous 
cell formation [1-4] and trace the lineage relationship within tissue [5-7]. Unfortunately, due to the 
lack of spatial information, scRNA-seq is incapable of identifying the structural organization of 
heterogeneous cells within a complex tissue. Therefore, as the complementary to scRNA-seq, 
spatially resolved transcriptomic profiling methods [8-10] have been introduced. To reveal the 
spatial cytoarchitectures within tissues, sequencing-based high-throughput spatial 
transcriptomics (ST) technologies [11-14], such as 10x Genomics Visium [8] and Slide-seq [15, 
16], use spatially indexed barcodes with RNA sequencing that allows quantitative analysis of the 
transcriptome with spatial resolution in individual tissue sections.  
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Emerging ST technologies are able to spatially index transcripts and measure expression profiles, 
advancing our understanding of precise tissue architectures. However, the resolution of ST data 
is far lower than single cell level. Transcripts captured at a specific location by a “spot”[8] or a 
“bead”[15, 16] is usually composed of a mixture of heterogenous cells. For example, Visium, 
one of the microarray-based spatial transcriptomics techniques developed by 10X Genomics, 
uses spots of 50 µm diameter, with each spot covering 10-20 cells in average, which varies 
depending on the tissue histology [17]. Even for the Slide-seq [15, 16] that quantifies gene 
expression with high resolution (10 microns), one pixel may still be overlapped with multiple 
cells. As a result, the measured gene expressions at a “spot” reflects a mixture of cells. Therefore, 
uncovering the cell compositions within each spot of the spatial transcriptomics data is critical 
for investigating tissue’s molecular and cellular architecture at high resolution.  

To address this problem, very few tailored approaches have been developed yet. SPOTlight [18] 
is a deconvolution algorithm using non-negative matrix factorization regression and non-
negative least squares, which has been applied to ST data [16] successfully. Specifically, 
SPOTlight incorporates the reference scRNA-seq data to identify cell type-specific topic profiles, 
which is further used to deconvolute spatial spots. This method leverages scRNA-seq data for the 
identification of cell states and subpopulations to deconvolute the spatial transcriptomics data, 
showing that leveraging well-characterized scRNA-seq data will aid and facilitate the 
exploration of spatial datasets. A major limit of this ST deconvolution method is that the intrinsic 
topological information of cell type constitutions within spots, which provides crucial 
information about the relations between the observed gene expression patterns and associated 
cell types at spots, cannot be effectively learned and utilized.  

In recent years, graph convolutional networks (GCN) [19] has demonstrated promising capability 
in utilizing such intrinsic topological information of data to improve model performance. The 
topological relations inside the data, such as similarity between samples, can be represented as 
graphs. Through learning the shared kernel used in spectral graph convolution across all nodes in 
a graph, a semi-supervised GCN model captures local graph structures as well as node features 
and incorporates both information as latent space representation. Graph Convolutional Networks 
(GCN) [19] and its variants [20, 21] have been applied to different scenarios successfully, 
including cancer patient subtyping using real-world evidence [22], protein prediction [33] and 
drug design [23], as well as single cells and diseases [24-28]. These work shows that, through 
effectively learning and leveraging the latent representation and topological relations among data, 
GCN models are able to significantly improve model performance.  

In this work, we have developed a novel graph-based artificial intelligence model, 
Deconvoluting Spatial Transcriptomics data through Graph-based convolutional networks 
(DSTG), for reliable and accurate decomposition of cell mixtures in the spatially resolved 
transcriptomics data. Based on the well-characterized scRNA-seq dataset, DSTG is able to learn 
the precise composition of spatial transcriptomics data using semi-supervised graph 
convolutional network. The performance of DSTG has been validated on synthetic ST data, as 
well as on different experimental ST datasets with well-defined structures including mouse 
cortex layer, hippocampus tissue, and pancreatic tumor tissues. In addition, we provide the 
implementation software of DSTG as a ready-to-use Python package, which is compatible with 
current spatial transcriptomics profiling datasets for accurate cell type deconvolution.  

Results 
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Overview of DSTG 

Herein, we propose a novel, graph-based artificial intelligence approach, namely DSTG, to 
deconvolute spatial transcriptomics data through graph-based convolutional networks. The 
DSTG approach leverages scRNA-seq data to unveil the cell mixtures in the spatial 
transcriptomics data (Figure 1). Our hypothesis is that the captured gene expression on a spot is 
contributed by a mixture of cells located on that spot. Our strategy is to use the scRNA-seq-
derived synthetic spatial transcriptomics data called “pseudo-ST”, to predict cell compositions in 
real-ST data through semi-supervised learning. First, DSTG constructs the synthetic pseudo-ST 
data from scRNA-seq data as the learning basis of our method. Then DSTG learns a link graph 
of spot mapping across the pseudo-ST data and real-ST data using shared nearest neighbors. The 
link graph captures the intrinsic topological similarity between spots and incorporate the pseudo-
ST and real-ST data into the same graph for learning. Then, based on the link graph, semi-
supervised GCN is used to learn a latent representation of both local graph structure and gene 
expression patterns that can explain the various cell compositions at spots. The major advantages 
of such similarity-based semi-supervised GCN model are: 1) sensitive and efficient, since for 
each spot, only the features of similar spots (i.e., neighbor nodes) are used; and 2) acquiring 
generalizable knowledge about the association between gene expression patterns and cell 
compositions across spots in both pseudo- and real-ST, since the weight parameters in the 
convolution kernel are shared by all spots. To test the performance of DSTG, we use synthetic 
pseudo-ST data generated with cell mixtures of known cell type compositions from peripheral 
blood mononuclear cell (PBMC) scRNA-seq datasets [29], in which DSTG presents superior 
performance than the SPOTlight method. Furthermore, DSTG is validated and applied to real 
tissue context from mouse cortex, hippocampus, and pancreatic tissues with well-defined 
structures.  

Performance on benchmarking data 

To evaluate the performance of DSTG, we use the synthetic spatial data generated by scRNA-
seq cell mixtures as ground truth. Briefly, each spot of this synthetic spatial data is constructed 
by  combining the randomly selected 2 to 8 cells from scRNA-seq data. Such synthetic spatial 
data not only mimics real spatial transcriptomics data, but also provides ground truth that can be 
used to evaluate the DSTG’s performance in identifying the proportions of different cell types 
within each synthetic spot. As for the evaluation metrics, we use the Jensen-Shannon Divergence 
(JSD), which is a distance metric that measures the similarity between two probability 
distributions. A smaller value of JSD represents a higher similarity between two distributions, 
thus signifies a higher accuracy of estimated cell type compositions across spots. 

Specifically, we use 13 PBMC scRNA-seq datasets [29] profiled by different protocols, with 
well-characterized cell populations and discrete cell numbers, to generate benchmarking 
synthetic spatial data. For each PBMC data, we generate 10 synthetic data and apply both DSTG 
and SPOTlight to those 10 synthetic data for comparison. Our results show that DSTG achieves 
lower JSD values (mean JSD = 0.12, Figure 2A), which is significantly lower (P value < 
2.2e−16) than SPOTlight (mean JSD = 0.24), indicating the higher accuracy of DSTG than 
SPOTlight across datasets generated from different experiment protocols. Notably, DSTG shows 
the most accuracy than SPOTlight in the CEL−Seq2 synthetic datasets. Though SPOTlight 
performs the best on Quartz−Seq2 datasets, DSTG still outperforms SPOTlight with lower JSD 
value. In addition to PBMC, to examine the performance of DSTG on other different tissues, we 
include 8 other scRNA-seq data from different tissues and protocols to generate the 
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benchmarking synthetic data. Then we compare DSTG with SPOTlight based on the synthetic 
data from these 8 additional scRNA-seq data. As shown in Figure 2B, the predicted results of 
DSTG still outperform SPOTlight using the JSD evaluation metric. Notably, DSTG achieves the 
mean JSD values of 0.016 and 0.087 for the Smart-seq2 and snRNA-seq datasets, respectively, 
which are better than the ones achieved by SPOTlight (0.19 and 0.24). These consistently 
superior performances of DSTG demonstrate the accuracy and robustness of our method. 

To investigate whether DSTG is sensitive to the design of synthetic data, we generate discrete 
synthetic data with different number of spots, library sizes, and variable genes, which covers the 
characteristics of the current and emerging ST data. For the synthetic data with different spot 
numbers (500 − 4,000) (Figure 2C), we find that DSTG tends to perform better with more spots 
in the synthetic data, suggesting that the more spots used, the better the model is trained. 
Meanwhile, the result suggests that using 1,500 spots is sufficient to reach high performance in 
practice, as the marginal gain of performance is neglectable when using more spots. For the 
synthetic data with different downsampled library sizes (5,000 − 50,000 reads per cell) (Figure 
2D), DSTG shows stable accuracy at lower or higher library sizes. For the synthetic data with 
different number of variable genes (500 − 5,000) (Figure 2E), DSTG demonstrates stable 
performance, with optimal performance reaches at 2,000 variable genes.  

Spatial decomposition of mouse cortex layer 

To examine whether DSTG can reveal microanatomical structures in complex tissue, we use the 
10X Visium ST data of cerebral cortex layer in mouse brain. This cortex layer has well-defined 
cytoarchitecture and thus is suitable to evaluate DSTG’s performance. To deconvolute this ST 
data by DSTG, we use the scRNA-seq dataset profiled by the SMART-Seq2 protocol from the 
Allen Institute, which consists of ~14,000 adult mouse cortical cell taxonomy and 22 cell types 
(Figure 3A). With this scRNA-seq data, the spatial deconvolution of the ST data by DSTG 
accurately reconstructs the architecture of brain cortex layer (Figure 3B). The identified 
heterogenous cell proportions of each localized spot are shown by the pie chart at the respective 
spot, which is confirmed by their existence in cortical areas, suggesting the high accuracy and 
sensitivity of the DSTG’s predictions. Moreover, our predicted compositions provide more 
detailed information about the heterogeneity of this area. Specific investigation shows the 
regional enrichment of each cell type based on their identified proportions. Illustrative examples 
are the differentially enriched neuronal subtypes including cortical layer 2/3 (L2/3), cortical layer 
6 (L6b), and oligodendrocytes (oligo) (Figure 3C). The subpopulation of L2/3 are shown with 
high compositions in the outside liner of spots within the cortex. Spots with most L6b cells are 
shown with high proportions in the inner liner of the cortex. Towards the innermost layer, 
oligodendrocytes cells are mainly abundant in these spots. These data are consistent with the 
layered cytoarchitecture of the cortex tissue. The ability to identify the distinct spatial cellular 
compositions of each spot in the cortical neuronal layers indicates the accuracy and sensitivity of 
DSTG.   

To examine if the cell type specific genes are enriched in their corresponding spatial locations, 
we investigate the distribution of marker genes known to be specific to the respective cell types 
(Figure 3D). For example, the top expressed gene marker of L2/3 cells, Myh7, is detected with 
high expression in the ST data of L2/3 dominated spots, which is in line with the predicted 
proportions of this cell type. The top markers of L6b and Oligo, Nxph4 and Gjc3, also show high 
expression in their corresponding spots respectively. Meanwhile, these genes are undetectable or 
detected at very low levels at other spatial spots. It’s worth noting that the partial expression of 
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cell type markers in a specific ST spot may reflect the heterogeneous composition of cell types in 
that spot. Interrogation of these differential genes further confirms the accurate predicted cell 
proportions within spots in the tissue section. 

Mapping distinct cell populations of mouse hippocampus 

The fast advance of spatial transcriptomics technologies raises new challenges in deconvoluting 
the transcriptomics data at each spot: spots become smaller, meanwhile the total number of spots 
grows exponentially, but the sequencing depth at each spot becomes much lower. We 
demonstrate the performance of DSTG on such emerging ST data, using the recently available 
Slide-seq v2 [15] of mouse hippocampus tissues as an example. Comparing with the 10x 
Genomics’ Visium platform, the bead size of the Slide-seq v2 platform is 5.5-fold smaller, thus 
the spatial resolution is 25 ~ 100-fold higher. Consequently, the typical median library size per 
bead is 550 UMIs (Unique Molecular Identifiers), 100-fold lower than 10X Genomics Visium.  

To deconvolute this ST data, we use the existing single-cell RNA-seq dataset from mouse 
hippocampus [30], which consists of 52, 846 cells with 19 cell types that are profiled by the 
Drop-seq protocol (Figure 4A). Based on this scRNA-seq data, DSTG’s spatial decomposition 
of the ST data accurately identifies different cell types within the hippocampus slice (Figure 4B). 
The spatially localized pie charts represent the identified different cell proportions in the slice. 
Moreover, our predicted compositions provide more detailed information about the heterogeneity 
of this area. Closer investigation confirms the regional enrichment of specific cell types with 
their identified composition (Figure 4C). For example, oligodendrocyte cells are identified with 
high compositions in the middle wide strips within the hippocampus slice. In the Cornu 
Ammonis (CA) subfield, CA3 principal cells scatter within the slice with low proportions, but 
majorly abundant in the half strip at the right of the slice. Ependymal cells present mainly at an 
irregular circle and the other band at the top right of the slice, which data are consistent with the 
spatial structures within the mouse hippocampus.  

To further evaluate our method, we select the cell type specific genes from scRNA-seq data and 
assess their expression in the ST data. As expected, the top differentially expressed gene marker 
in oligodendrocyte (Figure 4D), PLP1, expresses strictly in line with the oligodendrocyte region 
based on the ST data. CCDC153 is the top expressed gene marker in CA3 principal cells that is 
also detected with high expression in the ST data of CA3 principal cells. Another example is 
NPTXR, the marker of ependymal, is enriched at regions with a high abundance of Ependymal 
cells. These cell specific genes detected in their corresponding locations further underlines the 
accuracy of DSTG. In summary, DSTG demonstrates accurate and reliable deconvolution 
capabilities on ST data generated from the latest ST platform such as the Slide-seqV2, which has 
much smaller spot size, much larger number of spots, and much lower sequencing depth on each 
spot.  

Deconvolution of pancreatic cancer tissue sections 

Tissues in diseases such as tumors exhibit unique pathological cytoarchitectures. To further 
demonstrate and test the DSTG’s performance in such conditions, we apply it to two ST data 
obtained from two tumor sections of pancreatic ductal adenocarcinoma (PDAC), i.e. PDAC-A 
and PDAC-B. Sample-matched scRNA-seq data (Figure S1) generated by inDrop protocol is 
used by DSTG to deconvolute the respective ST data in samples PDAC-A and PDAC-B 
respectively.  
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For the PDAC-A sample (Figure 5A), after DSTG’s deconvolution, we observe discrete regional 
enrichment of cancer clones and non-cancer cells. Specifically, cells of cancer clone S100A4 and 
TM4SF1 are mainly identified mixed in the spots of cancerous region, which are excluded from 
the spots of ductal cells including the centroacinar ductal cells and the co-localized antigen 
presenting ductal cells. Stroma cells are involved between the ductal cells and cancer cells, 
which are consistent with previous results annotated by hematoxylin and eosin (H&E) staining 
and brightfield imaging [13]. We also find a few proportions of hypoxic ductal cells in the spots 
close to the cancerous region, indicating the low oxygen environment in tumor. Further 
inspections of specific cell types (Figure 5B) including cancer clone cells and ductal cells, 
confirm their regional proportions on their identified structures. The point size and related color 
indicate different compositions in the spatial spots.   

In the other PDAC-B sample, as shown in Figure 5C, cells of cancer clone TM4SF1 rather than 
cancer clone S100A4 are identified. These cancer clone TM4SF1 cells are localized 
preferentially in the spots of the bottom right region, distinguished from the interstitium and 
ductal cells. We notice that most interstitium cells are adjacent to the cancer clone TM4SF1 cells, 
and some interstitium cells co-localize with the cancer cells. Ductal cells are mainly abundant in 
the spatial spots of the top region. These findings highlight the precise consistency with previous 
H&E staining results [13]. Further inspections of cancer clones and ductal cells (Figure 5D) 
confirm their regional compositions on their known locations. These results of DSTG are 
consistent with independent histological annotations, supporting its ability to identify accurate 
cellular compositions from the ST data of tumor tissues.  

In conclusion, DSTG is able to detect the unique cytoarchitectures in diseased tissues, 
distinguishes the spatial distribution of tumor cells evolved from different clones, and 
characterizes cancer-specific cellular phenomena such as local hypoxia as well as the 
suppression of antigen presenting in the tumor cell dominating regions.  

Discussion  
Spatial transcriptomics provides unprecedented opportunities to study tissue heterogeneity and 
cell spatial organization [31-33]. However, the resolution of spatial transcriptomics is less than 
the single-cell level. As single spot in spatial transcriptomics data may cover heterogenous cell 
types, our DSTG method aims to determine the proportions of different cell types and states 
across spots where genes are reliably identified. In this study, we present the DSTG method for 
performing cell type deconvolution in spatial transcriptomics data using the graph convolutional 
networks. DSTG is evaluated by benchmarking synthetic data generated from PBMC and other 
tissues, in which DSTG demonstrates excellent accuracy between the predicted cell mixtures and 
the actual cell composition. DSTG is also shown to achieve high consistency with H&E staining 
observations on spatial transcriptomics data from complex tissues including mouse cortex, 
hippocampus and human pancreatic tumor slices.  

As SPOTlight is also used to deconvolute the spatial transcriptomics data, we compare DSTG 
with SPOTlight, and find DSTG consistently outperforms SPOTlight on benchmarking synthetic 
data. From a technical perspective, DSTG provides some major advantages. First, DSTG 
simultaneously utilizes variable genes and graphical structures through a non-linear propagation 
in each layer, which is appropriate for learning the cellular composition due to the 
heteroskedastic and discrete nature of spatial transcriptomics data. Second, DSTG identifies the 
respective weights of different cell types in the pseudo-ST data generated from scRNA-seq data, 
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which can be effectively leveraged to learn the cell compositions in the real-ST transcriptomics 
data. Third, as the sequencing depth of spatial data is expected to increase, DSTG has been 
shown to perform better to interrogate the cell distribution quantitively in such spatial 
transcriptomics data.  

In addition to the successful results, there are several aspects that DSTG can be improved. First, 
as an artificial intelligence (AI) model, DSTG shows not only the merits of its kind, but also 
some limitations including the black-box nature of AI models [34-36], which can be addressed 
through downstream analysis that can ameliorate some of the problems and bring insights into 
the learned cellular compositions. Second, as a graph model, improving the built graph can 
further boost the model performance. Our link graph based on mutual nearest neighbors best 
captures the spots’ similarity in spatial data, reflecting the effective graph representation. As a 
fast-growing research field, new approaches of building graph are emerging, of which we will 
test and adapt in future versions of DSTG. 

Our DSTG method paves the way for inferring functional relationships between heterogenous 
cell subpopulations based on their composition and colocalization in the tissue spots. This 
includes intercellular communication across neighboring spots, which opens up future 
possibilities of studying the complete interactome in a spatially resolved manner. Moreover, as 
the precise composition of tissue may vary from one individual patient to the other, the spatial 
composition of cellular subpopulations can be of prognostic value for patients in the future. We 
anticipate that the spatial deconvolution using DSTG will contribute to future patient prognosis 
and pathological assessments. Overall, DSTG demonstrates as a robust and accurate tool to 
determine cell-type locations and precise compositions of spatial spots, which provides an 
unbiased perspective and investigation into the spatial organization of distinct cellular 
populations in tissue.  

Methods 
Variable gene selection  

For the scRNA-seq data, we first identify genes that exhibit the most variability across different 
cell types using the analysis of variance (ANOVA). The top 2,000 most variable gene features in 
the scRNA-seq data are selected according to adjusted P values with Bonferroni correction. 
Using the scRNA-seq data of the top variable genes, we then generate the pseudo-ST data with 
synthetic mixtures of cells with known cell compositions. The gene expressions at each pseudo-
spot of the pseudo-ST data is generated by combining the randomly selected 2 to 8 cells from the 
scRNA-seq data. The library size is limited to 20,000 UMI counts for the pseudo-ST data. For 
simplicity and illustration, we consistently use the term “spot” to represent the synthetic cell 
mixture of the pseudo-ST data as well as a spot or a bead of real-ST data.  

Link graph 

For both pseudo-ST data and real-ST data, we first perform the standardized transformation, i.e. 

��,� � ��,�� � ������
��  

, where ��,��  is the raw counts of gene � and spot �, ������ is the mean of ��,��  over all spots, and �� is 
the standard deviation of ��,�� . Thus ��,�  is the standardized gene expression.  
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After the data standardization, we then build a link graph incorporating pseudo-ST and real-ST 
data for the DSTG method. The built graph is � � 	
, � with � � |
| nodes denoting the 
spatial spots and � representing the edges. � is the adjacent matrix in terms of this graph. Here 
we apply the dimension reduction of the pseudo-ST and real-ST data by canonical correlation 
analysis, and then identify the mutual near neighbors [37] in the space of reduced dimension.  

First, with the pseudo-ST data and the real-ST data represented as �����	
��� and �������� 
where � is the number of variable genes, and �� and ��  are the respective number of spots, we 
project these two data into a lower � dimension space by canonical correlation vectors �� of �� 
dimension and �� of ��  dimension, where � � 1, � , �, to maximize  

���������	
��������������� 
, subjecting to the constraints ������ � 1 and ������ � 1. To identify the canonical correlation 
vector pairs, we use singular value decomposition and get the � canonical correlation vector 
pairs with the �  largest eigenvalues. Each pair of ��  and ��  projects the original data �����	
��� and �������� to the �-th dimension of the low dimension space. For DSTG, we 
take � as 20 for the reduced dimension space. 

Second, in the low dimension space, we identify the mutual nearest neighbors among spots from 
pseudo-ST and real-ST data. Specifically, if spot � is in one of nearest neighbor of spot � by �-
nearest neighbor (KNN, default � is 200), meanwhile spot � is in one of nearest neighbor of spot � by KNN, then spot � and spot � are mutual nearest neighbors. In this way, we build the link 
graph between the pseudo-ST data and the real-ST data. To further utilize the information of 
real-ST data in the DSTG model, we also identify the mutual nearest neighbors within the real-
ST data itself. To this end, the final link graph is built and represented by the adjacent matrix �. 
That is, if spot � and the ot-her spot � are mutual nearest neighbors, ��� � 1, otherwise ��� � 0. 
This graph captures the intrinsic topological structure of spot similarity between all spots.  

DSTG method 

We utilize the graph convolutional network on the link graph � � 	
, � for the identification 
and prediction of the compositions of different cell types in the spatial transcriptomics data. Each 
spot is viewed as a node. The cell mixtures in the pseudo-ST data are generated with known 
compositions. The goal of DSTG is to predict the cell type compositions of the real spatial data 
by using not only the features of each spot but also the graph information leveraging the pseudo-
ST data and real-ST data, which are characterized as the above adjacent matrix �. Explicitly, the 
DSTG method takes two inputs. One input is the spot similarity graph structure learned above 
(see the Link graph). The other is the data matrix of combined pseudo-ST and real-ST data. As 
denoted above, with the pseudo-ST data and the real-ST data represented as �����	
��� and 
��������  where �  is the number of variable genes, while ��  and ��  are the corresponding 
number of spots, the input data matrix is shown as  

� � !�����	
 �����" # $��� 

, where � � �� % �� .  

Herein, with these two inputs, i.e. � and �, the DSTG is constructed with multiple convolutional 
layers. For efficient training of DSTG, the adjacent matrix � is modified and normalized as: 
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�& � '(�� �⁄ �)'(�� �⁄  

, where  �) � � % +, + is the identity matrix, and '( is the diagonal degree matrix of �).  
Specifically, each GCN layer is defined as: 

,����� � -�,���, �&� �  .��&,���/���� � $012��&,���/���� 

, where ,��� is the input from the previous layer, /��� is the weight matrix of the 3-th layer, .	· � $012	·  is the non-linear activation function, and the input layer ,��� � � . The 
composition of a specific cell type -  at a pseudo-spot �  is represented as 5�,� # 6� , where 
� # 71, � , ��8 and cell type - # 91, � , :;, : represents the total number of different cell types, 
and 6� # $��� represents the known cell compositions at all spots from the pseudo-ST data.  

Specifically, for a three-layer DSTG with :  distinct cell types, the forward propagation is 
realized as:   

6< � -	�, �� � �=->�?���& $012��&��/����/���� 

, where /��� # $���  is the input-to-hidden weight matrix projecting the input data with � 
variable genes into an @  dimension hidden layer, $012  stands for the rectified linear unit 

activation function, /��� # $���  is a hidden-to-output weight matrix, and 6< � A6<�
6<�B # $���  is 

composed of two components: 6<� # $��� represents the predicted proportions of different cell 
types at pseudo-spots and 6<� # $��� represents the prediction of cell compositions at real-ST 
spots. The �=->�?� activation function below are used as the activation function in the output 
layer that learns the cell type proportions, 

�=->�?�	· � exp 	·
∑ exp 	· 

. The evaluation function is defined as the cross-entropy at pseudo-spots, i.e.  

G � � H H 5�,�3��5I�,���

� �

�

� �

 

, where 5�,� # 6�  and 5I�,� # 6<� . The goal of this semi-supervised learning is to minimize the 
cross-entropy G between the known cell compositions 6� and the predicted cell proportions 6<�. 
During the propagation of each layer, the model will reduce the cross-entropy error on the 
training data. After training, we have  

6< � �J�	�, � # $���  

. Note that 6< � A6<�
6<�B. Thus, cell compositions at real spots are predicted as 6<�.  

When applying the DSTG model, we randomly split the pseudo-ST data as training (80%), test 
(10%), and validation set (10%), while the real-ST data is unlabeled and will be predicted. For 
the spatial transcriptomics data in this study, we train three-layer DSTG models for a maximum 
of 200 epochs using the Adaptive Moment Estimation (Adam) algorithm [38] with a learning 
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rate of 0.01 and early stopping with a window size of 10. For the dimension of the latent layer, 
we screen options of 32, 64, 128, 256, 528, and 1,024 dimensions and select the optimal one. 

For the evaluation metrics, we use the Jensen–Shannon divergence (JSD) score, which is a 
symmetrized and smoothed version of the Kullback–Leibler divergence. With discrete 
probability distributions K  and L  defined on the same probability space M, the JSD score is 
defined by 

N�'	K||L �  1 2⁄ '!"	K||Q % 1 2⁄ '!"	L||Q 

, where Q �  1 2⁄ 	K % L, and '!"	K||L represents the Kullback–Leibler divergence from L 
to K, i.e., 

'!"	K||L �  H K	�log UK	�
L	�V

#$%

 

Data availability 

All single-cell RNA-seq datasets are downloaded from their public accessions. The first 
benchmarking PBMC scRNA-seq datasets [29] in Figure 2A are generated by 13 different 
protocols, including C1HT-medium, ICELL8, MARS-Seq, Chromium (sn), CEL-Seq2, 
gmcSCRB-Seq, C1HT-small, inDrop, Drop-Seq, ddSEQ, Smart-Seq2, Chromium, Quartz-Seq2. 
These 13 PBMC datasets are publicly available through the Gene Expression Omnibus 
(GSE133549). To evaluate the impact of synthetic data (Figure 2C-E), we use the Smart-Seq2 
PBMC dataset to generate discrete synthetic data with different number of spots and variable 
genes, as well as different sequencing depths.  

For the second benchmarking in Figure 2B, the Drop-Seq data is downloaded from the Short 
Read Archive under accession number SRP073767 [2]. The Microwell-Seq data is profiled using 
the Microwell-Seq protocol [39] that can be downloaded from the Mouse Cell Atlas. The 
snRNA-Seq data is profiled from the entorhinal cortex from human brains of Alzheimer’s 
Disease, yielding a total of 13,214 high quality nuclei [40] using the single-nucleus RNA-seq 
protocol, which can be downloaded from GEO (accession number GSE138852). The Smart-Seq2 
data is profiled using the Smart-Seq2 platform [41], which is profiled from melanoma tumor and 
downloaded from GEO (accession number GSE72056). The CEL-Seq2 data is obtained from 
human cadaveric pancreata using the CEL-Seq2 protocol (accession number: GSE85241) that 
consists of 2,122 cells and 18,915 genes [42]. The SMART-Seq v4 data is downloaded from 
dbGAP (accession number phs001790) [43], which is generated using SMART-Seq v4 platform. 
This dataset contains 16024 genes and 14055 cells, from 34 cell types in the middle temporal 
gyrus of human cerebral cortex. The CEL-Seq data is obtained from 3 human lung 
adenocarcinoma cell lines using the CEL-Seq platform that consists of 570 cells and 12,627 
genes [44], which can be downloaded from GEO (accession number: GSE117617). The 
Fluidigm data is profiled using Fluidigm C1 platform with 11,778 cells and 3,803 genes [45]. We 
download this data from GEO (accession number: GSE81608).  
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Figure legends  
Figure 1. Schematic overview of DSTG for deconvoluting spatial transcriptomics data 

Schematic representation of how DSTG deconvolutes spatial transcriptomics (ST) data using 
scRNA-seq profiles. DSTG first generated a pseudo-ST data with cell mixtures from scRNA-seq 
data. Between this pseudo- and real-ST data, DSTG identifies a link graph of spot mapping. 
Based on the link graph, graph convolutional network is used to propagate both pseudo-ST and 
real-ST data into the latent layer and identify the portions of different cell types for each spot. In 
this way, cell compositions of real-ST data can be predicted and learned from pseudo-ST data.  

Figure 2. Performance of DSTG on benchmarking datasets 

A. Performance of DSTG is assessed and compared with SPOTlight by synthetic spatial data 
generated from 13 PBMC datasets of different scRNA-seq protocols. B. Performance of DSTG 
is further benchmarked with SPOTlight by synthetic spatial transcriptomics data generated from 
the other scRNA-seq datasets from different tissues and protocols. C. DSTG’s performance on 
synthetic data with different number of spots. D. DSTG’s performance on synthetic data with 
different library depths. E. DSTG’s performance on synthetic data with different number of 
variable genes. In A-E, the y-axis represents the JSD value. 

Figure 3 Spot deconvolution of mouse cortex layer 

A. UMAP projections of single cell RNA-seq data from mouse cortex tissue. Different cell types 
are labeled and colored according to known cell annotations. B. Spatial plot with pie chart shows 
the predicted cell compositions of each spot within the cortex layer. C. Spatial plot shows the 
proportions of specific neuron subtypes in the spots within the captured region. Red spot 
indicates high proportion of the respective cell type. D. Visualization of the spatial expressions 
of cell type specific markers in ST data. Red color indicates the high gene expression in that spot.  

Figure 4 Spatial chart of mouse hippocampus tissue using DSTG 

A. UMAP projections of single cell RNA-seq data from mouse hippocampus tissue. Different 
cell types are labeled and colored based on known cell annotations. B. Spatial plot with pie chart 
shows the predicted cell compositions within the captured locations in the mouse hippocampus. 
C. Spatial plot presents the proportions of specific neuron subtypes within the captured location. 
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Red color indicates high abundance of certain cell type in this region. D. Spatial expression of 
cell type specific markers of the respective neuron subtypes in the ST data. 

Figure 5 Mapping spatial spots across pancreatic cancer tissue 

A. Spatial plot shows the predicted compositions of different cell types within the captured spots 
of PDAC-A tissue slice. B. Predicted proportions of different cell types including antigen 
presenting ductal cells, centroacinar ductal cells, cancer clone TMSF1, and S100A4. C. Spatial 
plot presents the predicted compositions of different cell types within captured spots of PDAC-B 
tissue slice. D. Predicted proportions of different cell types including ductal cells, cancer clone 
TMSF1, and interstitium. Red color indicates high proportion of certain cell type. 

Figure S1 Single cell RNA-seq data of pancreatic cancer tissues 

A. UMAP projections of cells from PDAC-A, which is the paired scRNA-seq data with the 
spatial transcriptomics data of PDAC-A sample. B. UMAP projections of cells from PDAC-B, 
which is the paired scRNA-seq data with the spatial transcriptomics data of PDAC-B sample. All 
cells are labeled and colored according to the provided cell type annotations in the original study. 
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