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Abstract 

Visual performance varies around the visual field. It is best near the fovea compared to the 

periphery, and at iso-eccentric locations it is best on the horizontal, intermediate on the lower, 

and poorest on the upper meridian. The fovea-to-periphery performance decline is linked to the 

decreases in cone density, retinal ganglion cell (RGC) density, and V1 cortical magnification 

factor (CMF) as eccentricity increases. The origins of radial asymmetries are not well 

understood. Optical quality and cone density vary across the retina, but recent computational 

modeling has shown that these factors can only account for a small percentage of behavior. 

Here, we investigate how visual processing beyond the cones contributes to radial asymmetries 

in performance. First, we quantify the extent of asymmetries in cone density, midget RGC 

density, and V1-V2 CMF. We find that both radial asymmetries and eccentricity gradients are 

amplified from cones to mRGCs, and from mRGCs to cortex. Second, we extend our previously 

published computational observer model to quantify the contribution of spatial filtering by 

mRGCs to behavioral asymmetries. Starting with photons emitted by a visual display, the model 

simulates the effect of human optics, fixational eye movements, cone isomerizations and mRGC 

spatial filtering. The model performs a forced choice orientation discrimination task on mRGC 

responses using a linear support vector machine classifier. The model shows radial 

asymmetries in performance that are larger than those from a model operating on the cone 

outputs, but considerably smaller than those observed from human performance. We conclude 

that spatial filtering properties of mRGCs contribute to radial performance differences, but that a 

full account of these differences will entail a large contribution from cortical representations.  
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Introduction 

Visual performance is not uniform across the visual field. The most well-known effect is a 

decrease in visual acuity as a function of eccentricity: we see more poorly in the periphery 

compared to the center of gaze [1-4]. This observed difference in visual performance has been 

attributed to several physiological factors, starting as early as the distribution of photoreceptors 

[5, 6]. In the human fovea, the cones are tightly packed such that visual input is encoded at high 

spatial resolution. In peripheral retinal locations, cones are larger and interspersed among rods, 

resulting in a drastically lower density [7, 8]; hence a decrease in spatial resolution. 

Visual performance also differs as a function of polar angle. At iso-eccentric locations, 

performance is better along the horizontal than vertical meridian (horizontal-vertical anisotropy 

or “HVA” e.g., [9-12]) and better along the lower than upper vertical meridian (vertical-meridian 

asymmetry or “VMA” [10-14]). These radial asymmetries are observed in many different visual 

tasks, such as those mediated by contrast sensitivity [10-12, 15-28] and spatial resolution [9, 13, 

15, 16, 29-32], contrast appearance [33], visual search [34-42], crowding [14, 42-45], and tasks 

that are thought to recruit higher visual areas such as visual working memory [31].  

These polar angle effects can be large. For instance, for a Gabor patch at 4.5° 

eccentricity with a spatial frequency of 4 cycles per degree, contrast thresholds are close to 

double for the upper vertical meridian compared to the horizontal meridian [10, 11, 28]. This is 

an effect size similar to doubling stimulus’ eccentricity from 4.5° to 9° on the horizontal axis [16, 

28]. 

The visual system has radial asymmetries from its earliest stages, including optics and 

cone density. However, with a computational observer model, we recently showed that 

variations in optical quality and cone density likely accounted for less than ~10% of the 

observed radial asymmetries in a contrast threshold task [46]. This leads to the question, what 

additional factors later in the visual processing stream give rise to visual performance 

differences with polar angle? 

In the human retina, the best described retinal ganglion cells (RGCs) are the midget and 

parasol cells. Both of these cell types show a decrease in density as a function of eccentricity 

and vary in density as a function polar angle in humans [47-53] and monkeys [54-57]. Because 

midget RGCs are the most numerous ganglion cells in primates (i.e. 80% of ~1 million RGCs 

compared to 10% parasols and 10% other types) and have small cell bodies and small dendritic 

field trees that increase with eccentricity [55, 56, 58], they are often hypothesized to set an 
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anatomical limit on high resolution spatial vision such as acuity and contrast sensitivity at mid to 

high spatial frequencies [50, 56]. 

  Interestingly, in the range of eccentricities used for many psychophysical tasks (0–10°), 

cone density shows an HVA (greater density on the horizontal than vertical meridian), but not a 

VMA, inconsistent with behavior (there is a slightly greater density on the upper than lower 

vertical meridian, opposite what one would predict to explain behavior). Midget RGC density, in 

contrast, shows both an HVA and a VMA, making their distribution patterns more similar to 

behavioral patterns. 

Here, we investigate to what extent visual performance differences can be explained by 

the radial variations observed in mRGC visual field sampling. First, we quantify asymmetries in 

spatial sampling around the visual field in three early visual processing stages: cones, mRGCs, 

and V1-V2 cortex. We do so because it is important to first identify if there are any differences in 

spatial encoding across these processing stages, and if so, how these differences relate to 

differences in behavior. Then we extend our previously published computational observer 

model, which included optics, cone sampling, and eye movements, by adding mRGC-like spatial 

filtering. We compare this observer model to our previous model (no RGC layer) and to human 

performance on a 2-AFC orientation discrimination task. By comparing the predicted 

performance to human observers, we can quantify the contribution of mRGCs to visual 

performance differences around the visual field.  
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Results 

We quantify the asymmetries in cone density, midget retinal ganglion cells (mRGCs) density 

and V1-V2 cortical magnification factor (CMF)—both as a function of eccentricity and for the 

four cardinal meridians. In the next two sections, we first show that both eccentricity gradients 

and radial asymmetries are amplified from cones to mRGCs and from mRGCs to early visual 

cortex. Then we implement the observed variations in mRGC density in a computational 

observer model to test whether biologically plausible differences in mRGC sampling across the 

cardinal meridians can quantitatively explain psychophysical performance differences as a 

function of polar angle.  

Fovea-to-periphery gradient is amplified from retina to mRGCs to early 

visual cortex 

A hallmark of the human retina is the sharp drop in cone density from fovea to periphery [7, 8, 

59]. Within the central one degree, cone density decreases dramatically (on average by 3.5-

fold). Beyond the fovea, cone density continues to decrease by 10-fold between 1° and 20° 

eccentricity (Fig 1A, left panel). This decrease in cone density is due to an increase in cone 

spacing caused by the presence of rods and by the increase in cone diameter [7]. 

The second processing stage we focus on are the midget RGCs. The mRGC cell bodies 

are laterally displaced from their receptive fields by the foveal cones. Therefore, we use a 

computational model by Watson [60] that combines cone density [7], mRGC density [48] and 

displacement [52] to infer the mRGC density referred to the visual field, rather than the cell body 

positions. Throughout, when we refer to mRGC density, it is always with respect to receptive 

fields. Like the cones, midget RGCs sample the visual field differentially as a function of 

eccentricity. The fovea-to-periphery gradient is steeper for mRGCs than for cones (Fig 1A, 

middle panel). At the central one degree, mRGC density is greater than cone density. This 

divergence results in a cone:mRGC ratio of 0.5 (Fig 1B, left panel), indicating a ‘direct line’ 

between a single cone and a pair of on- and off-center mRGCs. In the periphery, mRGC density 

falls off at a faster rate than cones. For example, cone density decreases by 10-fold between 1° 

and 20° eccentricity, whereas mRGC density decreases by 80-fold. This convergence can also 

be expressed in the cone:mRGC ratio, which increases as a function of eccentricity (Fig 1B, left 

panel). 
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Fig 1. Foveal over-representation is amplified from cones to mRGCs to cortex. (A) Cone density, mRGC 

receptive field density and V1 cortical magnification factor as a function of eccentricity. Left panel: Cone data from 
Curcio et al. [7]. Middle panel: midget RGC RF density data from Watson [60]. Both cone and mRGC data are the 
average across cardinal retinal meridians of the left eye using the publicly available toolbox ISETBIO. Right panel: V1 
CMF is predicted by the areal equation published in Horton & Hoyt [61]. (B) Transformation ratios from cones to 
mRGCs and mRGCs to V1. The cone:mRGC ratio is unitless, as both cone density and mRGC density are 
quantified in cells/deg2. The increasing ratio indicates higher convergence of cone signals by the mRGCs. For 
mRGC:V1 CMF ratio units are defined in cells/mm2. The ratio increase in the first 20 degrees indicates an 
amplification of the foveal over-representation in V1 compared to mRGCs. 

Third, we quantify the amount of V1 surface area devoted to a portion of the visual field, 

also known as the cortical magnification factor (Fig 1A, right panel). There have been claims 

that V1 CMF is proportional to retinal ganglion cell density, as first proposed by Polyak [62, 63] 

(for an overview, see [64, 65] and see Discussion). However, when comparing mRGCs density 

[60] to human V1 CMF [61], we find that the ratio is not constant: The foveal magnification is 

even more accentuated in V1 (Fig 1B, right panel). These results are consistent with the 

findings in squirrel monkey [66]; owl monkey [67], and macaque [68], all of which show that the 

cortical magnification function falls off with eccentricity more steeply in V1 than would be 

predicted by mRGC density alone. 
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Radial asymmetries are amplified from cones to mRGCs  

Cone density differs as a function of polar angle. It is higher along the nasal and temporal retina 

meridians (representing the horizontal visual meridian) than the inferior and superior retina 

meridians (representing the upper and lower vertical visual meridian) (Fig 2A, left panel). This 

horizontal-vertical asymmetry is around 20% and relatively constant with eccentricity. There is 

no systematic difference between the cone density in the inferior and superior retina. If anything, 

there is a slight ‘inverted’ vertical-meridian asymmetry in the central five degrees: cones are 

more densely packed along the upper vertical meridian (inferior retina). Assuming greater 

density leads to better performance, this would predict better performance on the upper vertical 

meridian in the central three degrees, opposite of the typical asymmetry reported in behavior, 

which has been found up to 1.5° eccentricity in a study on contrast sensitivity [26]. All of these 

patterns of cone density asymmetries are found using two different datasets with different 

methods: a post-mortem retinal dataset by Curcio et al. [7] and an in vivo dataset from Song et 

al. [8], indicating reproducibility of the biological finding. All of the patterns are also consistent 

when computed using two different analysis toolboxes (ISETBIO [69-71] and 

rgcDisplacementMap [72], Supplemental Fig 1, top row), indicating computational 

reproducibility. 

The radial asymmetries in cone density are larger in the mRGC distribution. The nasal 

and temporal retina contain higher cell densities (after correction for cell body displacement) 

compared to inferior and superior retina (Fig 2A, middle panel). This horizontal-vertical 

asymmetry increases with eccentricity. For example, at 3.5° eccentricity, the average nasal and 

temporal density is ~20% higher compared to the average of inferior and superior retina. By 40° 

eccentricity, this density difference increases to ~60%. Beyond 10° eccentricity, this horizontal-

vertical asymmetry is mostly driven by the nasal retina, as it contains higher mRGC density 

compared to the temporal retina. This finding is in line with earlier histology reports in macaque 

[57] and positively correlated with spatial resolution tasks (e.g. [73]). This nasal-temporal 

asymmetry, although interesting, is beyond the focus of this paper, as the asymmetries in 

performance we observe are found in both binocular and monocular experiments [10, 32]. 

Overall, the greater emphasis on the horizontal is substantially greater in the mRGCs than the 

cones. 
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Fig 2. Nonuniformity in polar angle representations are amplified from cones to mRGCs to cortex.  
(A) Cone density, mRGC density, and V1-V2 CMF separate for cardinal meridians as a function of 
eccentricity. Left panel: Cone density from Curcio et al. [7]. Middle panel: mRGC densities are from Watson [60]. 
Both cone and mRGC data are in retinal coordinates from the left eye, where red, blue, green, and black lines 
represent nasal, superior, temporal and inferior retina computed with ISETBIO. Right panel: V1-V2 CMF computed 
from the HCP 7T Retinotopy dataset analyzed by Benson et al. [74] (color dots and lines) and predicted area CMF by 
the formula in Horton and Hoyt [61] (dashed black line, replotted from Fig 1). Both data types are plotted in visual field 
coordinates where red, blue and black data points represent the horizontal, lower and upper visual field meridians, 
respectively. Data points represent the median CMF of ±10 wedge ROIs along the meridians for 1–6° eccentricity in 
1° bins. Error bars represent 68%-confidence intervals across 181 subjects using 1000 bootstraps. Colored lines are 
1/eccentricity power functions fitted to data points. (B) Transformation ratios from cones to mRGCs and mRGCs 
to V1-V2 CMF. Ratios are shown separate for the horizontal (red), upper (blue) and lower (black) meridians. The 
cone:mRGC ratio is shown in retinal coordinates, with the horizontal meridian as the average of nasal and temporal 
retina. The mRGCs:V1 CMF panel is shown in visual coordinates and on a truncated x-axis due to the limited field-of-
view during cortical measurements. These radial asymmetries are not depended on the type of displacement model 
used, as the general pattern can be found across two different computational RGC models (see Supplemental Fig 2, 
second row). 

Unlike the cones, mRGC receptive fields show a consistent asymmetry along the vertical 

meridian: The superior retinal meridian (lower visual meridian) contains a higher mRGC density 
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compared to the inferior retinal meridian (upper visual meridian). This is consistent with the 

psychophysical VMA, showing better performance on the lower vertical meridian. This 

asymmetry increases with eccentricity. For example, the superior retina has ~15% higher 

density compared to inferior at 3.5°, and ~50% higher density at 40° eccentricity. This 

interaction between retinal meridian and eccentricity is summarized in the cone-to-mRGC 

transformation plot, where the convergence ratio from cones to mRGCs increases more rapidly 

along the inferior retina than the superior and the horizontal retinal meridians (Fig 2A, middle 

panel). 

Radial asymmetries are amplified from mRGCs to early visual cortex 

Because the areal CMF calculation by Horton and Hoyt [61] does not make separate predictions 

for the cardinal meridians, we used the publicly available retinotopy dataset from the Human 

Connectome Project analyzed by Benson et al. [75] to calculate the CMF along the meridians 

(see also [74]). As a first check on agreement between the two datasets, we found that the V1-

V2 CMF data measured in 181 subjects with functional MRI [74], pooled across all polar angles, 

was a close match to Horton and Hoyt’s [61] prediction based on lesion case studies from three 

decades ago. We then used the HCP dataset to compute CMF along the separate meridians. 

We find that radial asymmetries in cortical magnification factors are yet larger than those 

found in mRGC density (Fig 2A, right panel), where V1-V2 CMF is higher on the horizontal than 

vertical meridian, and the V1-V2 CMF is higher for the lower than the upper vertical meridian. 

For example, at 3.5° eccentricity CMF is ~46% higher on the horizontal than vertical meridians 

and ~46% higher for the lower vertical than upper vertical meridian. These radial asymmetries 

show a 2x increase within the first three degrees of eccentricity before flattening and are mostly 

driven by the upper vertical meridian (Fig 2A, right panel). This indicates that the mapping of the 

visual field in early visual cortex is not simply predicted from the distribution of midget retinal 

ganglion cells, but rather the cortex amplifies the retinal radial asymmetries (Fig 2B, right 

panel). 

A computational observer model from stimulus to mRGCs to behavior 

To understand how radial asymmetries in visual field representations might affect visual 

performance, we added a retinal ganglion cell layer to our computational observer model [46]. In 

this observer model, we used the publicly available ISETBIO toolbox [69-71] to simulate the first 

stages of visual pathway including the stimulus scene, fixational eye movements, chromatic and 
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achromatic optical aberrations, and isomerization by the cone array. Combining model output 

with a linear support vector machine classifier allowed us to simulate performance on a 2-AFC 

orientation discrimination task given information available in the cones. When matching stimulus 

parameters in the model to a previously published psychophysical experiment [11], we showed 

that biologically plausibly variations in optical quality and cone density together would 

contributed no more than ~10% to the observed radial asymmetries in contrast sensitivity.  

Given the inability of cone density to quantitatively explain differences in visual 

performance, we extended our model by adding spatial filtering properties of midget RGCs. We 

focus on mRGCs, because this processing stage shows a systematic asymmetry between the 

upper and lower visual field (where the cones did not), and an amplification of the horizontal-

vertical asymmetry. The mRGC computational stage is implemented after cone isomerizations 

and before the model performs the discrimination task. We provide a short overview of the 

modeled stages that precede the mRGC layer, as details of these stages can be found in our 

previous paper [46], followed by a discussion of the implementation details of the mRGC layer. 

Scene radiance 

The first stage of the model comprises the photons emitted by a visual display. This results in a 

time-varying scene defined by the spectral radiance of an achromatic low contrast Gabor 

stimulus (Fig 3, panel 1). The Gabor was oriented 15° clockwise or counter-clockwise from 

vertical with a spatial frequency of 4 cycles per degree. These stimulus parameters were 

chosen to match a recent psychophysical experiment [28] to later compare model and human 

performance. 

Retinal irradiance  

The second stage simulates the effect of emitted photons passing through the human cornea, 

pupil and lens. This computational step results in time-varying retinal irradiance (Fig 3, second 

panel). Optics are modeled as a typical human wavefront with a 3-mm diameter pupil and 

contain a spectral filter that reduces the fraction of short wavelengths (due to the lens). 

Cone absorptions 

The third stage implements a rectangular cone mosaic with L-, M- and S-cones (2x2° field-of-

view). For each cone, we compute the number of photons absorbed in each 2-ms bin, resulting 

in a 2D time-varying cone absorption image (Fig 3, third panel). The number of absorptions 
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depends both on the efficiency of each cone type and on the wavelengths of light and on 

Poisson sampling due to the quantal nature of light. The cone absorptions include a second 

source of noise: fixational eye movements. We implemented two types of fixational eye 

movements, drift and microsaccades, using a model available in ISETBIO combining a 

statistical model of drift [76] with microsaccade statistics [77, 78]. This model shifts the stimulus 

across the cone array during the trial, where the retinal displacement is relatively small (about 

2–4 cones within a trial at 4.5° eccentricity). 
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Fig 3. Overview of computational observer model with additional mRGC layer. A 1-ms frame of a 100% contrast 
Gabor stimulus is used at each computational step for illustration purposes. (1) Scene radiance. Photons emitted by 
the visual display, resulting in a time-varying scene spectral radiance. Gabor stimulus shows radiance summed 
across 400-700 nm wavelengths. (2) Retinal irradiance. Emitted photons pass through simulated human cornea, 
pupil, and optics, indicated by the schematic point spread function (PSF) in the top right-side box, resulting in time-
varying retinal irradiance. Gabor stimulus shows irradiance with wavelengths converted to RGB values for illustration 
purposes. (3) Cone absorptions. Retinal irradiance is isomerized by a rectangular cone mosaic containing L-, M- 
and S-cones (red, green and blue pixels in box), resulting in time-varying photon absorption rates for each cone. This 
stage implements two noise sources: Poisson noise to capture photon noise and fixational eye movements by shifting 
the stimulus across the cone array during a trial. (4) RGC responses. Time-varying cone absorptions are convolved 
by a 2D difference of Gaussian model (DoG) to simulate band-pass filtering and subsampling by on- and off-midget 
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RGCs (see also Fig 4). (5) Behavioral inference. Time-varying RGC responses are transformed to the Fourier 
domain using 2D FFT and phase information is removed. Without this transformation the classifier performs at 
chance level, as the individual pixel values are not informative for the task. This step provides the classifier the 
information that orientation information, but not phase information, is important for this task. A linear support vector 
machine (SVM) classifier is trained on FFT amplitudes to classify stimulus orientation per contrast level. Classifier 
weights averaged across time show peak amplitudes at peak spatial frequency of the stimulus (4 cycles/degree). 
With 10-fold cross-validation, left-out data are tested, and accuracy is fitted with a Weibull function to extract the 
contrast threshold at ~80%.  

Midget RGC responses 

We add a rectangular retinal ganglion cell layer to capture the spatial filtering properties of 

midget RGCs. This computational stage is a simplified RGC model, solely capturing spatial 

filtering properties of retinal ganglion cells, and does not include a temporal filter, spatial 

subunits, or stochasticity in spike timing. We will elaborate on the possible contribution of other 

RGC properties to radial asymmetries in the Discussion. 

The mRGC layer has the same field-of-view as the cone array. Because we do not 

model rectification or spiking non-linearities, we do not separately model on- and off-cells. Our 

mRGC receptive fields are approximated as 2D difference of Gaussian (DoG) models [79, 80] 

(Fig 3, fourth panel), based on parameters from [81]. The width of the center Gaussian (σc, 1 

sd) is ⅓ of the spacing between neighboring mRGC receptive fields, and the surround Gaussian 

(σs) is 6x the width of the center. This creates an mRGC array where RFs overlap at 1.3 

standard deviations from their centers, which matches the overlap of dendritic fields reported in 

human retina [50]. We compute the mRGC responses by convolving the cone absorptions with 

the mRGC DoG receptive field, and then by subsampling to get the correct mRGC density (Fig 

4). The mRGC density is determined by the cone array density and the cone-to-mRGC ratio, 

which we vary across simulations. 

We can express the mRGC receptive fields in stimulus units (degrees of visual angle) 

because their inputs, the cones, are also defined in stimulus units. For a cone density typical of 

4.5° eccentricity on the horizontal meridian, a ratio of 1:1 mRGC to cones is best tuned to our 

stimulus spatial frequency, 4 cycles per degree (red dashed line, Fig 4B). 
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Fig 4. Difference of Gaussians filters used to model mRGC layer. Both 1D representations are illustrated for a 

2x2° field-of-view mRGC array centered at 4.5° eccentricity. (A) 1D representation of two example mRGC layers 
in visual space. The mRGC responses are computed by convolving the cone image with the mRGC DoG RF, 
followed by subsampling the cone array to the corresponding mRGC density. Width for Gaussian center (σc) and 
surround (σs) are in units of cone spacing, which determines the subsample ratio to match the DoG width. Dark 
purple and yellow color of DoGs correspond to spectra in panel B. (B) 1D representation of Difference of 
Gaussians in Fourier space. The Fourier representation illustrates the band-pass and unbalanced nature of the 
DoGs (i.e. non-zero amplitude at DC). Depending on the width/subsample rate, DoGs attenuate different spatial 
frequencies. Peak stimulus frequency (4 cycles per degree) is indicated with red dashed line to illustrate what DoGs 
filters contain a peak frequency that would preserve most stimulus information. Fourier amplitudes are normalized. 

Behavioral inference 

The final stage of the computational observer model is the decision maker. For the main 

analysis, we use a linear support vector machine (SVM) classifier to discriminate if a stimulus 

orientation is clockwise or counter-clockwise from vertical given the RGC responses. As in our 

previous model [46], we apply a 2D fast Fourier transform to the RGC responses at each time 

point, and remove phase information. Classifying the mRGC amplitudes, rather than the full 

Fourier representation, allows the inference engine to learn a stimulus template that is robust to 

small eye movements and stimulus phase, and to categorize the stimulus orientation (illustrated 

by the high values at the stimulus spatial frequency (Fig 3, panel 5). The classifier trains and 

tests for each stimulus contrast separately, where each contrast level results in a percent 

correct identified stimulus. These accuracy results are fitted with a Weibull function to extract 

the contrast threshold at ~80%. 

Inference engine has a large effect on model performance 

We first ran a simplified version of our simulations in which the performance expectations were 

more straightforward to predict. We ran this version with three different observer models: an 

ideal observer, an observer based only on the signal-to-noise (SNR) level, and a linear SVM 

classifier. The simplified model has a cone mosaic with a single cone type (L-cone), does not 

include fixational eye movements, and does not include phase randomization of the stimulus. In 
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this simplified model, the only source of noise is the Poisson process of photon absorption. This 

contrasts with the full model, which is too complicated to solve analytically, hence the use of a 

linear SVM classifier. In the simplified model, we can solve the closed-form analytical solution 

for the ideal observer as described by Geisler [82].  

 The ideal observer provides an upper bound on performance. This is because the 

observer has complete knowledge about the stimulus template and the noise distribution. As 

expected, our ideal observer model performs best of all decision makers with threshold values 

less than 0.1% contrast (Fig 5A). These contrast thresholds are much lower (i.e. better 

performance) than those of human observers, who have thresholds of about 2–4% contrast for 

stimuli presented at the same eccentricity [28]. Given a fixed set of outputs from the cone 

mosaic, the ideal observer performance depends on the mRGC:cone ratio. The ideal observer 

performs best with an mRGC:cone ratio of 1:1, and more poorly with either a higher or lower 

ratio. The critical factor is not the number of mRGCs, but the receptive field properties. By 

design, the RF is scaled by the mRGC spacing, which in turn is determined by the combination 

of cone density and mRGC:cone ratio. At a 1:1 ratio for our cone mosaic and stimulus, the 

mRGC filter is best matched to the stimulus, as both peak at about 4 cycles per degree (Fig 

4B). 
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Fig 5. Model performance for different decision makers with an L-cone only mosaic. Left column shows 
classifier accuracy as function of stimulus contrast. Data are from one experimental iteration (200 trials per stimulus 
class) using a simplified version of the model with L-cone only mosaic at 4.5° eccentricity, no fixational eye 
movements nor stimulus phase shifts. Data are fitted with a Weibull function. Contrast thresholds are plotted 
separately for each mRGC:cone ratio in the right column. (A) Ideal observer. The ideal observer computation follows 
Geisler [82], providing an upper bound on performance. (B) SNR computational observer. This decision maker 
provides a lower bound on performance. Signal is defined as the difference in power between noiseless clockwise 
and counter-clockwise mRGC responses. Noise is defined as the power across the background (noise-only) mRGC 
responses. (C) SVM computational observer. Performance of the SVM observer is in intermediate of the SNR and 
ideal observer. This is because the SVM observer learns a stimulus template but is limited by the number of trials. 
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Second, we computed performance based on discriminability of the mRGC outputs for 

an observer with no knowledge of the stimulus classes, the “SNR observer”. The SNR observer 

cannot classify individual stimuli as ‘clockwise’ or ‘counter-clockwise’ because it has no 

knowledge of the stimulus classes, but it can classify a pair of stimuli as same or different. The 

same/different judgment depends only on how different the mRGC outputs are for a stimulus 

pair, operationalized as the total power in the difference image between the mRGC outputs for 

the two Gabor stimuli. This operation is equivalent to putting equal classifier weights across all 

mRGCs. This contrasts with the ideal observer, which weights locations based on how 

informative they are. 

Specifically, we first compute the SNR in the following way. We define the signal as the 

total power in the mRGC difference image for noiseless stimuli from the two classes. We define 

the noise as the total power across the background (noise-only) image. The intuition is that if the 

mRGC outputs for the stimulus pairs (clockwise vs counter-clockwise) differ a lot compared to 

the level of background noise, the SNR is high, and the stimuli are discriminable. The 

discriminability index (d’) can be computed from the SNR, and from d’ we derive the percent 

correct (assuming no bias). This enables us to analyze the SNR model the same way as the 

ideal observer and the SVM classifier. 

As expected, the SNR observer performs worse than human observers and the ideal 

observer because it has no knowledge of the stimulus classes. The average thresholds for the 

SNR observer are around 10% contrast (Fig 5B). The pattern of performance as a function of 

mRGC:cone ratios differs from the ideal observer. For the SNR observer, performance is best 

with the smallest ratio of mRGCs to cones, and systematically declines with increasing ratio. 

This might seem surprising, as the smallest ratio means the fewest mRGCs. The better 

performance is due to the receptive field properties, not to the low cell density per se. The 

model with the smallest mRGC:cone ratio, by design, has the largest receptive fields, which are 

tuned to low frequencies. These low-frequency filters remove much of the background noise, 

increasing the SNR. 

Third, we computed performance from an SVM computational observer model. This 

model performs intermediate between the ideal and the SNR observer, both in overall accuracy 

and in the pattern across cell densities. This is because the SVM observer has more information 

about the stimulus than the SNR observer, but still performs worse than an ideal observer as it 

has to learn the stimulus template from limited data (in this case 200 trials per stimulus class). 

Contrast thresholds are on average about 0.6%, lower than the SNR model and human 
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performance, and higher than the ideal observer model (Fig 5C). The performance pattern 

across different mRGC:cone ratios is also intermediate between the ideal and the SNR models, 

performing best with the third filter (ratio of 0.7 mRGCs per 1 cone). If the SVM observer 

received more training trials, it would perform closer to the ideal observer, whereas fewer trials 

would make it perform more like the SNR observer. 

The effect of spatial filtering by mRGCs on orientation discrimination  

For the previous analyses, we assumed a fixed cone density and varied the mRGC density. 

Because both densities vary with cardinal meridians in the human retina, we considered how 

performance depended on the two factors together. Moreover, we implemented a more 

complete simulation, including fixational eye movements, phase randomization of the stimulus, 

and a trichromatic retina. For this more complex simulation, we implemented the linear SVM 

computational observer, as closed form solutions are unwieldy for the ideal observer and SNR 

observer model. 

For comparison with our observer model based on cone outputs in our prior work [46], 

we used the same simulations as previously (identical eye movement patterns, cone densities, 

L-, M-, S-cone distributions), and to each of these simulations we added one of five mRGC 

layers, varying in density and filter widths. 

As with the models based on cone outputs, we find that models based on mRGC outputs 

have better performance (lower contrast thresholds) when cone density is higher. The slope of 

this function depends on the mRGC:cone ratio, where lower ratios result in steeper functions 

(Fig 6A). This indicates that performance depends on both mRGC density and cone density. To 

examine the space of predicted contrast thresholds as a function of cone density and 

mRGC:cone ratio, we plot performance as a function of both variables with linear interpolation 

(Fig 6B). This 3D mesh shows best performance (lowest thresholds) at intermediate 

mRGC:cone ratios and high cone densities. As the cone density decreases, best performance 

shifts to higher mRGC:cone ratios. This pattern indicates that the highest cone densities and 

narrowest spatial filters do not necessarily result in best performance (i.e. the lowest contrast 

thresholds), but rather performance depends on the interaction between the stimulus spatial 

frequency and what signal/noise components are attenuated by spatial filters. 
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Fig 6. The effect of spatial filtering properties by mRGCs on full model performance. (A) Contrast thresholds 
as a function of cone density and mRGC:cone ratio. Panels with data points and power law fit (red line) show 
contrast thresholds for each mRGC:cone ratio separately. All 5 fits are replotted in the right bottom panel. Data are 
averaged across 5 iterations of a simulated experiment varying in cone density. Error bars represent the standard 
error from bootstrapping the mean across 5 iterations, 1000 times with replacement. Goodness of fit for individual 
power law are R2 = 0.75, R2 = 0.73, R2 = 0.68, R2 = 0.83, R2 = 0.85, for the highest to lowest mRGC:cone ratios 
respectively. (B) Two views of combined effect of cone density and mRGC:cone ratio on contrast sensitivity. 
The 3D mesh is built by ordering individual contrast threshold fits (y-axis) by corresponding cone density (x-axis) and 
mRGC:cone ratio (z-axis). The mRGC:cone ratios are up sampled by a factor of 8 and cone density is resampled to 
have equal log10 spaced values. Individual dots represent the predicted model performance for nasal (red star), 
superior (blue star), temporal (green star) and inferior (black star) retinal locations at 4.5° eccentricity (matched to 
stimulus eccentricity in [28]). 
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Comparison between model and human contrast sensitivity 

To compare model performance to human observers, we first quantify the range of biologically 

plausible cone densities and mRGC:cone ratios at 4.5° eccentricity and the four cardinal 

meridians. This eccentricity is used to match stimulus parameters from a recent psychophysical 

experiment [28]. 

According to Curcio et al. [7], cone density varies at 4.5° eccentricity from ~1,575 

cones/deg2 on the horizontal retinal meridian (nasal: 1590 cones/deg2, temporal: 1560 

cones/deg2), to 1300 cones/deg2 on the superior retinal meridian, and 1382 cones/deg2 on the 

inferior retinal meridian. We combine these cone density values with the mRGC:cone ratios 

from the computational model by Watson [60], which ranges between 0.84:1.0 on the horizontal 

meridian (nasal: 0.87:1.0, temporal: 0.82:1.0), to 0.81:1.0 on the superior retina and 0.68:1.0 on 

the inferior retina. 

Across these ranges, there is only slight performance differences in our computational 

observer model (Fig 6B, 4 dots on the 3D mesh). The overall performance within this range is 

similar to human observers, with contrast sensitivity of about 40% (Fig 7A, compare middle vs 

right panel). Moreover, the pattern of performance across the polar angles is qualitatively similar 

to human behavior, with better performance on the horizontal than the vertical meridian, and 

slightly better performance on the lower vertical meridian than the upper vertical meridian. 

However, the asymmetries are not quantitatively similar to human performance, which varies far 

more as a function of meridian. 

 

Fig 7. Comparison of model performance to human performance. (A) Contrast sensitivity predicted by 

computational observer model up to cones, up to mRGCs, and behavior using matching stimulus 
parameters. HVM: horizontal visual meridian, UVM: upper visual meridian, LVM: lower visual meridian. Model 
prediction shows contrast sensitivity (reciprocal of contrast threshold) for stimuli at 4.5° eccentricity, with a spatial 
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frequency of 4 cycles per degree. HVM is the average of nasal and temporal meridians. Y-axis is truncated at 20% 
contrast sensitivity. Model error bars indicate simulation results allowing for uncertainty in the cone or mRGC density 
along each meridian (See Methods for details). Behavioral plots show group average results (n=9) from Himmelberg 
et al. [28], and error bars represent standard error of the mean across observers. (B) Radial asymmetries for 
cones, mRGCs and behavior. HVA: horizontal-vertical asymmetry. VMA: vertical-meridian asymmetry. Blue, red 
and purple bars match panel (A) and correspond to model prediction up to cones, mRGCs, human behavior. Error 
bars represent the HVA and VMA when using the upper/lower bound of predicted model error from panel A.  

To summarize the model and human performance, we calculate the percent change in 

horizontal vs vertical meridian (HVA) and upper vs lower vertical meridian (VMA). We find that, 

although mRGC density amplifies the radial asymmetries present in the cones, these biological 

variations only predict a horizontal-vertical asymmetry of about 6.3% (Fig 7B, red bars). This is 

about double compared to a model without the mRGCs (3.4%, Fig 7B blue bars) (see also 

Supplemental Fig 3). For the vertical-meridian asymmetry, the predicted asymmetry of the 

mRGC model is 0.35%, much smaller than that of human performance (17%) [28]. Although far 

from human performance, it is better than a model that does not include the mRGCs, which 

actually predicts the opposite asymmetry to behavior: –1.6% as cone density is higher for the 

upper vertical meridian than the lower vertical meridian. 

The higher overall contrast sensitivity in the mRGC model compared to the cone model 

might at first seem counter-intuitive, as successive stages of processing can only lose 

information. This intuition holds for ideal observers. However, our models are computational 

observers, not ideal observers, and use a linear SVM classifier that learn weights from the 

simulated responses. Using such an SVM classifier to make behavioral inferences causes the 

absolute performance to depend on factors such as the efficiency of learning the stimulus 

template and number of trials. If we had conducted more simulations, overall performance 

would have improved. However, we are more interested in the differences in performance 

across cardinal meridians than in the absolute performance. Importantly, our modeling approach 

suggests that although including an mRGC layer predicts radial asymmetries closer to behavior 

than a model up to the cones, the biological variations in the spatial properties of mRGCs are 

far from sufficient to fully explain differences in behavior.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.20.347492doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347492
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

22 

Discussion 

The visual system, from retina to subcortex to cortex, is organized in orderly maps of the visual 

field. But within each particular processing stage, the retinotopic map is distorted. Here we 

investigated the radial asymmetries in these spatial representations across three stages of the 

early visual pathway: cones, mRGCs and V1-V2 cortex. Our study revealed that both the 

eccentricity gradient (foveal bias) and radial asymmetries (HVA and VMA) in spatial 

representations are amplified from cones to mRGCs, and further amplified from mRGCs to early 

visual cortex. Additionally, we showed that although mRGC density has radial asymmetries in 

the directions predicted by psychophysical studies, they are insufficient to explain most of the 

differences in human’s contrast sensitivity around the visual field. 

Linking behavior to eccentricity and radial asymmetries in visual field 
representations 

For more than a century, limits in retinal sampling were hypothesized to cause the fovea-to-

periphery gradient in human visual performance [1, 5, 6]. Initial tests of this idea showed that the 

fall-off in cone density could explain some, but not all of the observed decrease in visual acuity 

[2, 3, 83-86]. Later, more detailed computational models, reported that mRGCs come closer in 

predicting the eccentricity-dependent decrease in achromatic contrast sensitivity or resolution, 

and conclude that mRGCs are sufficient in explaining some aspects of behavior, especially 

spatial resolution and contrast sensitivity [87-93]. Similar to the retina, the cortical magnification 

factor in V1 has been linked to visual performance as a function of eccentricity, for example, 

explaining differences in acuity [91, 94, 95], contrast sensitivity and resolution [16], and the 

strength of some visual illusions [96]. 

Conversely, radial asymmetries have often not been considered. For instance, all above-

mentioned studies either ignored the stimulus polar angle for analysis or limited measurements 

to a single meridian, usually the horizontal. Despite the fact that the existence of radial 

asymmetries in human early visual cortex was predicted based on behavior in the late 70’s [15, 

16], further reports on radial differences have been scarce. One fMRI study reported a 

difference in V1 BOLD amplitude for stimuli on the lower and the upper visual meridian [97] and 

two studies found more cortical surface area devoted to the horizontal than the vertical meridian 

[98, 99]. Yet several studies have assumed little to no radial differences in macaque V1 CMF 

[100, 101] or did not account for radial differences in human V1 CMF [44, 95] to explain 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.20.347492doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347492
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

23 

differences in behavior. Computational models that include retinal and/or V1 sampling across 

visual space generally exclude radial asymmetries (e.g. [102, 103]). A few cases do incorporate 

radial asymmetries in the retinal ganglion cell distribution, but they assume that these 

asymmetries are not further amplified in cortex [104-106]. 

Early visual cortex does not sample the retina uniformly 

It is well documented that the convergence of cones to retinal ganglion cells varies with 

eccentricity (e.g. see [90]). In the fovea of both primates and humans, there is one cone per pair 

of bipolar cells and pair of midget RGCs, with pairs comprised of an “on” and an “off” cell. In 

contrast, in the periphery, there are many cones per pair of bipolar cells and midget RGCs, with 

the ratio depending on the eccentricity. In the far periphery, there can be dozens of cones per 

ganglion cell [7]. 

It has been long debated whether V1 further distorts the visual field representation, or if 

V1 samples uniformly from RGCs, as reviewed previously [64, 65]. Our analysis showed more 

cortical surface area devoted to the fovea than the parafovea and the horizontal than vertical 

meridian, supporting previous findings using retinotopy informed by anatomy [98] and functional 

MRI [74, 99]. Importantly, these eccentricity and radial non-uniformities are larger in V1 than 

expected from asymmetries in mRGC density projected to cortex, confirming histology studies in 

monkey [56, 66-68, 107, 108]. Whether these non-uniformities arise in cortex, or depend on the 

mapping from retina to LGN, LGN to V1, or both, is a question of interest in both human [109, 

110] and monkey [111-115], but beyond the scope of this paper. The implication is that cortex 

cannot be understood as a canonical wiring circuit from the retina repeated across locations. 

Because visual field distortions are larger as a function of eccentricity than polar angle, 

one might surmise that radial asymmetries contribute little to visual performance. Even though 

the polar angle asymmetries are smaller than the eccentricity effects, they can in fact be large. 

For example, within the central eight degrees, the surface area in V1 is about 60% larger for the 

horizontal meridian than the vertical meridian [74]. Given that virtually all visual tasks must pass 

through V1 neurons, these cortical asymmetries are likely to have a large effect on perception. 

The number of cortical cells could be important for extracting information quickly [116], for 

increasing the signal-to-noise ratio, and for tiling visual space and visual features (e.g., 

orientation, spatial frequency) more finely [117]. To know how the number of V1 neurons affect 

performance, there is a need for a computational model that explicitly links cortical resources to 

performance around the visual field. 
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Model limitations 

Despite implementing known facts about the eye, our model, like any model, is a simplification. 

Some of the simplifications allow for interpretable results. For this model, we make the trade-off 

between complexity and understanding by treating a local patch of mRGCs as a linear, shift-

invariant system (i.e., a spatial filter). As the model here is identical to our previous model, 

except for the mRGC layer, we will focus on the limitations of this mRGC layer, and refer to 

Kupers, Carrasco and Winawer [46] for model limitations related to the pathways from scene to 

cone absorptions and the inference engine. 

Uniform sampling within a patch 

The mRGC layer is implemented as a rectangular patch of retina, initially with the same size as 

the cone mosaic. This allows for filtering by convolution and then linear subsampling to account 

for mRGC density, making the model computationally efficient. We do not incorporate two 

complexities of RGC sampling in the retina: (i) density gradients within a patch and (ii) irregular 

sampling. (i) Given our relatively small patch size (2x2° field-of-view) in the parafovea (centered 

at 4.5°), the change in density across the patch would be small (~10%). We found that a much 

larger change in mRGC density (spanning a 5-fold range) had only a modest effect on 

performance of our observer model, so it is unlikely that accounting for a small gradient within a 

patch would have significantly influenced our results. (ii) Given the relatively low spatial 

frequency content of our test stimulus, it is unlikely that irregular sampling would have resulted 

in a substantial difference from the regular sampling we implemented. 

Nonetheless, it is important to assess the degree to which these complexities are 

expected to affect performance for other tasks, especially for large retinal patches and high 

spatial frequency stimuli. Hexagonal cone arrays that include within-patch density gradients 

have been implemented in ISETBIO by Cottaris et al. (see for example [118, 119]). Extending 

similar approaches to models of the RGC circuitry will allow for direct tests of the importance of 

the gradients and irregularities. For some tasks, they are likely to be important. When we expect 

them to have little impact, as here, we choose the more straightforward mathematical 

implementation.  

Linear spatial summation and no temporal summation 

Our mRGC layer modeled one property of RGCs: linear spatial summation. The summation was 

computed over the photon absorptions by the cones. We did not account for temporal 
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summation, or for non-linearities in the integration of signals from cones to mRGCs. Temporal 

summation and non-linearities are known to occur both within the cones [120] and in the 

downstream retinal circuitry (e.g., [121, 122]). To our knowledge, none of these properties are 

known to vary systematically around the visual field. We focused on cell density and RF size 

because there is clear evidence that these properties vary across the meridians, and they do so 

in a manner correlated with psychophysical performance. We showed that this variation in 

physiology by itself does not account for most of the observed performance effects. Whether 

temporal summation and spatial non-linearities accentuate the differences caused by density 

variation is a question to be addressed in future work. One hint that combining multiple model 

components can lead to predicted patterns of behavior not expected from either of the model 

components separately is the case of eye movements and temporal integration. Eye 

movements without temporal integration poses only a minor challenge for decoders. But eye 

movements combined with temporal integration results in spatial blur, and degrades 

performance, causing a loss in contrast sensitivity up to a factor of 2.5, with larger losses for 

stimulus spatial frequencies over 8 cycles per degree [119]. 

The discussion above raises the question, had we incorporated more features of the 

retina in our model, would the model make predictions more closely matched to human 

performance? We think this is unlikely, because we measured substantially larger asymmetries 

in cortex than in retina. If the retinal simulations entirely accounted for behavior, this would leave 

no room for the additional cortical asymmetries on behavior. 

Other retinal cell types  

Midgets are not the only retinal ganglion cells that process the visual field. Parasol (pRGCs) and 

bistratified retinal ganglion cells are less numerous but also cover the entire retina. pRGCs are 

the next most common retinal ganglion cells, and have generally larger cell bodies and dendritic 

field sizes than mRGCs, both increasing with eccentricity [49]. These differences cause 

parasols to be more sensitive to relative contrast changes and have higher temporal resolution, 

with the consequence of losing spatial resolution [123]. For this reason, the small mRGCs are 

much more likely to put a limit on spatial vision, and thus our model does not include pRGCs. 

We did not include or quantify radial densities in other intermediate cell layers in the retina, such 

as bipolar cells, horizontal cells, or amacrine cells. Their contributions are likely to introduce 

additional non-linearities, but it is unknown if their properties contain any radial asymmetries, 

and thus, to our knowledge, have not been incorporated in models. 
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A case for cortical contributions to visual performance asymmetries  

Our model incorporating spatial properties of mRGC only explained a small amount of the 

differences in behavior. This indicates a contribution from downstream processing, such as 

early visual cortex. This contrasts with recent retinal modeling of contrast sensitivity in the fovea, 

for which very little information used for behavior seems to be lost from the retinal output [119]. 

This may not be the case for the parafovea and periphery. V1-V2 cortex has several 

characteristics that suggest a tight link between cortical topography and radial visual 

performance asymmetries. Hence a model that incorporates properties of early visual cortex is 

likely to provide a substantially better account of radial asymmetries in behavior than one that 

only incorporates properties of the eye. We have not developed such a model but outline some 

of the reasons that cortex-specific properties are important for explaining radial asymmetries. 

First, the representation of the visual field is split across hemispheres in visual cortex 

along the vertical, but not horizontal meridian. This split may require longer temporal integration 

windows for visual input that spans the vertical meridian, as information needs to travel between 

hemispheres. For example, the response in the left visual word form area is delayed by ~100 

ms compared to the right visual word form area when presenting a stimulus in the left visual 

field [124]. Longer integration windows may in turn impair performance on some tasks, as eye 

movements during integration will blur the representation. Longer integration time of visual 

information spanning the vertical meridian is consistent with behavior, as accrual time is slower 

when stimuli are presented at the vertical than the horizontal meridian [36]. 

Interestingly, the hemispheric split is not precise: there is some ipsilateral representation 

of the visual field along the vertical meridian in early visual cortex [125]. The amount of 

ipsilateral coverage is larger along the lower than upper vertical meridian and increases from 1-

6° eccentricity. It is possible that the split representation affects performance for stimuli on the 

vertical meridian (contributing to the HVA), and that the asymmetry in ipsilateral coverage 

between the lower and upper vertical meridian contributes to the VMA. 

Second, there is good correspondence between the angular patterns of asymmetries in 

V1-V2 cortex and behavior. Radial asymmetries in the CMF of early visual cortex are largest 

along the cardinal meridians (i.e. horizontal vs vertical and upper vertical vs lower vertical). The 

asymmetries gradually fall-off with angular distance from the meridians [74]. This gradual 

decrease in radial asymmetry in cortex parallels the gradual decrease in contrast sensitivity [10, 

25, 26] and spatial frequency sensitivity [32] with angular distance from the cardinal meridians. 
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Measurements of cone density and retinal ganglion cell density have emphasized the meridians, 

so there is less information regarding how the asymmetries vary with angular distance from the 

meridians. 

Third, there is good correspondence between cortical properties and behavior in the 

domain of spatial frequency. Radial asymmetries in spatial frequency sensitivity observed by 

Barbot et al. [32] parallel spatial frequency tuning in V1 cortex. Specifically, fMRI measurements 

show that in V1, the preferred spatial frequency tuning is higher along the horizontal meridian 

than vertical [126], and in behavior spatial frequency thresholds are higher on the horizontal 

than vertical [32].  

Fourth, radial asymmetries in behavior are maintained when tested monocularly [10, 32], 

but thresholds are slightly higher compared to binocular testing (at least for spatial frequency 

sensitivity [32]). Higher thresholds (i.e. poorer performance) show that performance benefits 

from combining information of the two eyes, as twice the amount of information increases the 

signal-to-noise ratio [127]. This summation is likely to arise in early visual cortex, as V1 is the 

first stage in the visual processing pathways where information of the left and right visual field 

merges [128-130]. 

Conclusion 

Overall, we have shown that the well documented radial asymmetries in visual performance are 

associated with differences in the structural organization of cells throughout the early visual 

pathway. Radial asymmetries in cone density are amplified in downstream processing, from 

cones to RGCs and again from RGCs to early visual cortex. Further, we have extended our 

computational observer model to include spatial filtering of mRGCs and found that its 

contributions, although larger than those of cones, is far from explaining behavior. Future 

research will aim to integrate cortical data within the computational observer model to explain 

whether a significant amount of the radial asymmetries can be accounted for by the organization 

of cortical space in early visual cortex.  
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Methods 

Reproducible computation and code sharing 

All analyses were conducted in MATLAB (MathWorks, MA, USA). Data and code for our 

previously published and extended computational observer model, including density 

computations and figure scripts, are made publicly available via the Open Science Framework 

at the URL: https://osf.io/mygvu/ (previously published) and https://osf.io/d89s5/ (this study). 

Data sources 

Data on cone density, midget RGC density, and V1-V2 cortical surface area previously 

published or from publicly available analysis toolboxes. Both cone and mRGC densities were 

computed as cells/deg2 for 0–40° eccentricities (step size 0.05°), at the cardinal meridia (0°, 90°, 

180° and 270° polar angle, corresponding to nasal, superior, temporal and inferior retina of the 

left eye. Fig 1 contains averaged cone and mRGC densities across all meridians as a function 

of eccentricity. 

Cone density 

Cone density data for the main results were extracted from post-mortem retinal tissue of 8 

human retina’s published by Curcio et al. [7] using the analysis toolbox ISETBIO [69-71], 

publicly available via GitHub (https://github.com/isetbio/isetbio). 

Cone density in Supplemental Fig 1 shows two datasets computed by two analysis 

toolboxes. To extract post-mortem data from Curcio et al. [7], we either use ISETBIO or the 

rgcDisplacementMap toolbox [72], publicly available at GitHub 

(https://github.com/gkaguirrelab/rgcDisplacementMap). A second cone density dataset comes 

from an adaptive optics study published by Song et al. [8]. From this work, we use “Group 1” 

(young individuals, 22-35 years old) implemented in ISETBIO. 

Midget retinal ganglion cell receptive field density 

Midget RGC density for the main results were computed with the quantitative model by Watson 

[60] implemented in ISETBIO. This model combines cone density data from Curcio et al. [7], 

mRGC cell body data from Curcio & Allen [48] and the displacement model by Drasdo et al. 

[52], to predict the midget RGC receptive fields (RFs). 
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Midget RGC data in Supplemental Fig 1 computes mRGC density with two 

computational models: Watson [60] from ISETBIO and the displacement model by Barnett & 

Aguirre [72] implemented in the rgcDisplacementMap toolbox. 

Cortical magnification factor in early visual cortex 

To quantify the fovea-to-periphery gradient in the V1 cortical magnification factor (CMF), we 

used the areal CMF function published in Horton and Hoyt [61] for 0–40° eccentricity (Fig 1). 

Because the function by Horton and Hoyt does not make separate predictions for the cardinal 

meridians (Fig 2), we used data from the Human Connectome Project (HCP) 7 Tesla retinotopy 

dataset (n=181). HCP data were first published by Ugurbil, van Essen, and colleagues [131, 

132] and analyzed with population receptive field models by Benson et al. [75]). V1-V2 CMF 

surface area data are from Benson et al. [74] and computed as follows. (Note that more details 

on these methods are available Benson et al. [75]). 

To compute V1-V2 CMF from retinotopy data, we used the extracted surface area in 

±10° wedge ROIs centered on the cardinal meridia in each individual’s hemisphere. The 

wedges on the horizontal, dorsal, and ventral locations represented the horizontal, lower, and 

upper visual field meridians respectively. The wedges were separated into 5 bins between 1–6° 

eccentricity (1° step size, i.e. 1–2°, 2–3°, 3–4°, 4–5°, 5–6°). The cortical surface area (mm2) was 

summed across hemispheres within each subject and divided by the visual field area (deg2). 

Wedge ROIs were computed in the following steps: First, area V1 and V2 were 

automatically labeled in the measured retinotopic maps of each hemisphere using a Bayesian 

inference algorithm [133]. Second, for each cardinal meridian and each 1° eccentricity bin, we 

calculated the mean distance along the cortex to reach a 10° polar angle. All vertices that fell 

within the eccentricity bin and polar angle distance were included in the particular ROI. We 

computed wedge strips, rather than an entire wedge or line to avoid localization errors in 

defining the exact boundaries. ROIs used for the upper and lower vertical meridian included 

both V1 and V2 sections of the vertical meridian, assuming that V2 is approximately the same 

size as V1. However, these ROIs may be slightly less precise than the horizontal meridian ROI. 

For each eccentricity bin and cardinal meridian, mean and standard error V1-V2 CMF 

were computed from bootstrapped data across subjects (1000 iterations). Mean data for each 

cardinal meridian were fit with a linear function in log-log space (i.e. power law function in linear 

coordinates) for 1–6° eccentricity. 
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Convergence ratios 

The cone:mRGC ratio was computed by dividing mRGC density (cells/deg2) by cone density 

(cells/deg2) for 0–40° eccentricity, in 0.05° bins. When density data were separated by cardinal 

meridian, data for nasal and temporal retina were averaged into one horizontal meridian. The 

mRGC:CMF ratio was computed in cells/mm2. When comparing mRGC density to Horton & 

Hoyt’s CMF prediction, mRGC density (cells/deg2) was divided by V1 CMF (deg2/mm2) for 0–40° 

eccentricity, in 0.05° bins. When comparing HCP’s retinotopy CMF to mRGC density, mRGC 

density was restricted to 1–6° eccentricity, and divided by the power law functions fitted to the 

V1-V2 CMF. 

Asymmetry computation 

Radial asymmetries between meridians for cone density and mRGC density were calculated as 

percent change in retinal coordinates as in Equation 1 and 2: 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 = 100 ⋅
𝑚𝑒𝑎𝑛(𝑛𝑎𝑠𝑎𝑙,𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙) − 𝑚𝑒𝑎𝑛(𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟,𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟)

𝑚𝑒𝑎𝑛(𝑛𝑎𝑠𝑎𝑙,𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙,𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟,𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟)
  (Eq 1) 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑀𝑒𝑟𝑖𝑑𝑖𝑎𝑛 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 = 100 ⋅
𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 − 𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟

𝑚𝑒𝑎𝑛(𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟,𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟)
     (Eq 2) 

Radial asymmetries in V1 CMF and behavior were computed with the same equations, but for 

visual field coordinates (i.e. nasal and temporal retina are left and right visual field meridians, 

and superior and inferior retina are lower and upper visual field meridians). 

Computational observer model 

The computational observer uses and extends a published model and simulated data [46]. The 

extensions include a midget RGC layer between the cone isomerization stage and the 

behavioral inference stage, and adding an SNR inference engine. The few occasions that 

additional cone absorption data needed to be simulated (e.g. higher stimulus contrasts for the 

SNR observer), we set the random number generator to the identical seed used previously to 

replicate the cone mosaic data. Given that the model and cone absorption data for simulated 

experiment are identical to those to the previous study, we refer to those methods on Scene 

radiance, Retinal irradiance, Cone mosaic and absorptions, Eye movements, and the 

Behavioral inference using a linear SVM classifier. 
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Stimulus parameters 

The computational model simulates a 2-AFC orientation discrimination task while varying 

stimulus contrast. The stimulus parameters are chosen to match the baseline condition of the 

psychophysical study by Himmelberg et al. [28], whose results have replicated the 

psychophysical study used for comparison in our previous computational observer model [11]. 

The recent psychophysics experiment used achromatic oriented Gabor patches, ±15° oriented 

from vertical, with a spatial frequency of 4 cycles per degree. Stimuli were presented at 4.5° iso-

eccentric locations on the cardinal meridians, with a size of 3x3° visual angle (σ = 0.43°) and 

duration of 120 ms. These stimulus parameters were identical to those the model, except for 

size, duration and phase randomization of the Gabor. The simulated stimulus by the model was 

smaller (2x2° visual angle (σ = 0.25°), shorter (54-ms, 2-ms sampling) without stimulus on- of 

offset period, and the phase of the Gabor patches was either 90° or 270°, which was 

randomized across trials. 

Midget RGC layer 

Prior to the mRGC layer, Gabor stimuli were simulated as spectral scene radiance from a visual 

display, passed through the simulated human optics, subject to small fixational eye movements 

and isomerization by the cones in a rectangular mosaic (2x2° field-of-view) and saved as 

separate files for each stimulus contrast. The mRGC layer loaded the simulated 2D time-varying 

cone absorptions. 

The mRGC layer was built as a rectangular array, with the identical size mosaic as the 

cone mosaic (2x2°). Spatial summation by RGC RFs was implemented as 2D Difference of 

Gaussian (DoG) filters [79, 80]. To define the size of the DoG RF, we first defined the 

mRGC:cone ratio parameter. We do not model on- and off-center mRGCs separately, assuming 

that one linear mRGC (no rectification) represented a pair of rectified on- and off-centers. The 

variations in mRGC:cone ratios ranged from 2:1, 1:1, 0.67:1, 0.50:1, 0.40:1, where the highest 

ratio (2:1) is similar to the observed in the fovea and the lowest ratio (0.4:1) is similar to the 

observed at ~12° eccentricity [60]. These ratios spanned wide range because the purpose of 

the modeling was to assess how variation in mRGC spacing affects performance. 

The DoG size was based on Croner & Kaplan [81]: one standard deviation of the center 

Gaussian (σc) was 1/3 times the mRGC spacing. One standard deviation of the surround 

Gaussian (σs) was 6 times the center standard deviation. The center/surround weights were 

0.64:0.36, hence unbalanced. These parameters create neighboring DoG RFs that overlap at 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.20.347492doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347492
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

32 

1.3 standard deviation from their centers, approximating RGC tiling in human retina based on 

overlap of dendrites fields [50]. 

The spatial computations of the mRGC layer were implemented in two stages. In the first 

stage, the 2D DoG filter was convolved with each 2D cone absorption frame separately for each 

time point and trial. The filtered cone responses were constrained such that the post-convolution 

array maintained the same size (using MATLAB’s conv2 with shape variable set to ‘same’). In 

the second stage, the filtered cone responses were linearly subsampled. This was implemented 

by resampling each row and column of the filtered cone responses with a sample rate equal to 

the mRGC:cone ratio. These spatially filtered and subsampled responses are the mRGC 

responses, which remained in units of photons/ms as there was no phototransduction from cone 

absorptions to cone current, and no spiking non-linearity implemented in this transformation. We 

did not implement Poisson noise in the mRGC layer. 

Simulated experiments 

A single simulated experiment had a total of 6,000 trials: 400 trials per contrast level, 200 

clockwise and 200 counter-clockwise, which can be further subdivided in 100 trials with either a 

90° or 270° stimulus phase. Stimulus contrast was systematically varied from 0 to 10% 

Michelson contrast, using 15 contrast levels1. The cone mosaic was identical across contrast 

levels, including the spatial distribution of L-, M-, and S- cones, the cone density, the cone 

spacing and the presence of fixational eye movements. Data from a single contrast level were 

represented as a 4D array (m rows by n columns by 28 time points by 400 trials). The size of 

the m by n frame depended on the defined subsampling ratio used for the mRGC layer. 

This single experiment was repeated for 13 different cone mosaics, which varied 

systematically in cone density and spacing. The cone density variation was implemented by 

simulating cone mosaics at different eccentricities, ranging from a density as high as at the 

fovea (2.3 x104 cells/deg2) to as low as at 40° eccentricity on the horizontal meridian (0.047 x104 

cells/deg2). This resulted in a total of 78,000 simulated trials (6,000 trials x 13 cone densities). 

Simulated experiments for each of the 13 different cone densities repeated for each of 5 

different mRGC:cone ratios. Lastly, this entire simulation procedure was repeated 5 times, using 

 

1 Simulations for the cone mosaics with the three lowest densities and SNR observer required 9 additional 
contrasts levels ranging from 20% and 100% in order for the model performance to saturate at 100%. 
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a different random number generator seed for each replication iteration. This resulted in a total 

of 1,950,000 simulated trials (6,000 trials x 13 cone densities x 5 ratios x 5 replications). 

Inference engines 

The simulated trials were fed into an inference engine. The task of the inference engine was to 

classify if a trial contained a clockwise or counter-clockwise oriented Gabor stimulus given the 

mRGC responses. Classification was performed separately for every 400 trials, i.e. separately 

for each contrast level, cone density, mRGC:cone ratio, and replication iteration of a single 

experiment. This classification routine was identical for each type of inference engine. 

For the main analysis, we used a linear SVM classifier as implemented in MATLAB’s 

fitcsvm with 10-fold cross-validation and built-in z-scoring. This procedure is identical to the 

previously published model. Prior to classification, each 2D frame of mRGC responses was 

transformed to the Fourier domain using a 2D FFT and the phase information was discarded. 

This transformation step was executed for each time point and trial separately. The mRGC 

amplitudes were concatenated across time and space, resulting in a single vector of trials by 

mRGC amplitudes. The order of the trials within this vector was randomized and fed into the 

linear SVM classifier with a set of stimulus labels. The classifier trained its weights on 90% of 

the trials, and tested on the 10% left-out trials. This resulted in accuracy (percent correct) for 

each given contrast level. 

Accuracy data for a single simulated experiment were averaged across the five 

replication iterations. Error bars were computed for each contrast level as standard error across 

1000 bootstraps, bootstrapping the mean across the 5 accuracy values with replacement. To 

extract the contrast threshold, a Weibull function was fitted to the average accuracy data. The 

threshold was defined as the power of 1 over the slope of the Weibull function, which comes out 

approximately ~80% correct, given that chance is 50% for a 2-AFC task and our slope was 

defined as β = 3. 

For the comparing inference engines in Fig 5, we used an ideal observer, a linear SVM 

computational observer, and an SNR computational observer. The implementation of the ideal 

and linear SVM model were identical to the previous published study [46]. Therefore, we only 

describe the details for the SNR computational observer below. 

The SNR computational observer makes its decision based only on the signal-to-noise 

ratio and was implemented using MATLAB’s snr function. From all three inference engines, this 
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observer provides a lower bound on model performance as it has no knowledge about the 

stimulus or the task, and does not train on a set of trials to learn a stimulus template. Because 

the SNR observer has no knowledge about the stimulus or the task, it performs a same/different 

task rather than a classification task. 

The SNR observer decides whether a stimulus is the same or different based on two 

inputs: one distribution of mRGC responses containing signal and one containing noise. The 

signal and noise distributions are defined by using a simplified version of the model as it has 

only one source of noise (photon noise), a cone mosaic with only one cone type (L-cones), no 

fixational eye movements, and no stimulus phase shifts. We define signal by taking the 

difference in noiseless clockwise and counter-clockwise mRGC responses for each 2-ms frame 

within a trial. The noise is defined as the background photon noise by subtracting the noiseless 

mRGC responses from mRGC responses with photon noise for each 2-ms frame within a trial. 

Here, we assume that the spread of the pooled noise distribution is the same for the two 

stimulus classes, thus we can define the noise from either stimulus classes (in this case we use 

clockwise trials). These signal and noise input distributions are a 3D-array with the dimensions 

time points x mRGCs x trials. 

The signal and noise distributions were then vectorized by concatenating all responses 

of all trials and input of the snr function. This function first computed the magnitude in signal and 

noise by taking the sums of squares of each vector and are in units of decibel, and then divides 

the signal magnitude by the noise magnitude to get the signal-to-noise ratio in decibel. To 

compare the observer’s performance to other inference engines, we converted the output from 

magnitude (dB) to discriminability-index (d’), and convert d’ to percent correct. Doing so, we 

assume that the SNR observer sets an unbiased criterion to determine whether the signal 

component comes from two of the same or different stimuli. By comparing the SNR observer to 

the ideal and SVM observer, we make a second assumption: performing a same/different task 

and performing a 2-AFC discrimination task result in similar performance. 

Comparing model performance to behavior 

To quantify the contribution of the spatial filtering by mRGCs, we compared the model 

performance to behavior reported by Himmelberg et al. [28]. First, we extracted the contrast 

thresholds across cone density and fitted a linear function in log-log space (i.e. power law 

function) to the contrast thresholds, separately for each simulated mRGC:cone ratio. 
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Second, we placed these fits for each ratio in a 3D coordinate space: where the x-

dimension represents cone density, y-dimension represents the mRGC to cone ratio, and the z-

dimension represents the predicted contrast threshold by the linear fits in log-log space. To get 

a finer representation of predicted contrast thresholds as a function of mRGC:cone ratio, we 

linearly interpolated thresholds along the mRGC:cone ratio axis by a factor of 8. This resulted in 

mRGC:cone ratios at a sample rate of 0.1. For visualization purposes of the 3D mesh, cone 

density was resampled to have equal log10 spaced values. 

Third, we calculated the observed cone density and mRGC:cone ratio at 4.5° eccentricity 

for the four cardinal meridians using data from Curcio et al. [7] and Watson [60]. With the linear 

interpolation, maximum error for the calculated ratio did not exceed ±0.014. This calculation 

results in four [cone, mRGC]-density coordinates to extract predicted contrast thresholds by our 

model for each cardinal meridian at 4.5° eccentricity. Predicted thresholds for the ‘model up to 

cones’ were computed using previously published mean contrast thresholds [46] (varying cone 

density condition). These data were fitted with a linear function in log-log space to match the 

power function used for fitting the contrast thresholds for the mRGC model. 

Contrast thresholds were converted into contrast sensitivity by taking the reciprocal. 

Nasal and temporal retina are averaged to represent the horizontal meridian. Because cone 

density can vary dramatically across observers [134, 135], we computed error bars that 

represent the amount of variability in predicted sensitivity based on a difference in underlying 

cone density (instead of caused by the random number generator seed as in Supplemental Fig 

2 and 3). 

The upper/lower bound of the error bars in cone and mRGC model predictions were 

defined by assuming that our estimates of cone density on the meridians are imperfect. 

Specifically, we assumed that the measured asymmetries might be off by as much as a factor of 

2. So, for example, if the reported density for the horizontal meridian is 20% above the mean, 

and for the vertical meridian is 20% below the mean, we considered the possibility that they 

were in fact 40% above or below the mean, or 10% above or below the mean.  
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Supplementary Material 

 

Supplemental Fig 1. Radial asymmetries for cone density, mRGC density and V1-V2 surface area computed 
from different publicly available datasets. Asymmetries are in percent change, calculated as the difference 
between horizontal and vertical meridians divided by their mean (left column), the difference between upper and 
lower vertical meridians divided by their means (right column). Positive asymmetries would positively correlate with 

observed differences in behavior. (Top row) Cone data are from either Curcio et al. [7] (black lines) or Song et al. [8] 

(orange line) computed with either ISETBIO (solid lines) or rgcDisplacementMap toolbox (dotted lines). (Middle row) 
Midget RGC RF data are computed using the computational model by Watson (2014) implemented in the ISETBio 
toolbox (solid black line) or Barnett & Aguirre [72] implemented in the rgcDisplacementMap toolbox (dotted black 
line). (Bottom row) V1-V2 surface is computed from the Human Connectome Project 7T retinotopy dataset (n=181), 
using the analyzed dataset by Benson et al. [74, 75]. Surface areas are defined as ±10° wedge ROIs from 1-6° 
eccentricity around the meridians, avoiding the central one degree and stimulus border (7-8°) as those data can be 
noisy. Note that the x-axis is truncated as cortical measurements are limited by the field-of-view in the fMRI 
experiment. Data are fit with a 2nd degree polynomial, R2 = 0.54 for horizontal-vertical and R2 = 0.81 for vertical-
meridian asymmetries). We use wedge ROIs instead of line ROIs because wedges are more robust to errors. For the 
horizontal meridian, wedge ROIs fall solely in V1, but for the vertical meridian wedges they fall partially on the V1-V2 
dorsal and ventral borders. Here, we assume that area V2 is approximately the same size as V1, allowing us to 
estimate V1 vertical meridian surface area from V2. 
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Supplemental Fig 2. Classifier performance varying with cone density, separately for each mRGC:cone ratio. 
Classifier accuracy is averaged across 5 iterations of a simulated experiment with 200 clockwise and 200 counter-
clockwise trials. Average accuracy data are fitted with a Weibull function. Error bars represent standard error across 5 
repeated experiments. The 0.4:1 mRGC:cone ratio (second row, middle column) is computed with higher contrasts 
for the cone mosaics with the three lowest cone densities (red to orange lines), as model performance did not 
saturate before 10% stimulus contrast. 
 
 
 
 
 
 
 

 

Supplemental Fig 3. Classifier performance for computational observer model up to cone isomerization. (A) 

Psychometric functions. Classifier accuracy is averaged across 5 iterations of a simulated experiment with 200 
clockwise and 200 counter-clockwise trials. Average accuracy data are fitted with a Weibull function. (B) Contrast 
thresholds as a function of cone density. Data points are fitted with a linear function in log-log space (power law 
fit, red line). Data are averaged across 5 iterations of a simulated experiment varying in cone density. Error bars 
represent the standard error from bootstrapping the mean across 5 iterations, 1000 times with replacement. 
Goodness of fit for power law are R2 = 0.86. 
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