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Abstract

Estimation of relatedness between pairs of individuals is important in many genetic re-
search areas. When estimating relatedness, it is important to account for admixture if this
is present. However, the methods that can account for admixture are all based on genotype
data as input, which is a problem for low depth next-generation sequencing (NGS) data from
which genotypes are called with high uncertainty. Here we present a software tool, NGSremix,
for maximum likelihood estimation of relatedness between pairs of admixed individuals from
low depth NGS data, which takes the uncertainty of the genotypes into account via geno-
type likelihoods. Using both simulated and real NGS data for admixed individuals with an
average depth of 4x or below we show that our method works well and clearly outperforms
all the commonly used state-of-the-art relatedness estimation methods PLINK, KING, re-
lateAdmix, and ngsRelate that all perform quite poorly. Hence, NGSremix is a useful new
tool for estimating relatedness in admixed populations from low-depth NGS data. NGSremix
is implemented in C/C++ in a multi-threaded software and is freely available on Github
https://github.com/KHanghoj/NGSremix.

1 Introduction

Estimation of genetic relatedness between pairs of individuals is important in many genetic research
areas. For example, genetically related individuals are removed or accounted for in genome-wide
association studies to avoid an inflated false positive rate. The relatedness between a pair of indi-
viduals is most often described using the concept of identity-by-descent (IBD), which is genomic
identity due to recent common ancestry. To quantify the relatedness between a pair of individuals
the summary statistics R = (k0, k1, k2) can be used, where k0, k1 and k2 are the proportion of the
genome where a pair of individuals share 0, 1, or 2 alleles IBD, respectively. These statistics are
useful because their expected values differ between different types of familial relationships, with
the expected value of k0 being 1 for unrelated individuals and in general it is smaller the closer
related two individuals are. For instance the expected values of R for sibling pair is (0.25, 0.5, 0.25)
and for a parent offspring pair is (0, 1, 0). R can therefore be used to quantify how closely related
two individuals are. There are also other IBD based summary statistics of relatedness, like the
kinship coefficient, however we will here focus on R, because other such summary statistics can be
calculated from it. For example, the kinship coefficient is simply θ = k1

2 + k2.

Several methods exists for estimation of relatedness between a pair of individuals. When choos-
ing a method to use it is important to consider what type of data is available, where the individuals
are from and whether the individuals are admixed. Most current methods are based on the as-
sumption that the individuals are from a homogeneous population [1, 2, 3, 4, 5], including the
commonly used method implemented in PLINK [1]. If this assumption is violated the estimation
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of relatedness will be biased and relationships can be miss-classified [6, 7, 8]. To address this
problem, several methods, such as RelateAdmix [6] and KING [9] have been developed. These
methods are all developed to be applied to diallelic genotype data, like single nucleotide poly-
morphism (SNP) chip data. However, next-generation sequencing (NGS) data are becoming more
common, and often this data is sequenced at low to medium depth, where genotype calling can
come with significant biases [10]. This bias will be propagated into relatedness estimation and
can lead to miss-classification of pairwise relatedness [11]. This issue can be avoided if instead of
calling genotypes from low depth data one accounts for the genotype uncertainty by summing over
all possible unobserved genotypes and weighting each of these using genotype likelihoods (GL).
Several methods, like ngsRelate [11, 12], have used this approach to estimate pairwise relatedness
from homogeneous populations from low depth sequencing data. However, none of these methods
address relatedness estimates between individuals with admixed ancestry.

Here we present a maximum likelihood method, NGSremix, that can estimate relatedness
(R) from low depth sequencing data when individuals have admixed ancestry. The method takes
genotype likelihoods, admixture proportions and ancestral allele frequencies as input. The genotype
likelihoods can be calculated using many software such as Samtools [13] and ANGSD [14], and
ancestral allele frequencies can be estimated from clustering methods such a NGSadmix [15] or
PCAngsd [16] assuming that the ancestral populations are discrete and there is NGS or genotype
data available from a sufficient number of individuals. We also present a performance assessment
of the method using both simulated data and sequencing data from the 1000 genomes project
and compare its performance the commonly used state-of-the-art methods, PLINK [1], KING [9],
relateAdmix [6], and ngsRelate [12] when applied to admixed individuals with low-depth NGS
data. Importantly, the assessment shows that NGSremix works well and clearly outperforms all
the other methods when there is admixture and you have low depth NGS data.

2 Method

2.1 The model

The main objective of the model is to enable maximum likelihood estimation of the relatedness
coefficients (R = (k0, k1, k2)) for two individuals, A and B, with ancestry from one or more of
K different populations. We assume that we have NGS data from M variable diallelic sites for
both individuals and denote this XA = (XA1 , X

A
2 , ..., X

A
M ) and XB = (XB1 , X

B
2 , ..., X

B
M ). Fur-

thermore, we assume that the paired ancestry proportions for both individuals, denoted ΦA =
(φA11, φ

A
12, φ

A
21, ..., φ

A
KK) and ΦB = (φB11, φ

B
12, φ

B
21, ..., φ

B
KK) are known. Finally, we assume that for

each site the ancestral allele frequencies for the K populations, F , are known. In practice we es-
timate the ancestral allele frequencies F using NGSadmix [15] and the paired ancestry proportion
is estimated as described in Supplementary Material section 5.4. The paired ancestry proportions
are simply the proportions of sites in the genome with a certain combination of ancestry, i.e. φAa1,a2

denotes the proportion of individual A’s genome where the first allele is from population a1 and
the second allele is from population a2.

Using this terminology we then write up the likelihood function for R. Since we assume ΦA,
ΦB and F are known we have for simplicity not included them in this likelihood function. On
the other hand, for each site the four alleles and their ancestry (a = (aA1 , a

A
2 , a

B
1 , a
B
2 ), IBD status

(z = (z1, z2)), and ordered genotypes (gA and gB) are not observed, see Figure 1. Therefore,
we include these as latent variables and weight each possible value of these by their probability.
Specifically, the likelihood function can be written as

P (XA, XB|R) =
M∏
j=1

∑
z∈{0,1}2

∑
a∈{1,..,K}4

∑
gA,gB∈{0,1}2

P (XAj |GAj = gA)P (XBj |GBj = gB)

P (GAj = gA, GBj = gB|Aj = a, Zj = z)P (Aj = a|Zj = z)P (Zj = z|R),

where z = (z1, z2) with z1 indicating whether allele 1 of individual A and B are IBD and z2

indicating whether the two individuals’ allele 2 are IBD. Furthermore, a = (aA1 , a
A
2 , a

B
1 , a
B
2 ) are the

unobserved ancestral populations of the two individuals’ two alleles and gA and gB are the ordered
genotypes for both individuals. Note, that we sum over all possible ordered genotypes such that
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both alleles from individual 1 can be IBD with any of the two alleles of individual 2, if they are
from the same ancestry and have the same allelic state. P (XAj |GAj = gA) and P (XBj |GBj = gB)
are GLs that represent the information from the sequencing data, which can be calculated as
described in Section 2.2.3 e.g. using ANGSD [14]. The rest of the components of the likelihood
function and a detailed description of how the likelihood function is derived are described in detail
in Supplementary Material Section 5.2.

aA1 gA1ind A

Allele 1

aA2 gA2

Allele 2

aB1 gB1ind B aB2 gB2

z2z1

aA1 =AFR
gA1 =T

ind A

Allele 1

aA2 =AFR
gA2 =G

Allele 2

aB1 =AFR
gB1 =T

ind B aB2 =EU
gB2 =T

z1=1 z2= 0

Figure 1: Left: Diagram of the unobserved state of the latent variables, z, a, gA, gB, in a site. The
circles represent the two alleles of each of the two individuals A and B. Specifically, for each of
these individuals, e.g. individual A, the first allele has an unobserved ancestry state aA1 , which can
take any value among the K possible ancestral populations and an unobserved allelic state, gA1 .
Similarly, the second allele has an unobserved ancestry state, aA2 , and an unobserved allelic state,
gA2 , where (gA1 , g

A
2 ) constitutes the unobserved ordered genotype, gA, for the individual. Lines

indicate the unobserved IBD states, i.e. whether the first alleles of the two individuals are IBD,
z1, and whether the second alleles of the two individuals are IBD, z2. Right: Example diagram
with a set of realized values for all the latent variables for two African American individuals with
genotypes T/G and T/T (gA = (T,G) and gB = (T, T )), who share their first allele IBD (z1 = 1),
which is possible because these alleles have the same African ancestry (aA1 = aB1 = AFR) and the
same allelic state (gA1 = gB1 = T ). The second allele of the two individuals cannot be IBD (z2)
because the two alleles originate from different ancestral populations (aA2 = AFR 6= aB2 = EU)
and/or because they have different allelic states

(
gA2 = G 6= gB2 = T

)
. Note that we here used T

and G instead of 0 and 1 as possible allelic states and AFR and EU instead of 1 and 2 as possible
ancestral states to make the example more concrete.

To obtain maximum likelihood estimates of the paired ancestry Φ and the relatedness coef-
ficients R, we are using an Expectation-Maximization (EM) algorithm. The EM algorithm is
described in the Supplementary Material Section 5.3 and 5.4. For faster convergence, we im-
plemented an accelerated EM algorithm using the squared iterative approach (S3) developed by
Varadhan et al. [17]. The method is implemented in C/C++ in a multi-threaded software and is
available on Github https://github.com/KHanghoj/NGSremix.

2.2 Simulation of data

Data were simulated to validate NGSremix and compare its performance with the existing meth-
ods: PLINK [1], KING [9], relateAdmix [6], and ngsRelate [12]. Using allele frequencies from
Northern Europeans from Utah (CEU) and Yoruba in Ibadan, Nigeria (YRI) samples from the
1000 genomes project [18] we simulated NGS data with 100,000 diallelic sites for 10 pairs of indi-
viduals for each of 6 different relationship types: unrelated individuals (R = (1, 0, 0)), full siblings
(R = (0.25, 0.5, 0.25), parent-offspring (R = (0, 1, 0)), half siblings (R = (0.5, 0.5, 0)), first cousins
(R = (0.75, 0.25, 0)). The performance of the methods were evaluated using NGS data simulated
based on 5 different average depths: 1x, 2x, 4x, 8x, and 16x. Data were generated by first sim-
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ulating genotypes for each pair of individuals (see Section 2.2.1). Next, the genotypes were used
to simulate NGS data (see Section 2.2.2) and finally GLs were calculated (section 2.2.3). Finally,
we estimated ancestral allele frequencies from these GLs using NGSadmix [15], that accounts for
genotype uncertainty, allowing for two ancestral sources and used these estimates along with the
GLs as input to our method.

As input to ngsRelate we only used the GLs. For PLINK and KING that both require genotype
data, we called genotypes from the calculated GLs by choosing the genotype with the highest GL
and used these as input. For RelateAdmix that requires genotypes as well as admixture propor-
tions and ancestral allele frequencies, we first used the called genotypes to estimate admixture
proportions and ancestral allele frequencies using using ADMIXTURE [19] and then used these
estimates as well as the called genotypes as input.

2.2.1 Simulation of genotypes

For unrelated pairs we simulated genotypes without linkage disequilibrium by first randomly sam-
pling an admixture proportion between the two ancestral populations (CEU and YRI) of 0, 0.25,
0.5, 0.75 or 1 for each individual. Then for each site the ancestry of the alleles for each of the two
individuals were sampled using the admixture proportions. Finally, the genotypes were sampled
based on the sampled ancestral populations at that site and the allele frequencies from the 1000
genomes project [18]. For the remaining relationship types, haplotypes were simulated by first
simulating genotypes for an appropriate number of unrelated admixed founder individuals using
the same approach as for the unrelated pairs. Next, we simulated data for the relevant pair by
simulating offspring of these founders (and in some cases their offspring) using the relevant pedi-
gree. E.g. for siblings we simulated data for two unrelated founder individuals (parents) and then
simulated the siblings by simulating two offspring from these parents. In all cases, genotypes for
an offspring of two parents were simulated at each site by randomly sampling one allele from each
parent.

2.2.2 Simulation of NGS data

Based on the simulated genotypes, NGS data was generated for each individual as follows. First,
the sequencing depth d at each site was sampled from a Poisson distribution with mean equal to the
specified average sequencing depth. Next, d bases were sampled at each site j, Xj = (b1, b2, ..., bd),
based on the individual’s genotype and a per base sequencing error probability, ε, of 0.005. In case
of a sequencing error, the base is replaced with the other possible base at the site.

2.2.3 Calculation of genotype likelihoods

GLs were calculated using the model described by Mckenna et al. [20]. However, for simplicity
we assume that there is only two alleles. At each site j and for each of the genotypes, Gj = Y1Y2

where Y1, Y2 ∈ {0, 1}, we calculated the likelihood of observing the NGS data Xj = (b1, b2, ..., bd),
as

P (Xj |Gj = Y1Y2) =
d∏

i=0

(
1

2
P (bi|Y1) +

1

2
P (bi|Y2)

)
where

P (bi|Y ) =

{
ε b 6= Y
1− ε b = Y

Note, that this model was originally described for unordered genotypes, but that the genotype
likelihoods for ordered genotypes are the same as for unordered genotypes.

2.3 Real data

We also tested NGSremix on real data from 268 individuals from the 1000 genomes project [18].
These individuals have all been sequenced at low depth, however, they have also been genotyped
using SNP chips and many of them have been sequencing with high depth exome and/or whole
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genome sequencing. Therefore, we also have a high quality genotype data set to compare the low
depth sequencing data to. Specifically, we analysed individuals from the admixed population of
Americans of African Ancestry (ASW, n=61). We also included some European individuals (CEU,
n=99) and some African individuals (YRI, n=108) in order to estimate accurate admixture pro-
portions and ancestral allele frequencies for the admixed ASW individuals. To assess performance
on low depth NGS data, we analysed the low depth NGS data for these samples which have a
median depth around 4x depth of coverage. First, we calculated genotype likelihoods (GL) (-gl 2
-Q 30 -q 30) for all individuals using ANGSD [14]. When doing so we restricted the analysis to
polymorphic sites in the high quality genotype data for these three populations with a minor allele
frequency of 0.05, followed by LD pruning (PLINK1.90 –indep-pairwise 50 10 0.1) [21]. A total
of 329.453 sites were used for downstream analysis. Next, we estimated the ancestral allele fre-
quencies using NGSadmix [15], that accounts for genotype uncertainty, allowing for two ancestral
sources. Finally, we applied NGSremix to the GL data, ancestry proportions, and ancestral allele
frequencies to estimate the relatedness coefficients (R) for all pairs of individuals.

For comparisons using PLINK, KING and relateAdmix, we called genotypes from the low depth
NGS data by choosing the maximal genotype likelihood for each site and each individual and used
these as input. Furthermore, for relateAdmix we estimated ancestry proportions and ancestral
allele frequencies from the called genotypes using ADMIXTURE [19] and used these as additional
input.

To validate the results obtained from the low depth sequencing data, we performed a set of
secondary analyses using the high quality genotype data for the same individuals using the same
set of genomic sites.

3 Results

3.1 Performance assessment using simulated data

We first assessed the performance of NGSremix on simulated data. We simulated genotype data for
6 different relationship types and various admixture scenarios based on allele frequencies from the
CEU and YRI 1000 Genomes population data. From these genotype datasets we then simulated
NGS data with depths 1x, 2x, 4x, 8x, and 16x. Finally, we estimated k0, k1, and k2 values for
the simulated NGS data for all pairs of individuals (N=7140) using our NGSremix as well as the
four commonly used state-of-the-art methods ngsRelate, relateAdmix, PLINK, and KING. Since
KING estimates kinship and not R, the kinship coefficient for NGSremix and KING were also
compared. When analysing the simulated data with average depths of 8x or 16x, all methods
can distinguish between full siblings, half-siblings, and parent-offspring (Supplementary Material
Figures S1 and S2). However, only our NGSremix and relateAdmix obtain accurate estimates and
allows clear separation of unrelated individuals from first-cousin. For simulated NGS data with an
average depth of 4x, i.e. low depth NGS data, NGSremix is the only method that gives accurate
results and allows the different relationship types to be distinguished from each other (Figure 2).
ngsRelate give somewhat reasonable estimates for the first degree relationships, however cannot
separate the unrelated, second-cousin, and first-cousin. relateAdmix on the other hand, can for the
most part distinguish between the relationships, but the relatedness coefficient estimates cannot be
interpreted as IBD fractions making it difficult to use them e.g. for relationship classification. The
last two methods, PLINK and KING, performs worse in this scenario with estimated relatedness
and kinship coefficients that are difficult to interpret. Similar results are obtained at lower depths
(Supplementary Material Figures S3 and S4); even on 1x data our method performs fairly well,
especially when increasing the number of sites, and is able to differentiate all relationship types
except from unrelated and second cousins, see Supplementary Material Figure S5.

3.2 Performance assessment using real data

To further assess the performance of NGSremix we also applied the same methods to data from
the admixed African American individuals from the 1000 genomes project. First, we applied the
methods to high quality genotype data for these individuals to obtain estimates that are as close
to the truth as possible, see Supplementary Material Figure S6. NGSremix and relateAdmix that
are both designed to take admixture into account, gave close to the same results and identified
5 parent-offspring pairs, 1 pair of half siblings and 2 pairs of individuals as first-cousins. These
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Figure 2: Estimated k1 and k2 or kinship for 140 simulated admixed individuals with 6 relationship
types (10 of each type of related pairs) and an average depth of 4x. Plots of estimated R values
are visualized for NGSremix, ngsRelate, reateAdmix, and PLINK. Plots of the kinship coefficient
for NGSremix and KING are provided since KING only estimates kinship
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results are consistent with previous reports for these pairs [22]. In contrast PLINK, ngsRelate
and KING showed larger variance over estimates k0 and k1 and while they identify the same 5
parent-offspring pairs and the half-sibling pair, the results for the 2 first cousin pairs are either
difficult to interpret (due to high k2 estimates) or indicate a first cousin relationship and/or can
not be distinguished from the unrelated pairs.

We next applied the methods to low-depth sequencing data (around 4x) from the same in-
dividuals. The results showed that our method is the only method that is able to identify the
same related individuals as identified from the high quality genotype data by both NGSremix and
relateAdmix (Figure 3. ngsRelate have similar, suboptimal results as it did when it was applied
to the high quality genotype data, while relateAdmix, PLINK and KING performed markedly
worse. Hence, our method clearly outperforms the existing methods when applied on low-depth
NGS data, not only for simulated data but also for real data.

4 Discussion

We have presented a new maximum likelihood based software tool, NGSremix, for estimation of
pairwise relatedness between admixed individuals sequenced at low depth. Using simulated data
and data from the 1000 genomes project, we have showed that our method is superior when used
on admixed individuals sequenced at low depth compared to current state-of-the-art methods:
PLINK, KING, relateAdmix, and ngsRelate. NGSremix’s accurate estimates of relatedness are
due to the fact that it takes GLs as input instead of called genotypes, which is an advantage for
low-depth NGS data, where genotypes cannot be called with high certainty. Secondly, NGSremix
handles admixture by estimating paired ancestry proportions and including these in the model.

From the results of the simulations, we saw that the state-of-the-art methods that rely on
genotypes as input could separate full-siblings, parent-offspring, and half-siblings when the average
depth was 16x. However, KING, ngsRelate and PLINK gave highly inaccurate relatedness/kinship
estimates for the sibling and unrelated pairs. In contrast, relateAdmix [6] provided accurate esti-
mates close to similar to the results of NGSremix, which is not a surprise as relateAdmix account
for admixture and is methodically very similar to NGSremix. This shows that calling genotypes
is a good option if the depth is high enough to call genotypes correctly and when an appropriate
method that takes admixture into account is used. However, when lowering the simulated depth to
8x the genotype-based methods, including relateAdmix, obtained less accurate results compared
to those based on 16x data. For depths below 8x, the uncertainty of genotype calls reached a level
where the genotype-based methods began to give nonsensical results e.g. for 4x data did PLINK
[21] and KING [9] estimate all k1 coefficients and kinship coefficients to zero for all pairs of indi-
viduals regardless of relationship type. Thus, our results show that calling genotypes for low depth
NGS data can greatly bias estimation of pairwise relatedness. This is not the case when using
genotype likelihoods, because they contain all information about the uncertainty of the genotype,
while this information is lost when calling a genotype. Even for simulated data of depth 1x our
method provided sensible results, however, albeit more noise was observed. We can not make an
exact statement about how low a depth our method can handle. Since it will depend on number
of SNPs, how admixed the individuals are, and the number of individuals. However, we expect it
will not work well with lower depth since observing reads containing each individuals two alleles
would be required at least at some sites.

All the tested methods in this paper, including NGSremix, has a series of limitations. First, the
estimated relatedness from the real data can deviate from the expectation for all relationship pairs
except for parent-offspring and monozygotic twins, e.g. the kinship coefficients for a pair of full-
siblings is expected to be 0.5, but will often deviate from this exact value. This is due to biological
variance during the recombination process, where a pair can share more/less IBD segments than
expected [23] with variable variance depending on the relationship [24]. This can in some cases
make it challenging to disentangle the actual degree of a pair of relatives. Second, all the methods
either assume allele frequencies are from discrete homogeneous populations or in the case of KING
assumes that each pair of individuals is from the same homogeneous populations. Third, for all
of the methods except for KING the number of individuals included in the analysis is important
since they are based on the assumption that allele frequencies can obtained. For NGSremix and
relateAdmix the number of individuals is even more important because these methods are based on
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Figure 3: Inferred relatedness, k1 and k2 or kinship, for 168 admixed African Americans from
the 1000 genomes project sequenced at low depth. Plots of estimated R values are visualized for
NGSremix, ngsRelate, relateAdmix, and PLINK. Plots of the kinship coefficient for NGSremix and
KING are provided since KING estimates kinship and not R.
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the assumption that the ancestral allele frequencies and admixture proportions can be accurately
estimated using clustering methods such a NGSadmix [15] or PCAngsd [16] can be used. The exact
number of individuals per population needed in order to obtain accurate estimates from these
method will depend on the number of sites, the admixture patterns and the population degree
of populating differentiation. However, having less than 5 individuals representing a population
will lead to inaccurate estimated [25]. Thus NGSremix cannot be applied to studies were only a
few individuals have been sequenced. Instead it requires sequencing or genotype data for multiple
individuals representing each ancestral population. Lastly, NGSremix assumes that there is no
inbreeding and that the markers are independent i.e. no linkage disequilibrium. These assumptions
are also shared with the other methods with the exception of ngsRelate which allows for arbitrary
inbreeding patterns [12]. With regards to the assumption of no linkage disequilibrium then all of
the methods can still be applied with data which has not been pruned. In this case, the models
should be viewed as composite likelihood models which will have a different interpretation of the
likelihood value. However, it will not affect the expected maximum likelihood point estimate [26].

In conclusion we have presented a maximum likelihood method for estimating relatedness for
low depth sequencing data that can be applied to admixed individuals. In simulations and real
data from low depth sequencing of admixed individuals the method outperforms other methods
and gives reasonable results down to 1x sequencing.
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5 Supplementary Material

5.1 Notation

Throughout the Supplementary Material we will use the following notation:

M Number of diallelic sites

K Number of ancestral populations

R Relatedness coefficient with R = (k0, k1, k2) where ki is the proportion of the genome where
individuals A and B share i alleles IBD

XA NGS data from individual A, XA = (XA1 , X
A
2 , ..., X

A
M )

XB NGS data from individual B, XB = (XB1 , X
B
2 , ..., X

B
M )

F Matrix of ancestral allele frequencies for K populations for M sites F = (F1, F, . . . , FM ) with
Fj = (Fj1, Fj2, . . . , FjK)

ΦA Paired ancestry proportions for individual A with paired ancestry from K different popu-
lations. ΦA contains K2 entries, ΦA = (φA11, φ

A
12, φ

A
21, ..., φ

A
KK), where φAa1,a2

denotes the
proportion of the genome where the first allele is from population a1 and the second allele is
from population a2.

GA Latent variable of the ordered genotypes from individual A, GA = (GA1 , G
A
2 , ..., G

A
M ) each

with realization gA ∈ {0, 1}2

GB Latent variable of the ordered genotypes from individual B, GB = (GB1 , G
B
2 , ..., G

B
M ) each

with realization gB ∈ {0, 1}2

Z Latent variable of the IBD state of allele 1 and 2, Z = (Z1, Z2, ..., ZM ) each with realization
z = (z1, z2) ∈ {0, 1}2

A Latent variable of the ancestral state of the two individuals’ pair of allelesA = (A1, A2, ..., AM )
each with realization a = (aA1 , a

A
2 , a

B
1 , a
B
2 ) ∈ {1, ..,K}4

AA Latent variable of the ancestral state of individual A’ pair of alleles AA = (AA1 , A
A
2 , ..., A

A
M )

each with realization aA = (aA1 , a
A
2 ) ∈ {1, ..,K}2

5.2 Derivation of the likelihood function

We want to estimate relatedness coefficients, R = (k0, k1, k2), for two individuals, A and B, with
ancestry from K different populations using a maximum likelihood approach. R = (k0, k1, k2)
denote the fractions of the genome where the pair of individuals share 0, 1, and 2 alleles IBD
(
∑
ki = 1) and in the following we derive the likelihood function that we use to estimate these.
For each individual we assume we have NGS data from M variable diallelic sites, XA =

(XA1 , X
A
2 , ..., X

A
M ) and XB = (XB1 , X

B
2 , ..., X

B
M ). We let ΦA = (φA11, φ

A
12, φ

A
21, ..., φ

A
KK) and ΦB =

(φB11, φ
B
12, φ

B
21, ..., φ

B
KK) denote the paired ancestry proportions of the two individuals and F denote

the allele frequencies of the K ancestral populations for each of the M sites. We assume that
both Φ and F are known and for simplicity we have not included them in the likelihood function.
For each site, the genotypes of the two individuals are unobserved. Therefore, we include ordered
genotypes for both individuals, GA and GB, as latent variables in the model weighted by their
probability. The likelihood function based on NGS data can thus be written

11

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.20.347500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347500
http://creativecommons.org/licenses/by/4.0/


P (XA, XB|R) =

M∏
j=1

P (XAj , XBj |R)

=

M∏
j=1

∑
gA,gB∈{0,1}2

P (XAj , XBj , G
A
j = gA, GBj = gB|R)

=

M∏
j=1

∑
gA,gB∈{0,1}2

P (XAj , XBj |GAj = gA, GBj = gB, R)P (GAj = gA, GBj = gB|R)

=

M∏
j=1

∑
gA,gB∈{0,1}2

P (XAj , XBj |GAj = gA, GBj = gB)P (GAj = gA, GBj = gB|R)

=

M∏
j=1

∑
gA,gB∈{0,1}2

P (XAj |GAj = gA)P (XBj |GBj = gB)P (GAj = gA, GBj = gB|R).

Here we assumed that the sites are independent and that the probability of observing the NGS
data is independent between the two individuals conditioned on the genotype being known. We
end up with a product of the genotype likelihoods of the two individuals and the probability of
the genotypes given the relatedness coefficients. The latter is the same likelihood that is used by
relateAdmix [6].

Building on this model, we can introduce the ancestry and the IBD state in the model. For each
site, the four alleles’ IBD status and ancestry are also not observed. Therefore, we also include
these as latent variables in the model weighted by their probability. Specifically, we let z = (z1, z2)
denote IBD status, where z1 indicates whether allele 1 of individuals A and B are IBD and z2

indicates whether allele 2 in individuals A and B are IBD. Also, we let a = (aA1 , a
A
2 , a

B
1 , a
B
2 ) denote

the unobserved ancestral populations of the two individuals’ alleles. When including z and a the
likelihood becomes

P (XA, XB|R) =

M∏
j=1

∑
z∈{0,1}2

∑
a∈{1,..,K}4

∑
gA,gB∈{0,1}2

P (XAj |GAj = gA)P (XBj |GBj = gB)

P (GAj = gA, GBj = gB, Aj = a, Zj = z|R).

The last term can be be rewritten to

P (GAj = gA, GBj =gB, Aj = a, Zj = z|R)

=P (GAj = gA, GBj = gB|Aj = a, Zj = z,R)P (Aj = a, Zj = z|R)

=P (GAj = gA, GBj = gB|Aj = a, Zj = z)P (Aj = a, Zj = z|R)

=P (GAj = gA, GBj = gB|Aj = a, Zj = z)P (Aj = a|Zj = z,R)P (Zj = z|R)

=P (GAj = gA, GBj = gB|Aj = a, Zj = z)P (Aj = a|Zj = z)P (Zj = z|R).

After rewriting the last term, the likelihood will finally become:

P (XA, XB|R) =
M∏
j=1

∑
z∈{0,1}2

∑
a∈{1,..,K}4

∑
gA,gB∈{0,1}2

P (XAj |GAj = gA)P (XBj |GBj = gB)

P (GAj = gA, GBj = gB|Aj = a, Zj = z)P (Aj = a|Zj = z)P (Zj = z|R)

where P (XAj |GAj = gA) and P (XBj |GBj = gB) are GLs and they can be calculated as described

in Section 2.2.3. The factor P (GAj = gA, GBj = gB|Aj = a, Zj = z) is described in Table S1,
P (Aj = a|Zj = z) is described in Table S2, and P (Zj = z|R) are given by:

P (Zj |R) =


k0 if Zj = (0, 0)
k1

2 if Zj = (0, 1)
k1

2 if Zj = (1, 0)
k2 if Zj = (1, 1)
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5.3 EM algorithm

The relatedness coefficients R = (k0, k1, k2) are estimated by finding the maximum likelihood (ML)
using an EM algorithm. The expectation of the relatedness for each site j is:

P (Zj = z|XAj , XBj , R) =
P (XAj , X

B
j |Zj = z)P (Zj = z|R)

P (XAj , X
B
j |R)

,

where,

P (XAj , X
B
j |Zj = z) =

∑
gA,gB

P (XAj , X
B
j , G

A
j = gA, GBj = gB|Zj = z)

=
∑

gA,gB

P (XAj , X
B
j |GAj = gA, GBj = gB, Zj = z)P (GAj = gA, GBj = gB|Zj = z)

=
∑

gA,gB

P (XAj , X
B
j |GAj = gA, GBj = gB)P (GAj = gA, GBj = gB|Zj = z)

=
∑

gA,gB

P (XAj |GAj = gA)P (XBj |GBj = gB)P (GAj = gA, GBj = gB|Zj = z)

=
∑
a

∑
gA,gB

P (XAj |GAj = gA)P (XBj |GBj = gB)P (GAj = gA, GBj = gB, Aj = a|Zj = z)

=
∑
a

∑
gA,gB

P (XAj |GAj = gA)P (XBj |GBj = gB)P (GAj = gA, GBj = gB|Aj = a, Zj = z)

P (Aj = a|Zj = z).

The derived likelihoods can be found in Table S1 and S2. The initial starting parameters,

R(0) = (k
(0)
0 , k

(0)
1 , k

(0)
2 ), of the EM algorithm are random. For each ith iteration of the EM

algorithm the parameters are updated to R(i+1), using the current parameters (R(i)):

k
(i+1)
0 =

∑M
j=1 P (Zj = (0, 0)|XAj , XBj , R(i))

M
,

k
(i+1)
1 =

∑M
j=1 P (Zj = (1, 0)|XAj , XBj , R(i)) + P (Zj = (0, 1)|XAj , XBj , R(i))

M
,

k
(i+1)
2 =

∑M
j=1 P (Zj = (1, 1)|XAj , XBj , R(i))

M
.

The EM algorithm will continue to update the relatedness coefficients until the algorithm
converges. The algorithm converges when the root sum squared difference between R(i) and R(i+1)

is less than 1e−6.

5.4 Estimation of paired ancestries

A recent admixture event, such as an offspring of parents from different population, will cause a
dependency of the ancestry of the offspring’s two alleles. At each site in the genome the offspring
will have exactly one allele from each of the two populations. In order to accommodate this
assumption we estimate paired ancestry for each individual. For individual A with ancestry from
K populations, we define a vector ΦA containing K2 entries, ΦA = (φA11, φ

A
12, φ

A
21, ..., φ

A
KK), where

φAa1a2
gives the proportion of sites from the individual’s genome where the first allele has ancestry

from ancestral population a1 and the second one from a2. Although the pairs of ancestries are
ordered we assume that they are symmetric i.e. φAa1a2

= φAa2a1
. We assume that we know, or that

we have previously estimated, the ancestral allele frequencies in each population, F . The likelihood
of observing the sequencing data XA for a single individual, M sites and K ancestral populations
is then

P (XA|F,ΦA) =

M∏
j=1

P (XAj |Fj ,Φ
A) =

M∏
j=1

K∑
aA
1 =1

K∑
aA
2 =aA

1

P (XAj |AAj = (aA1 , a
A
2 ), Fj)P (AAj = (aA1 , a

A
2 )|ΦA),
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where the probability of a paired ancestry is directly specified by ΦA,

P (AAj = (aA1 , a
A
2 )|ΦA) = φAaA

1 aA
2
.

The probability of the NGS data XA at site j given that site has paired ancestry AAj = (aA1 , a
A
2 )

is

P (XAj |AAj = (aA1 , a
A
2 ), Fj) =

∑
gA∈{0,1}2

P (GAj = gA|Aj = (aA1 , a
A
2 ), Fj)P (XAj |GAj = gA),

where

P (GAj = gA|AAj = (aA1 , a
A
2 ), Fj) =


(1− FjaA

1
)(1− FjaA

2
) if gA = (0, 0)

FjaA
1

(1− FjaA
2

) if gA = (1, 0)

(1− FjaA
1

)FjaA
2

if gA = (0, 1)

FjaA
1
FjaA

2
if gA = (1, 1)

.

5.4.1 EM for Φ

In the following ΦA andXA refer respectively to the paired ancestry proportions and the sequencing
data for a single individual A. We use an expectation maximization (EM) algorithm to obtain a
maximum likelihood estimate ΦA. We denote the ith iteration of the estimated pairwise ancestry
proportion Φ(i). Based on this estimate, the expectation of the total number of sites with paired
ancestries AA = (aA1 , a

A
2 ) is given by

E[AA = (aA1 , a
A
2 )|XA, F,Φ(i)] =

M∑
j=1

P (AAj = (aA1 , a
A
2 )|XAj , Fj ,Φ

(i)) =

M∑
j=1

P (XAj |AAj = (aA1 , a
A
2 ), Fj)P (AAj = (aA1 , a

A
2 )|Φ(i))∑K

a′
1=1

∑K
a′
2=a′

1
P (XAj |AA = (a′1, a

′
2), Fj)P (AA = (a′1, a

′
2)|Φ(i))

.

(1)

Then we can update the estimate of Φ by calculating each of its entries as

φ(i+1)
a1a2

=
E[AA = (aA1 , a

A
2 )|XA, F,Φ(i)]∑K

a′
1=1

∑K
a′
2=a′

1
E[AA = (a′1, a

′
2)|XA, F,Φ(i)]

. (2)

Finally, we calculate the new expectation given Φ(i+1) with equation (1) and use the expectation
to calculate a new estimate with equation (2) iterating until convergence. A proof that this is an
EM for a similar case can by found in [15].
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5.5 Supplementary figures

Figure S1: Estimated k1 and k2 or kinship for 140 simulated admixed individuals with 6 relationship
types (10 of each type of related pairs) and an average depth of 16x. Plots of estimated R values
are visualized for NGSremix, ngsRelate, reateAdmix, and PLINK. Plots of the kinship coefficient
for NGSremix and KING are provided since KING only estimates kinship
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Figure S2: Estimated k1 and k2 or kinship for 140 simulated admixed individuals with 6 relationship
types (10 of each type of related pairs) and an average depth of 8x. Plots of estimated R values
are visualized for NGSremix, ngsRelate, reateAdmix, and PLINK. Plots of the kinship coefficient
for NGSremix and KING are provided since KING only estimates kinship
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Figure S3: Estimated k1 and k2 or kinship for 140 simulated admixed individuals with 6 relationship
types (10 of each type of related pairs) and an average depth of 2x. Plots of estimated R values
are visualized for NGSremix, ngsRelate, reateAdmix, and PLINK. Plots of the kinship coefficient
for NGSremix and KING are provided since KING only estimates kinship
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Figure S4: Estimated k1 and k2 or kinship for 140 simulated admixed individuals with 6 relationship
types (10 of each type of related pairs) and an average depth of 1x. Plots of estimated R values
are visualized for NGSremix, ngsRelate, reateAdmix, and PLINK. Plots of the kinship coefficient
for NGSremix and KING are provided since KING only estimates kinship
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Figure S5: k1 and k2 values estimated using NGSremix for 140 simulated admixed individuals with
1.000.000 sites and 6 relationship types (10 of each type of related pairs) and an average depth of
1x, 2x, or 4x.
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Figure S6: Inferred relatedness, k1 and k2 or kinship, for 168 admixed African Americans from
the 1000 genomes project sequenced at high depth. Plots of estimated R values are visualized for
NGSremix, ngsRelate, reateAdmix, and PLINK. Plots of the kinship coefficient for NGSremix and
KING are provided since KING estimates kinship and not R.
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5.6 Supplementary tables
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Table S1: Calculation of P (GAj = gA, GBj = gB|Aj = a, Zj = z) for all possible combinations of

gA, gB, z1, z2, and a = (aA1 , a
A
2 , a

B
1 , a
B
2 ). From the ancestral allele frequency matrix F we extract

the allele frequency from site j of allele 0 from population k and define as pk = Fjk. The allele
frequency of allele 1 in population k we define as qk = 1− pk.
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Table S2: Explanation of how to calculate P (Aj = a|Zj = z,ΦA,ΦB) for all possible combinations
of z1, z2 and a. It is assumed that alleles from different populations can not be IBD.
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