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ABSTRACT 

Categorical perception (CP) describes how the human brain categorizes speech despite inherent 

acoustic variability. We examined neural correlates of CP in both evoked and induced EEG 

activity to evaluate which mode best describes the process of speech categorization. Using 

source reconstructed EEG, we used band-specific evoked and induced neural activity to build 

parameter optimized support vector machine (SVMs) model to assess how well listeners’ speech 

categorization could be decoded via whole-brain and hemisphere-specific responses. We found 

whole-brain evoked β-band activity decoded prototypical from ambiguous speech sounds with 

~70% accuracy. However, induced γ-band oscillations showed better decoding of speech 

categories with ~95% accuracy compared to evoked β-band activity (~70% accuracy). Induced 

high frequency (γ-band) oscillations dominated CP decoding in the left hemisphere, whereas 

lower frequency (θ-band) dominated decoding in the right hemisphere. Moreover, feature 

selection identified 14 brain regions carrying induced activity and 22 regions of evoked activity 

that were most salient in describing category-level speech representations. Among the areas and 

neural regimes explored, we found that induced γ-band modulations were most strongly 

associated with listeners’ behavioral CP. Our data suggest that the category-level organization of 

speech is dominated by relatively high frequency induced brain rhythms. 

 

 

 

Keywords: Categorical perception; time-frequency analysis; induced oscillations; gamma-band 

activity, machine learning; support vector machine (SVM). 
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I. INTRODUCTION 1 

The human brain classifies diverse acoustic information into smaller, more meaningful 2 

groupings (Bidelman and Walker, 2017), a process known as categorical perception (CP). CP 3 

plays a critical role in auditory perception, speech acquisition, and language processing.  Brain 4 

imaging studies have shown that neural responses elicited by prototypical speech sounds (i.e., 5 

those heard with a strong phonetic category) differentially engage Heschl’s (HG) and inferior 6 

frontal (IFG) gyrus compared to ambiguous speech (Bidelman et al., 2013; Bidelman and Lee, 7 

2015; Bidelman and Walker, 2017). Previous studies also demonstrate that the N1 and P2 waves 8 

of the event-related potentials (ERPs ) are highly sensitive to speech perception and correlate 9 

with CP (Alain, 2007; Bidelman et al., 2013; Mankel et al., 2020). These studies demonstrate 10 

that evoked activity in the time domain provides a neural correlate of speech categorization. 11 

However, ERP studies do not reveal how induced brain activity (so-called neural oscillations) 12 

might contribute to this process. 13 

The electroencephalogram (EEG) can be divided into evoked (i.e., phase-locked) and 14 

induced (i.e., non-phase locked) responses that vary in a frequency-specific manner (Shahin et 15 

al., 2009). Evoked responses are largely related to the stimulus, whereas induced responses are 16 

additionally linked to different perceptual and cognitive processes that emerge during task 17 

engagement. These later brain oscillations (neural rhythms) play an important role in perceptual 18 

and cognitive processes and reflect different aspects of speech perception. For example, low 19 

frequency [e.g., θ (4-8 Hz) ] bands are associated with syllable segmentation (Luo and Poeppel, 20 

2012) whereas α (9-13 Hz) band has been linked with attention (Klimesch, 2012) and speech 21 

intelligibility (Dimitrijevic et al., 2017). Several studies report listeners’ speech categorization 22 

efficiency varies in accordance with their underlying induced and evoked neural activity 23 
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(Bidelman et al., 2013; Bidelman and Alain, 2015; Bidelman and Lee, 2015).  For instance,  24 

Bidelman assessed correlations between ongoing neural activity (e.g., induced activity) and the 25 

slopes of listeners’ identification functions, reflecting the strength of their CP (Bidelman, 2017). 26 

Listeners were slower and varied in their classification of more category-ambiguous speech 27 

sounds, which covaried with increases in induced γ activity (Bidelman, 2017).  Changes in β (14-28 

30 Hz) power are also strongly associated with listeners’ speech identification skills (Bidelman, 29 

2015). The β frequency band is linked with auditory template matching (Shahin et al., 2009) 30 

between stimuli and internalized representations kept in memory (Bashivan et al., 2014), whereas 31 

the higher γ frequency range (>30 Hz) is associated with auditory object construction (Tallon-32 

Baudry and Bertrand, 1999) and local network synchronization (Giraud and Poeppel, 2012; 33 

Haenschel et al., 2000; Si et al., 2017). 34 

Studies also demonstrate hemispheric asymmetries in neural oscillations. During syllable 35 

processing, there is a dominance of γ frequency activity in LH and θ frequency activity in RH 36 

(Giraud et al., 2007; Morillon et al., 2012). Other studies show that during speech perception and 37 

production, lower frequency bands (3-6 Hz) better correlate with behavioral reaction times than 38 

higher frequencies (20-50 Hz) (Yellamsetty and Bidelman, 2018). Moreover, induced γ-band 39 

correlates with speech discrimination and perceptual computations during acoustic encoding (Ou 40 

and Law, 2018), further suggesting it reflects a neural representation of speech above and beyond 41 

evoked activity alone.   42 

Still, given the high dimensionality of EEG data, it remains unclear which frequency 43 

bands, brain regions, and “modes” of neural function (i.e., evoked vs. induced signaling) are 44 

most conducive to describing the neurobiology of speech categorization. To this end, the recent 45 

application of machine learning (ML) to neuroscience data might prove useful in identifying the 46 
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most salient features of brain activity that predict human behaviors. ML is an entirely data-driven 47 

approach that “decodes” neural data with minimal assumptions on the nature of exact 48 

representation or where those representations emerge. Germane to the current study, ML has 49 

been successfully applied to decode the speed of listeners’ speech identification (Al-Fahad et al., 50 

2020) and related receptive language brain networks (Mahmud et al., 2020) from multichannel 51 

EEGs.  52 

Departing from previous hypothesis-driven studies (Bidelman, 2017; Bidelman and 53 

Alain, 2015; Bidelman and Walker, 2017),  the present work used a comprehensive data-driven 54 

approach (i.e., stability selection and SVM classifiers) to investigate the neural mechanisms of 55 

speech categorization using whole-brain electrophysiological data.  Our goals were to evaluate 56 

which neural regime [i.e., evoked (phase-synchronized ERP) vs. induced oscillations], frequency 57 

bands, and brain regions are most associated with CP using whole-brain activity via a data-driven 58 

approach. Based on prior work, we hypothesized that evoked and induced brain responses would 59 

both differentiate the degree to which speech sounds carry category-level information (i.e., 60 

prototypical vs. ambiguous sounds from an acoustic-phonetic continuum). However, we 61 

predicted induced activity would best distinguish category-level speech representations, 62 

suggesting a dominance of endogenous brain rhythms in describing the neural underpinnings of 63 

CP. 64 

II. MATERIALS & METHODS  65 

A. Participants 66 

Forty-eight young (male: 15, female: 33; aged 18 to 33 years) participated in the study 67 

(Bidelman et al., 2020; Bidelman and Walker, 2017; Mankel et al., 2020). All participants had 68 

normal hearing sensitivity (i.e., <25 dB HL between 500-2000 Hz) and no previous history of 69 
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neurological disease. Listeners were-right handed and had achieved a collegiate level of 70 

education. All participants were paid for their time and gave informed written consent in 71 

accordance with the declaration of Helsinki and a protocol approved by the Institutional Review 72 

Board at the University of Memphis. 73 

B. Stimuli & task  74 

We used a synthetic five-step vowel token continuum to examine the most discriminating 75 

brain activity (i.e., evoked or induced activity) while categorizing prototypical vowel speech 76 

sounds from ambiguous speech (Bidelman et al., 2013). Speech spectrograms are represented in 77 

FIG. 1A. Each speech token was 100 ms, including 10 ms rise/fall to minimize the spectral 78 

splatter in the stimuli. Each speech token contained an identical voice fundamental frequency 79 

(F0), second (F2), and third formant (F3) frequencies (F0:150 Hz, F2: 1090 Hz, and F3:2350 80 

Hz). The first formant (F1) was varied over five equidistance steps (430-730 Hz) to produce 81 

perceptual continuum from /u/ to /a/.  82 

Stimuli were delivered binaurally at an intensity of 83 dB SPL through earphones (ER 2; 83 

Etymotic Research). Participants heard each token 150-200 times presented in random order. 84 

They were asked to label each sound in a binary identification task (“/u/” or “/a/”) as fast and 85 

accurately as possible. Their response and reaction time were logged. The interstimulus interval 86 

(ISI) was jittered randomly between 400 and 600 ms with 20 ms step. 87 
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 88 

FIG. 1. (Color online) Speech stimuli and behavioral results. A) Acoustic spectrograms of the 89 

speech continuum from /u/ and /a/.  B) Behavioral slope. C) Psychometric functions showing % 90 

“a” identification of each token. Listeners’ perception abruptly shifts near the continuum 91 

midpoint, reflecting a flip in perceived phonetic category (i.e., “u” to “a”). D) Reaction time 92 

(RT) for identifying each token. RTs are faster for prototype tokens (i.e., Tk1/5) and slow when 93 

categorizing ambiguous tokens at the continuum’s midpoint (i.e., Tk3). Errorbars = ±1 s.e.m. 94 

C. EEG recordings and data pre-procedures 95 

EEGs were recorded from 64 channels at standard 10-10 electrode locations on the scalp and 96 

digitized at 500 Hz using Neuroscan amplifiers (SynAmps RT). Subsequent preprocessing was 97 

conducted in the Curry 7 neuroimaging software suite, and customized routines coded in 98 
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MATLAB. Ocular artifacts (e.g., eye-blinks) were corrected in the continuous EEG using 99 

principal component analysis (PCA) and then filtered (1-100 Hz; notched filtered 60 Hz). 100 

Cleaned EEGs were then epoched into single trials (-200 to 800 ms, where t = 0 was stimulus 101 

onset) and common average referenced. For details see in (Bidelman et al., 2020; Bidelman and 102 

Walker, 2017). 103 

D. EEG source localization 104 

To disentangle the functional generators of CP-related EEG activity, we reconstructed the 105 

sources of the scalp recorded EEG by performing a distributed source analysis on single-trial 106 

data in Brainstorm software (Tadel et al., 2011). We used a realistic boundary element head 107 

model (BEM) volume conductor and standard low-resolution brain electromagnetic tomography 108 

(sLORETA) as the inverse solution within Brainstorm (Tadel et al., 2011). From each single-trial 109 

sLORETA volume, we extracted the time-courses within the 68 functional regions of interest 110 

(ROIs) across the left and right hemispheres defined by the Desikan-Killiany (DK) atlas 111 

(Desikan et al., 2006) (LH: 34 ROIs and RH: 34 ROIs). Single-trial data were baseline corrected 112 

to the epoch’s pre-stimulus interval (-200-0 ms).  113 

Since we were interested in decoding prototypical (Tk1/5) from ambiguous speech (Tk3), 114 

we merged Tk1 and Tk5 responses since they reflect prototypical vowel categories (“u” vs. “a”). 115 

In contrast, Tk3 reflects a bistable percept—an ambiguous category listeners sometimes label as 116 

“u” or “a” (Bidelman et al., 2020; Bidelman and Walker, 2017; Mankel et al., 2020).  To ensure 117 

an equal number of trials for prototypical and ambiguous stimuli, we considered 50% of the data 118 

from the merged samples.   119 
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E. Time-frequency analysis 120 

Time-frequency analysis was conducted via wavelet transform (Herrmann et al., 2014). First, 121 

we computed the event-related potential (ERP) using bootstrapping by randomly averaged over 122 

100 trials with the replacement for each stimulus condition (e.g., Tk1/5 and Tk3) per subject and 123 

source ROI (e.g., 68 ROIs).  We then applied the Morlet wavelet transform to the averaged data 124 

(i.e., ERP) with an increment step frequency 1 Hz from low to high frequency (e.g., 1 to 100 125 

Hz), which provided only evoked frequency-specific activity (i.e., time- and phase-locked to 126 

stimulus onset). For computing induced activity, we performed a similar Morlet wavelet 127 

transform on a single-trial basis for each ROI, and then computed the absolute value of each trial 128 

spectrogram. We then averaged the resulting time-frequency decompositions (Herrmann et al., 129 

2014), resulting in a spectral representation that contains total activity. To isolate induced 130 

responses, we subtracted the evoked activity from the total activity (Herrmann et al., 2014). We 131 

then extracted the different frequency band signals from evoked and induced activity time-132 

frequency maps for each brain region (e.g., 68 ROIs). Example evoked and induced time-133 

frequency maps from the primary auditory cortex [i.e., transverse temporal (TRANs)] are 134 

represented in FIG. 2.   135 

Spectral features of different bands (θ, α, β, and γ) were quantified as the mean power over 136 

the full epoch. We concatenated four frequency bands that resulted in 4*68=272 features for 137 

each response type (e.g., evoked vs. induced) per speech condition (Tk1/5 vs. Tk3). We 138 

separately (i.e., evoked and induced) submitted these individual frequency bands to the support 139 

vector machine (SVM) classifier and all concatenated features to stability selection to investigate 140 

which frequency bands and brain regions decode prototypical (e.g., Tk1/5) from ambiguous 141 

(Tk3) vowels. Features were z-scored prior to SVM to normalize them to a common range. 142 
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 143 

FIG. 2. (Color online) Grand average neural oscillatory responses to prototypical vowel (e.g., 144 

Tk1/5 and ambiguous speech token (Tk3) A,C) Evoked activity for prototypical vs. ambiguous 145 

tokens. B, D) Induced activity for prototypical vs. ambiguous tokens. Primary auditory cortex 146 

(PAC) [lTRANS, left transverse temporal gyrus]. 147 

 148 

F. SVM classification 149 

We used the parameter optimized SVM that yields better classification performance with 150 

small sample sizes data (Mahmud et al., 2020). The tunable parameters (e.g., kernel, C, Ɣ) in the 151 

SVM model greatly affect the classification performance.  We randomly split the data into 152 

training and test sets 80%, 20 %, respectively. During the training phase (i.e., using 80% data), 153 

we conducted a grid search approach with five-fold cross-validation, kernels = ‘RBF’, fine-tuned 154 

the C, and γ parameters to find the optimal values; so that the classifier can accurately 155 
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distinguish prototypical vs. ambiguous speech (Tk1/5 vs.Tk3) in the test data that models have 156 

never seen. Once the models were trained, we selected the best model with the optimal value of C, 157 

and γ and predict the unseen test data (by providing the attributes but no class labels). 158 

Classification performance metrics (accuracy, F1-score, precision, and recall) were calculated 159 

using standard formulas. The optimal values of C and ɣ for different analysis scenarios are given 160 

in the Appendix. 161 

G. Stability selection to identify critical brain regions of CP 162 

Our data comprised a large number (272 features) of spectral measurements for each 163 

stimulus condition of interest (e.g., Tk1/5 vs. Tk3) per brain regime (e.g., evoked and induced). 164 

We aimed to select a limited set of the most salient discriminating features via stability selection 165 

(Meinshausen and Bühlmann, 2010) (see details in the Appendix). 166 

     During the stability selection implementation, we considered a sample fraction = 0.75, 167 

number of resamples = 1000, and tolerance = 0.01 (Meinshausen and Bühlmann, 2010). In the 168 

Lasso algorithm, the feature scores were scaled between 0 to 1, where 0 is the lowest score (i.e., 169 

irrelevant feature) and 1 is the highest score (i.e., most salient or stable feature). We estimated 170 

the regularization parameter from the data using the least angle regression (LARs) algorithm.  171 

Over 1000 iterations, Randomized Lasso provided the overall feature scores (0~1) based on the 172 

number of times a variable was selected. We ranked stability scores to identify the most 173 

important, consistent, stable, and invariant features that could decode speech categories via the 174 

EEG. We submitted these ranked features and corresponding class labels to an SVM classifier 175 

with different stability thresholds and observed the model performance.  176 
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III. RESULTS 177 

A. Behavioral results 178 

Listeners’ behavioral identification (%) functions and reaction time (ms) for speech tokens 179 

categorization are illustrated in FIG. 1C and FIG. 1D, respectively. Responses abruptly shifted in 180 

speech identity (/u/ vs. /a/) near the midpoint of the continuum, reflecting a change in the 181 

perceived category. The behavioral speed of speech labeling (e.g., reaction time (RT)) was 182 

computed from listeners’ median response latency for a given condition across all trials. RTs 183 

outside of 250-2500 ms were deemed outliers and excluded from further analysis (Bidelman et 184 

al., 2013; Bidelman and Walker, 2017). For each continuum, individual identification scores 185 

were fit with a two-parameter sigmoid function; 𝑃 =
1

[1+𝑒−𝛽1(𝑥−𝛽0)]
 , where P is the proportion of 186 

the trial identification as a function of a given vowel, x is the step number along the stimulus 187 

continuum, and β0 and β1 the location and slope of the logistic fit estimated using the nonlinear 188 

least-squares regression (Bidelman and Walker, 2017). The slope of listeners’ sigmoidal 189 

psychometric function reflects the strength of their CP (FIG. 1B). 190 

B. Decoding categorical neural responses using band frequency features and SVM 191 

We investigated the decoding of prototypical from ambiguous vowels (i.e., category-level 192 

representations) using SVM neural classier on whole-brain (all 68 ROIs) and individual 193 

hemisphere ( LH and RH) data separately for induced vs. evoked activity (FIG. 3 and Table I).  194 

Using whole-brain evoked θ, α, β, and ɣ frequency responses, speech stimuli (e.g., Tk1/5 195 

vs. Tk 3) were correctly distinguished at 66-69% accuracy. Among all evoked frequency bands, 196 

β-band was optimal to decode speech categories (69.61% accuracy). LH data revealed that θ, α, 197 
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β, and ɣ bands decoded speech stimuli at accuracies between ~63-65% whereas decoding from 198 

RH was slightly poorer 57-62%.  199 

Using whole-brain induced θ, α, β, and ɣ frequency responses speech stimuli were decodable 200 

at accuracies 89-95%. Among all induced frequency bands, ɣ band showed the best speech 201 

segregation (94.9% accuracy). Hemisphere specific data again showed lower accuracy. LH 202 

oscillations decoded speech categories at 76-87% accuracy whereas RH yielded 80-84%. 203 

 204 

FIG. 3. (Color online) Decoding categorical neural encoding using different frequency band 205 

features of source-level EEG. SVM results classifying prototypical (Tk1/5) vs. ambiguous (Tk 3) 206 

speech sounds. A) Whole-brain data (e.g. 68 ROIs), B) LH (e.g., 34 ROIs) C) RH (e.g., 34 207 

ROIs). Change level =50%. 208 

 209 

 210 
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Table I: Performance metrics of the SVM classifier for decoding prototypical vs. ambiguous 211 

vowels (i.e., categorical neural responses) using whole-brain data. 212 

Neural activity Frequency band Accuracy 

(%) 

AUC 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

 

 

Evoked 

θ 67.53 67.59 68.00 68.00 67.00 

α 67.88 67.92 68.00 68.00 67.00 

β 69.61 69.64 68.00 68.00 68.00 

ɣ 66.66 66.65 67.00 67.00 67.00 

 

Induced 

θ 90.97 90.98 91.00 91.00 91.00 

α 89.06 89.05 89.00 89.00 89.00 

β 93.23 93.20 93.00 93.00 93.00 

ɣ 94.96 94.96 95.00 95.00 95.00 

C. Decoding brain regions associated with CP (evoked vs. induced) 213 

We applied the stability selection (Meinshausen and Bühlmann, 2010) to induced and evoked 214 

activity features to identify the most critical brain areas (e.g., ROIs) that have been linked with 215 

speech categorization. Spectral features of brain ROIs were considered stable if the speech 216 

decoding accuracy was >70%.  The effects of stability scores on speech sound classification is 217 

represented in FIG. 4. Each bin of the histogram illustrates the number of features in a range of 218 

stability scores. In this work, the number of features (labeled in FIG. 4) represents the neural 219 

activity of different frequency bands and the unique brain regions (labeled as ROIs in FIG. 4) 220 

represent the distinct functional brain regions of the DK atlas. The semi bell-shaped solid black 221 

and dotted red lines demonstrate classifier accuracy and area under the curve (AUC), 222 

respectively. We submitted the neural features identified at different stability thresholds to 223 
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SVMs. This allowed us to determine whether the collection of neural measures identified via 224 

machine learning were relevant to classifying speech sound categorization. 225 

For induced responses, most features (60%) yielded stability scores 0 to 0.1, meaning 226 

163/272 (60%) were selected less than 10% out of 1000 iterations from 68 ROIs. A stability 227 

score of 0.2 selected 47/86 (32%) of the features from 47 ROIs that could decode speech 228 

categories at 96.9% accuracy. Decoding performance decreased with increasing the stability 229 

score (i.e., more conservative variable/brain ROIs selection) resulting in a reduced feature set 230 

that retained only the most meaningful features distinguishing speech categories from a few 231 

ROIs.  For instance, corresponding to the stability threshold 0.5, 25 (10%) features were selected 232 

from 21 brain ROIs that yielded the speech categorization 92.7 % accurately.  However, 233 

corresponding to the stability threshold 0.8 only 2 features were selected from 2 brain ROIs that 234 

decoded CP at 60.6%, still greater than chance level (i.e., 50%). Performance improved by ~10% 235 

(86.5%) when the stability score was changed from 0.7 (selected brain ROIs 9) to 0.6 (selected 236 

brain ROIs 14).  237 

Using evoked activity, maximum decoding accuracy was 78.0% at a 0.1 stability 238 

threshold. Here, 43 % of features produced a stability score between 0.0 to 0.1. These 118 (43%) 239 

features are not informative because they decreased the model’s accuracy to properly categorize 240 

speech. Corresponding to the stability scores 0.9, only 8 features were selected from the 6 brain 241 

ROIs, which decoded speech at 65.8% accuracy.  At stability score 0.6, 29 (1%) features were 242 

selected from 22 brain ROIs corresponding to 71.4 % accuracy performance. Thus, 0.6 might be 243 

considered an optimal stability score (i.e., knee point of a function in FIG. 4) as it decoded 244 

speech well above change (>70%) with a minimal (and therefore more interpretable) feature set 245 
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for both induced and evoked activity. Classifier performance and brain ROIs corresponding to 246 

the optimal stability score (0.6) are shown in Table III in the Appendix.  247 

 248 

FIG. 4. (Color online) Effect of stability score threshold on model performance during (A) 249 

evoked activity and (B) induced activity during CP task. The bottom of the x-axis has four 250 

labels; Stability score represents the stability score range of each bin (scores range: 0~1); 251 

Number of features, number of selected features under each bin; % features, the corresponding 252 

percentage of selected features; ROIs, number of cumulative unique brain regions up to the lower 253 

boundary of the bin.  254 

 255 

Table II. Brain-behavior relations of 14 brain ROIs in different frequency bands and behavioral 256 

prediction from the induced activity at a stability threshold ≥ 0.6 that yielded accuracy 86.5%. 257 
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 258 

D. Brain-behavior relationships 259 

To examine the behavioral relevance of the brain ROIs identified in stability selection, we 260 

conducted the multivariate weighted least square analysis (WLS) regression (Ruppert and Wand, 261 

1994). We conducted WLS between the individual frequency band features (i.e., evoked and 262 

induced) and the slopes of the behavioral identification functions (i.e., FIG. 1B,) which indexes 263 

the strength of listeners’ CP. WLS regression for induced activity is shown in Table II (for 264 

evoked activity, see in the Appendix Table IV).  From the induced data, we found that γ 265 

Frequency Band 

and combined R2 ROI name 

ROI 

abbrev. 

Coeffici

ent 

p-value 

θ, R2 =0.807, 

p<0.00001 

Pars opercularis L lPOP 0.974 0.013 

Posterior cingulate L lPCG -1.759 0.001 

Caudal anterior cingulate R rCAC 3.163 0.001 

α, R2 =0.746, 

p<0.00001 

Bankssts L lBKS 0.645 0.249 

Inferior parietal L lIP 1.594 0.035 

Precentral L lPRC 1.006 0.117 

β, R2 =0.876, 

p<0.00001 

Transverse temporal R rTRANS 0.267 0.584 

Rostral anterior cingulate L lRAC 3.004 0.001 

γ, R2 =0.915, 

p<0.00001 

Lateral occipital R rLO 0.768 0.804 

Lateral orbitofrontal R rLOF 5.092 0.001 

Superior parietal R rSP 16.472 0.004 

Caudal middle frontal R rCMF -3.243 0.188 

cuneus R rCUN -1.743 0.701 

Lateral orbitofrontal L lLOF 0.709 0.553 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.20.347526doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347526


 17 

frequency activity from 6 ROIs predicted behavior best among all other frequency R2 = 0.915, 266 

p< 0.0001.  Remarkably, only two brain regions (including PAC and Rostral anterior cingulate 267 

L) of β-band frequency could predict behavioral slopes (R2 =0.876, p<0.00001). Except in the α 268 

frequency band, evoked activity was poorer at predicting behavioral CP. 269 

IV. DISCUSSION 270 

A. Speech categorization from evoked and induced activity 271 

The present study aimed to examine which modes of brain activity and frequency bands of 272 

the EEG best decode speech categories and the process of categorization. Our results 273 

demonstrate that at the whole-brain level, evoked β-band oscillations robustly code (~70% 274 

accuracy) category structure of speech sounds. However, induced ɣ-band showed better 275 

performance, classifying speech categories at ~95% accuracy, better than all other induced 276 

frequency bands. Our data are consistent with notions that higher frequency bands are associated 277 

with speech identification accuracy and carry information related to acoustic features and quality 278 

of speech representation (Yellamsetty and Bidelman, 2018). Our results also corroborate 279 

previous studies that suggest higher frequency channels of the EEG (β, γ) reflect auditory 280 

perceptual object construction (Tallon-Baudry and Bertrand, 1999) and how well listeners map 281 

sounds to category labels (Bidelman, 2015, 2017). 282 

  Analysis by hemispheres showed that induced γ activity was dominant in LH whereas 283 

lower frequency band (e.g., θ) were more dominant in RH. These findings support the 284 

asymmetric engagement of frequency bands during syllable processing (Giraud et al., 2007; 285 

Morillon et al., 2012) and lower frequency band in RH dominance in inhibitory and attentional 286 

control (top-down processing during complex tasks) (Garavan et al., 1999; Price et al., 2019). 287 
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Our results are consistent with the idea that cortical theta and gamma frequency bands play a key 288 

role in speech encoding (Hyafil et al., 2015). They also show that the machine learning model 289 

was able to decode acoustic-phonetic information (i.e., speech categories) in LH (using induced 290 

high frequency) and task difficulty (using low frequencies) in RH. 291 

B. Brain networks involved in speech categorization 292 

Machine learning (stability selection coupled with SVM) further identified the most stable, 293 

relevant, and invariant brain regions that associate with speech categorization. Our results show 294 

that induced activity better exhibited speech categorization using less neural resources (i.e., 295 

minimum brain ROIs) as compared to evoked activity. Using induced activity, stability selection 296 

identified 14 critical brain regions including the primary auditory cortex (Transverse temporal 297 

R), Brocas’s area (Pars opercularis L), and motor area (Precentral L). These ROIs are widely 298 

engaged in speech-language processing. Superior parietal and inferior parietal areas have been 299 

associated with auditory, phoneme, and sound categorization in particularly ambiguous contexts 300 

(Dufor et al., 2007; Feng et al., 2018). The orbitofrontal is associated with speech comprehension 301 

and rostral anterior cingulate with speech control (Sabri et al., 2008). Surprisingly, out of the 302 

identified 14 brain ROIs; three ROIs are in θ, three in α, two in β, and six in γ band. Noticeably, 303 

we found that a greater number of brain regions were recruited in the γ-frequency band. This 304 

result is consistent with the notion that high-frequency oscillations play a role in network 305 

synchronization and widespread construction of perceptual objects related to abstract speech 306 

categories (Giraud and Poeppel, 2012; Haenschel et al., 2000; Si et al., 2017; Tallon-Baudry and 307 

Bertrand, 1999).  Indeed, γ-band activity in only six ROIs were the best predictor of listeners’ 308 

behavioral speech categorization. 309 
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In sum, our data suggest that induced neural activity plays a more prominent role in 310 

describing the perceptual-cognitive process of speech categorization than evoked modes of brain 311 

activity (Doelling et al., 2019).  In particular, we demonstrate that among these two prominent 312 

functional modes and frequency channels characterizing the EEG, induced γ-frequency 313 

oscillations best decode the category structure of speech and the strength of listeners’ behavioral 314 

identification. In contrast, the evoked activity provides a reliable though weaker correspondence 315 

with behavior in all but the α frequency band.   316 
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 321 

APPENDIX  322 

SVM optimal parameters values 323 

The optimal parameters of SVM classifier are given below in different analysis scenarios. 324 

For induced activity, the optimal values were used for full brain data: [C=10, ɣ=0.001 for θ-325 

band, C=20, ɣ=0.001 for α-band, C=40, ɣ=0.001 for β-band, C=30, ɣ=0.001 for  γ-band]; LH 326 

data: [C=10, ɣ=0.001 for θ-band, C=20, ɣ=0.001 for α-band, C=40, ɣ=0.001 for β-band, C=30, 327 

ɣ=0.001 for  γ-band]; RH data:[C=10, ɣ=0.001 for θ-band, C=20, ɣ=0.001 for α-band, C=40, 328 

ɣ=0.001 for β-band, C=30, ɣ=0.001 for  γ-band].  329 

For evoked activity, the optimal values for the full brain data are: [C=30, ɣ=0.001 for θ-band, 330 

C=40, ɣ=0.0001 for α-band, C=40, ɣ=0.001 for β-band, C=10, ɣ=0.0001 for  γ-band]; LH data: 331 

[C=20, ɣ=0.001 for θ-band, C=20, ɣ=0.001 for α-band, C=30, ɣ=0.002 for β-band, C=30, 332 
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ɣ=0.003 for  γ-band]; RH data:[C=10, ɣ=0.004 for θ-band, C=20, ɣ=0.003 for α-band, C=20, 333 

ɣ=0.002 for β-band, C=20, ɣ=0.002 for  γ-band]. 334 

Stability selection  335 

Stability selection is a state-of-the-art feature selection method that works well in high 336 

dimensional or sparse data based on the Lasso (least absolute shrinkage and selection operator) 337 

(Meinshausen and Bühlmann, 2010; Yin et al., 2017). Stability selection can identify the most 338 

stable (relevant) features out of a large number of features over a range of model parameters, 339 

even if the necessary conditions required for the original Lasso method are violated 340 

(Meinshausen and Bühlmann, 2010).   341 

In stability selection, a feature is considered to be more stable if it is more frequently 342 

selected over repeated subsampling of the data (Nogueira et al., 2017). Basically, the 343 

Randomized Lasso randomly subsamples the training data and fits a L1 penalized logistic 344 

regression model to optimize the error.  Over many iterations, feature scores are (re)calculated. 345 

The features are shrunk to zero by multiplying the features’ co-efficient by zero while the 346 

stability score is lower. Surviving non-zero features are considered important variables for 347 

classification. Detailed interpretation and mathematical equations of stability selection are 348 

explained in (Meinshausen and Bühlmann, 2010).  The stability selection solution is less affected 349 

by the choice of the initial regularization parameters. Consequently, it is extremely general and 350 

widely used in high dimensional data even when the noise level is unknown. 351 

 352 

Table III: Most important brain regions describing speech categorization. The evoked activity 353 

identified (22 ROIs) and induced activity identified 14 ROIs at a stability threshold ≥ 0.6.  354 

Corresponding to this threshold evoked and induced activity showed 71.4%, 86.5% accuracy 355 

respectively.  356 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.20.347526doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347526


 21 

Rank Evoked (71.4% total accuracy) Induced (86.5% total accuracy) 

ROI name 

ROI 

abbrev. 

Stabili

ty 

score ROI name 

ROI 

abbrev. 

Stabilit

y score 

1        Bankssts R rBKS 1        Bankssts L lBKS 0.865 

2 Caudal middle frontal L ICMF 1 Lateral occipital R rLO 0.805 

3 Pars opercularis L lPOP 0.97 Pars opercularis L lPOP 0.785 

4 Superior parietal R rSP 0.915 Posterior cingulate L lPCG 0.76 

5 Transverse temporal L lTRANS 0.905 Lateral orbitofrontal R rLOF 0.755 

6 Isthmus cingulate L lIST 0.905 Superior parietal R rSP 0.74 

7 Lateral occipital L lLO 0.85 Caudal middle frontal R rCMF 0.74 

8 Inferior parietal L lIP 0.84 Inferior parietal L lIP 0.73 

9 Caudal middle frontal R rCMF 0.8 

Caudal anterior Cingulate 

R rCAC 0.72 

10 Lateral occipital R rLO 0.795          Cuneus R rCUN 0.675 

11          Cuneus L lCUN 0.775      Precentral L lPRC 0.64 

12      Precentral R rPRC 0.725 Lateral orbito frontal L lLOF 0.625 

13 Pars triangularis R rPT 0.71 Transverse temporal R rTRANS 0.62 

14 Inferior parietal R rIP 0.69 

Rostral anterior cingulate 

L lRAC 0.605 

15     Post central R rPOC 0.69    

16 Transverse temporal R rTRANS 0.685    

17   Pericalcarine L lPERI 0.67    
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 357 

Table IV: Brain-behavior relations of 22 brain ROIs in different frequency bands and behavioral 358 

slope prediction from the evoked activity at a stability threshold ≥ 0.6 that yielded accuracy 359 

71.4%. 360 

 361 

 362 

18      Precentral L lPRC 0.64    

19        Bankssts L lBKS 0.635    

20 Rostral middle frontal L lRMF 0.605    

21   Supra marginal R rSUPRA 0.6    

22     Post central L lPOC 0.6    
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Frequency Band 

and combined R2 ROI name 

ROI 

abbrev. 

Coefficien

t 

p-value 

θ, R2 =0.349, 

p<0.0184 

Caudal middle frontal L ICMF -93.646 0.575 

Superior parietal R rSP -89.350 0.603 

Isthmus cingulate L lIST -46.527 0.671 

Lateral occipital L lLO -190.348 0.149 

Pars triangularis R rPT 137.923 0.160 

Post central R rPOC 180.073 0.015 

Rostral middle frontal L lRMF -69.220 0.326 

Post central L lPOC 152.979 0.238 

α, R2 =0.863, 

p<0.00001 

Bankssts R rBKS -64.139 0.775 

Transverse temporal L lTRANS 62.583 0.729 

Inferior parietal L lIP 986.399 0.027 

Caudal middle frontal R rCMF -254.140 0.338 

Inferior parietal R rIP -707.049 0.053 

Pericalcarine L lPERI -278.456 0.319 

Precentral L lPRC 163.234 0.368 

Bankssts L lBKS 947.797 0.0001 

Supra marginal R rSUPRA -466.985 0.107 

β, R2 =0.198, 

p<0.0184 

Pars opercularis L lPOP 475.923 0.240 

Lateral occipital R rLO -1119.991 0.157 

Precentral R rPRC 1485.600 0.008 

Cuneus L lCUN -3730.107 0.160 
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