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Abstract

Rationale. A new multi-electrode array-based application for the long-term
recording of action potentials from electrogenic cells makes possible exciting car-
diac electrophysiology studies in health and disease. With hundreds of simultane-
ous electrode recordings being acquired over a period of days, the main challenge
becomes achieving reliable signal identification and quantification.
Objective. We set out to develop an algorithm capable of automatically extracting
regions of high-quality action potentials from terabyte size experimental results
and to map the trains of action potentials into a low-dimensional feature space for
analysis.
Methods and Results. Our automatic segmentation algorithm finds regions of
acceptable action potentials in large data sets of electrophysiological readings. We
use spectral methods and support vector machines to classify our readings and
to extract relevant features. We are able to show that action potentials from the
same cell site can be recorded over days without detrimental effects to the cell
membrane. The variability between measurements 24 h apart is comparable to the
natural variability of the features at a single time point.
Conclusions. Our work contributes towards a non-invasive approach for car-
diomyocyte functional maturation, as well as developmental, pathological and
pharmacological studies.

Subject Terms: Electrophysiology; Stem cells; Biomarkers

1 Introduction

Cardiac function is driven by electrical fluxes that generate mechanical forces in liv-
ing tissue. Voltage-gated ion channels regulate the flux of multiple ion species (K+,
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Na+, Ca2+) that result in subsequent mechanical contraction. Due to this close connec-
tion between electrical and mechanical behavior in the heart, the study of the electrical
impulses can give valuable insight into the behavior of cardiac tissue, as well as the
emergence of arrhythmic behavior (Anumonwo and Pandit, 2015; Qu et al., 2018). The
propagating transmembrane potential is known as action potential (AP), and is criti-
cally important in the governance of proper cardiac behavior.

The usual recording of AP waves in cardiac tissue is done indirectly, by means
of recording an ancillary potential known as field potential (FP). Much like a medi-
cal ECG, FP recordings measure the potential change across the entire bulk of tissue
and have been observed to be closely correlated to the underlying AP (Tertoolen et al.,
2018). Direct recording of APs has a rich and storied history since the foundations of
the field of electrophysiology (Hodgkin and Huxley, 1952; Harrington and Johnson,
1973). Due to the need for intracellular access this has proven to be time-consuming
and technical, e.g. using the standard voltage-clamp technique (Fozzard and Beeler,
Jr., 1975). Such techniques also do not allow for detailed investigation of the connec-
tion between transmembrane and extracellular potentials. Recent work has shown the
feasibility of multi-electrode arrays (MEA) (Meyer et al., 2012) in the large-scale effi-
cient recording of both AP and FP readings (Edwards et al., 2018; Zlochiver et al., 2019;
Hayes et al., 2019).

In a MEA, cardiac tissue is plated onto a substrate situated atop an array of elec-
trodes embedded in the base of a well. By measuring the potential difference between
these base electrodes and reference electrodes surrounding the outer perimeter of the
well, FPs can be readily recorded in large volumes (Kujala et al., 2011). Further, deliv-
ery of electroporating pulses via these electrodes creates pores in the cell membranes
and allows direct AP measurements. These readings can be obtained without compli-
cated measuring techniques and provide data from live beating tissue. Edwards et al.
(2018) have shown that the myocytes plated on an MEA remain alive and electrically
active with consistency after electroporation, in contrast to the destructive effects of
patch clamping on cells. This enables testing of long-term effects of different com-
pounds or environments on cell behavior. To the best of our knowledge, a rigorous
statistical analysis and comparison of the signals obtained via repeated MEA measure-
ment at different times is currently lacking.

A determining factor in the applicability and efficiency of AP-related assays is
the availability of ethically-sourced cardiac tissue for experimentation. The historical
precedent in electrophysiology has been the use of animal cells cultured from non-
human mammals (Mathur et al., 2016). Besides the obvious ethical concerns there is
also the scientific issue of applicability to human systems. The pioneering work of Ya-
manaka (Takahashi and Yamanaka, 2006) in the reprogramming of adult cells into stem
cells has opened a new avenue of cardiac research by allowing the study of human car-
diac tissue that is ethically obtained. With this approach, large cell cultures of human
tissue can be made available for research purposes. Recent work has shown potential
for human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) (Zwi
et al., 2009) to allow for drug testing and disease modeling on viable human cardiac
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tissue in a controlled environment (Braam et al., 2010; Tertoolen et al., 2018; Edwards
et al., 2018; Gintant et al., 2019; Kussauer et al., 2019). While there are concerns re-
garding the level of maturity of these hiPSC-CMs ranging from fetal to barely neonatal
in development (Zhu et al., 2017), the possibility for safe human-tissue drug testing
demands further research.

AP readings are analyzed by encoding the data stream as sequences of features (or
biomarkers) that characterize the beat-by-beat behavior of the cells. These features as
well as their counterparts in frequency space encode trends in the behavior of the cells.
APs are typically encoded as action potential duration at m % (APDm), the time from
peak voltage until the cell has repolarized to m % of its resting potential. Additionally,
differences and ratios of these features are commonly used (Britton et al., 2017). Using
these features, the AP data can be projected into a low-dimensional feature space while
still retaining the most relevant information for clinical purposes (Cantwell et al., 2019).

Both FP and AP readings are fundamentally time-periodic quantities and it is there-
fore natural to analyse these signals in the frequency domain. The Discrete Fourier
Transform (DFT) (Oppenheim and Schafer, 1999) enables the decomposition of a tem-
poral signal into its constituent frequency components. Analyzing the behavior of
these frequency spectra can give indications of signal quality and variance from a de-
fined standard behavior.

The parallel configuration of an MEA allows to generate vast amounts of data in
short time. However, this is also one of the challenges of this approach. Regardless
of he experimental setup, access to AP data involves delivery of stimulating electrical
impulses to the tissue, resulting in large regions of data without electrophysiological
meaning. Further, electroporation does not offer permanent intracellular access, as the
nanopores close in time. This results in a degradation of the signal as the AP trace
reverts to an FP-like trace. Electroporation may even fail entirely for a given cell and
yield no usable AP data. The large volume of data generated thus requires a robust
segmentation protocol to extract usable data. Manual segmentation is time-consuming
and error prone for even modest data sets and becomes quickly infeasible as the vol-
ume of data grows. Therefore, the need for an automated segmentation method is
imminent.

Here we propose an automated paradigm to efficiently analyze large sets of MEA
data, perform segmentation and extract features. The method relies on analysis of the
time derivative of the AP. A graphical depiction of the workflow is found in Figure 2.
We further utilize this paradigm to extract features from a multitude of hiPSC-CMs for
purposes of statistical analysis. We apply the algorithm to extract data from the same
cell site at different time-stamps to analyze the similarity for repeated physiological
measurements. Data loading occurs prior to implementation, and the open source na-
ture of the algorithm ensures that the program can be readily adapted to any specific
setting and format of input data. Thus, the method is capable of determining signal
quality for virtually any type of experimental regimen for data collection, not exclu-
sively MEA experimentation.
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Figure 1: Raw data stream from a single electrode in an MEA. Prior to 30 s, the signal
consists exclusively of FPs. From 30 s to 60 s, the electroporation stimulus is applied.
From 60 s to 120 s, the signal includes APs that gradually degrade back to FP morphol-
ogy.

2 Materials and Methods

2.1 Experimental Setup

High-purity iPSC-CM cultures were produced from human cardiac fibroblasts as de-
scribed in (Zlochiver et al., 2019). hiPSCs cultures were differentiated using the feeder-
free monolayer differentiation protocol. RPMI with B27 minus insulin containing 6
µM CHIR99021 (4423, R&D Systems) was added to the cultures at time zero. After 3
days, the cultures were treated with 5 µM IWR-1 (I0161, Sigma Aldrich) for 48 h. Sub-
sequently, the cultures were maintained in RPMI media with B27 without insulin for 5
days and then with RPMI with B27 complete supplement for cell maturation.

PEDOT-coated 24-well micro-gold multielectrode array (µGMEA) dishes (catalog
number 24W300/30G-288, MultiChannel Systems MCS, Germany) with an array of
12 electrodes per well underwent a 30-min hydrophilic treatment with fetal bovine
serum (FBS) and fibronectin-coating (50 µg/mL) for 3 hr at 37 ◦C prior to cell plating.
hiPSC-CMs cultures were then dissociated using Accutase (Sigma) enzyme and plated
at 30,000 cells/5 µL/µGMEA well. Spontaneous beating of cardiomyocytes was first
observed in 2-day-old constructs, see the video in the Supplementary Material.

FPs and APs were recorded daily from 2 to 15-day-old constructs and APs from
10-day-old constructs at a sampling rate of 20 kHz. For experiments where electrodes
were stimulated, an electroporating pulse (1 V, 1 Hz, and 1 ms) was delivered for 30 s.
The raw data are available from the corresponding author upon request.
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Feature Extraction

Figure 2: A flow chart showing the workflow for the segmentation algorithm.

2.2 Data Segmentation and Feature Extraction

The purpose of this algorithm is to determine acceptability of a data stream and to
extract the maximum amount of acceptable AP signals. Unacceptable APs feature a
non-monotone depolarization due to partial closure of the nanopores, see Figure 3
(A). When the data are obtained via MEA experimentation, additional FP data are
extracted. In each experiment the time of initiating electroporation and the duration
of the pulse are recorded. Hence the region prior to the electroporation timestamp
consists of FP readings, while the region following cessation of the pulse contains AP
readings of varying quality. From these two regions, candidate traces of FP and AP are
extracted. Acceptable FPs are those that exceed a threshold of 15 mV.

Electrical noise and baseline trends in the APs are removed prior to determining
the data quality, see Figure 3 (B)-(E). We use two Butterworth filters (Butterworth,
1930) applied sequentially, a low-pass filter with cutoff frequency 225 Hz for noise
removal and a high-pass filter with cutoff frequency of 0.5 Hz for removal of baseline
trend. Each filter is of a different order to maintain stability and optimize computa-
tional performance. The processed data are numerically differentiated using centered
differences. The algorithm locates positive maximums of the derivative due to repo-
larization and possible significant negative minimums in a neighborhood of a local
maximum. The signal is truncated at the earliest instance of non-monotonicity. The
algorithm is written in the Open Source language Python (Python Software Founda-
tion, 2020), carefully documented and available at https://github.com/jurkiew4/
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Figure 3: (A) Unacceptable AP trace featuring non-monotone depolarization. (B) &
(C) AP trace before and after application of digital filter. (D) & (E) AP trace before and
after removal of baseline trend.

Action-Potential-Segmentation.
Once the signal has been processed, acceptable data streams are submitted for fea-

ture extraction. We compute three classical features of APs, namely basic cycle length
(BCL), APD30 and APD80. The BCL is computed using the same program that locates
depolarization spikes from the segmentation step, followed by finding the time be-
tween successive maximums of the derivative. The APDn is computed by isolating
each individual pulse as above. Each pulse is shifted and rescaled so that the maxi-
mum voltage occurs at time zero with magnitude 1, while the minimal value of the
voltage for that pulse is shifted to a value of 0. Frequency spectra are extracted by
taking a 15 s segment of each signal starting at t = 0 s for that signal and computing
the DFT for that window. The modulus of the complex frequency component is then
plotted against the frequency. The 15 s window moves in steps of 0.5 s.

3 Results

Running the segmentation program on 864 candidate data streams from untreated cells
(3 full MEA plates of 288 electrodes each) yields 408 coupled pairs of acceptable pro-
cessed AP and FP traces. The duration of the segmentation per plate is a few minutes
on a commercially available personal laptop, running an Intel i7 processor with 8 GB
RAM. The AP traces vary in length from 5 to 50 s. Representative coupled 15 s traces
are shown in Figure 4.
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Figure 4: Coupled FP (top) and AP (bottom) readings from the same electrodes. Note
the slightly higher beat rate of AP vs. FP, a result of the 1 Hz electroporation stimulus.

The dynamic behavior of the features as time series for each electrode manifest
the signal degradation to an FP-like trace and a return of the BCL to an intrinsic beat
rate in the absence of electroporation stimulus (5). Reversion to FP-like behavior sets
in after between 4 and 50 beats, while on average, the nanopores remain open for
about 30 s. In the longer time series we observe increasing BCLs and increasing APDs,
indicating that the intrinsic beat rate of these cells is less than 1 Hz. Remarkably, even
large fluctuations in BCL frequently do not manifest similar fluctuations in APD. This
implies a largely uniform AP morphology in spontaneously beating cells.

A two-dimensional encoding of the frequency spectrum of the APs and FPs allows
a clear distinction between them. Let U be the voltage signal, Û its DFT, and Û200 be
the portion of the DFT with argument below 200 Hz. We encode

U 7→
(
||Û||2,

||Û200||2
||Û||2

)
. (1)

Figure 6 shows the separation that these features create for 494 traces, 255 FP traces
and 235 AP traces. Of the AP traces, 175 are from MEA readings from hiPSC-CMs and
60 are in silico AP traces generated using the Grandi et al. (2010) model with random-
ized pacing protocols. Note that the margin is actually a conservative choice as it is
determined by two isolated data points at the upper end of the FP cloud.

In Figure 7(A) we show AP traces from the same electrode recorded 25 h apart.
To analyze similarity and reproducibility of measurements across days, we run the
segmentation algorithm on data sets from the same MEA plate at 3 different times,
t = 0, 48 and 96 h, respectively. Figure 7(B)&(C) shows a strong coincidence of the
APD80 and BCL distributions. Treating each sequence of APDs from each day as a
random sample from a probability distribution, we can form the empirical density
function for each distribution. Measuring the pairwise distances between the empiri-
cal distributions on each day in the supremum norm we observe a maximal distance of
0.3, similar to the maximal supremum distance between distributions of different cell
batches. Zhu et al. (2016) have shown that populations of stem cell-derived myocytes
can exhibit significant variability in mean APD, and our results conform to these ob-
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Figure 5: (A) Time series plot of APD30, APD80 and BCL for a single data stream.
(B) An AP signal chain of 50 s recorded after electroporation on an MEA. The unstable
nanopores begin closing after approximately 13 s, resulting in a transitional signal mor-
phology. After 30 s the nanopores are almost fully closed and the signal has reverted
to an FP-like morphology.
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Figure 6: (A) The two frequency features from Equation (1). This choice allows linear
classification of a signal morphology as a sequence of FPs or APs. In vitro AP record-
ings are marked by blue triangles, and in silico simulations are marked by red trian-
gles. The bold line indicates the line of maximal margin obtained via Support Vector
Machine training. The region between the maximal margins on either side is shaded
in gray. A signal with Fourier features in this region is discarded. (B) Feature-space
encoding of signal train in Figure 5(B). Each successive state represents an increment
of ∆t = 1 s in the signal.

servations. Moreover, any day-to-day variance in APD readings is comparable to the
natural variability of readings at a single time point.

4 Discussion and Conclusion

MEA technology for industrial-scale recording of coupled FP and AP data allows for
sophisticated and extensive analysis of electrophysiological phenomena. Combined
with the introduction of induced pluripotent stem cells by Yamanaka in 2006 (Taka-
hashi and Yamanaka, 2006), this creates the potential for vast amounts of data to be
collected in a short period of time.

To parse the significant amount of data generated by even a single MEA exper-
iment and determine which readings are useful sound for analysis, we examine the
signal in a 2-dimensional feature space and inspect the time derivative of the signal.
Our algorithm efficiently locates and classifies AP and FP signals and determines the
acceptability of the signal using only consumer-grade hardware. This allows for quick
extraction of relevant data from an experiment without human intervention, freeing
up time for experimental analysis. Our algorithm also efficiently addresses the ran-
dom duration of intracellular access and the slow reversion of AP signals to FP mor-
phology. This enables maximal information extraction for a given experiment. By
analyzing the derivative to locate the onset of degradation, we eliminate dependence
of the algorithm on a specific experimental procedure and make it applicable to non-
electroporation based MEA methods, such as those proposed by Hayes et al. (2019).
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Figure 7: (A) AP traces from the same cell site taken 25 h apart, both recorded 10 s post-
electroporation. The similarity in morphology and magnitude indicates consistency of
measurements across multiple experiments. (B) & (C) Distributions of APD80 and BCL
collected from the same MEA plates at 0, 48 and 96 h, respectively.

MEA technology allows for repeated large-scale electrophysiological readings on
the same cells at different timestamps, enabling detailed analysis of the effect of time
on various physiological readings. We observe that the variability in readings taken
from the same cell site at different days is comparable to the variation in different cell
populations and thus is not an impediment to the reproducibility of experiments over
timescales on the order of days. This long-scale consistency represents a significant
strength of the MEA approach to electrophysiology and its applicability to clinical re-
search.

The large amount of data that can be extracted from this experimental setup also
allows for detailed analysis of the behavior between features for a given data stream.
One of the most fruitful of these relationships so far investigated for myocytes is the
concept of cardiac restitution, the relationship between APD for a given beat to the di-
astolic interval (DI) of the preceding beat, DI = BCL−APD. Earlier work on this topic
typically employ relationships of the form APDn+1 = F(DIn) which can be rewritten
as APDn+1 = BCL− F(APDn) := G(APDn) (Guevara et al., 1984; Kulkarni and Tolka-
cheva, 2015; Kesmia et al., 2019). These approaches are heavily dependent on pacing
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Figure 8: Dynamic plot of (APD80, DI) from two electrode streams for sequences of
seven and 11 beats, respectively. Panel (A) shows alternans while (B) shows strong
variablity in the APD tied to a constant DI. Note that both point sets are largely con-
fined to one-dimensional subspaces.

protocols and a steady-state response with fixed BCL and as such have limited appli-
cability in the case of spontaneously-beating tissue such as is observed in cultures of
hiPSC-CMs. To investigate the behavior of cardiac restitution in spontaneous-beating
cells with variable BCL using the language of discrete dynamical systems, we propose
to consider

(APDn+1, DIn+1) = Φ(APDn, DIn) (2)

and observe these pairs from beat to beat, see Figure 8. Figures of this type suggest the
presence of an underlying dynamical system for the two-dimensional state space. Fur-
ther research on this topic may use deep neural networks to fit a function to these time
series or exploit the field structure of the complex numbers to apply a convolutional
neural network (Cantwell et al., 2019) to the number zn = APDn + i DIn.

The above implementation only extracts a small number of numerical features pri-
marily from AP traces for analysis. The segmentation algorithm creates data arrays
that can be mined for any number of features, allowing user input as to which fea-
tures to extract for a given application. In particular, FP duration is not computed by
this program. This requires accurate identification of the repolarization wave in the
FP complex. Automated detection of such waves is quite challenging, with several
algorithms developed (Elgendi et al., 2015; Shang et al., 2019), but these come with
computational overhead. MEA signals do not always manifest a recognizable repolar-
ization wave. This may be tied to cell linkage to the substrate in the MEA (Li et al.,
2017) or perhaps to immaturity of cells.
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Non-standard Abbreviations and Acronyms

AP action potential
FP field potential
MEA multi-electrode array
hiPSC-CMs human induced pluripotent stem cell derived cardiomyocytes
APD/APDm action potential duration (to m % level)
BCL basic cycle length
DI diastolic interval
DFT discrete Fourier transform
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Online Supplement

L2 and Supremum Norms

Given a vector x = (x1, . . . , xN), the L2-norm of x is

||x||2 =

(
N

∑
i=1

xi
2

) 1
2

and the supremum, or L∞-norm

||x||∞ = max
1≤i≤N

{|xi|}

These norms define a distance function d between vectors by setting d(x, y) = ||x− y||.

Discrete Fourier Transform

Given a vector x =
(

x1, ..., xN
)
, we define its discrete Fourier transform by (Oppenheim

and Schafer, 1999)

Xk =
N

∑
n=1

xne−2πikn/N , k = 1, . . . , N.

This is the discrete analog of the continuous Fourier transform, and the modulus |Xk|
indicates the relative contribution of sinusoids with frequency

2πk
N

to the overall peri-
odic signal.

Supplementary Material

The light microscopy video (10X) “video.avi” shows spontaneously beating hiPSC-
CMs at 24 days post-differentiation.
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