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Understanding the function of the nervous system necessitates
mapping the spatial distributions of its constituent cells defined
by function, anatomy or gene expression. Recently, develop-
ments in tissue preparation and microscopy allow cellular pop-
ulations to be imaged throughout the entire rodent brain. How-
ever, mapping these neurons manually is prone to bias and is
often impractically time consuming. Here we present an open-
source algorithm for fully automated 3D detection of neuronal
somata in mouse whole-brain microscopy images using stan-
dard desktop computer hardware. We demonstrate the appli-
cability and power of our approach by mapping the brain-wide
locations of large populations of cells labeled with cytoplasmic
fluorescent proteins expressed via retrograde trans-synaptic vi-
ral infection.
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Introduction
To understand the circuits underlying computations in the
brain, it is necessary to map cell types, connections and ac-
tivity across the entire structure. Advances in labelling (1–3),
tissue clearing (4–6) and imaging (7–12) now allow for the
meso- and microscopic study of brain structure and function
across the rodent brain. Analysis of these whole-brain images
has lagged behind the developments in imaging (13). Al-
though there are many relevant commercial and open-source
bio-image analysis packages available (14–17), these have
traditionally been developed for 2D images or for 3D vol-
umes much smaller than a rodent brain.
In rodent studies, an increasingly common whole-brain im-
age analysis task is the identification of individual, labelled
cells across the entire brain. Traditionally, this was carried
out manually (18–21), but this approach does not scale to
all biological questions, particularly when many cells are la-
belled. Considering that a mouse brain has around 100 mil-
lion neurons (22), even if only 0.01% of cells in the brain
are labelled, a manual approach becomes impractical for any
kind of routine analysis.
There are many methods that work well for identifying la-
belled cells in serial 2D sections, and subsequently register-
ing the images to reference atlases (23–31). However, 2D
analysis can be subject to bias as detected cell numbers can
be under, or overestimated depending on sampling in the third
dimension. There are now methods for 3D cell detection in
whole-brain microscopy images (32–34), but these methods
are limited to either nuclear labels, or were only validated in

small regions of the brain. Although nuclear labels are much
simpler to detect than membrane or cytoplasmic markers (as
they have a simple shape and can be approximated as spheres
and are far less likely to be overlapping in the image) there
are many applications in which a nuclear label is not practical
or even useful, as in the case of in vivo functional imaging.
Any approach must also be validated throughout the brain,
as the signal to noise (SNR) characteristics can vary between
brain regions (e.g. sources of noise could be falsely detected
as a cell). There does not yet exist a quick method for 3D de-
tection of cells with cytosolic labels that has been validated
throughout an entire brain. Meeting this need is a highly de-
sired goal within systems neuroscience.

To overcome the limitations of traditional computer vision,
machine learning — and particularly deep learning (35) —
has revolutionised the analysis of biomedical and cellular
imaging (36). Deep neural networks (DNNs) now represent
the state of the art for the majority of image analysis, and have
been applied to analyse whole-brain images, to detect cells in
2D (23, 28) or to segment axons (37). However, they have
two main disadvantages when it comes to 3D whole brain
analysis. Firstly, they require large amounts of manually-
annotated training data (e.g. for cell segmentation, this would
potentially require the painstaking annotation of hundreds or
thousands of cell borders in 3D). Secondly, the complex ar-
chitecture of DNNs means that for big data (e.g. whole-brain
images at cellular resolution), large amounts of computing
infrastructure is required to train these networks, and then
process the images in a reasonable time frame.

To harness the power of deep learning for 3D identification
of labelled cells in whole-brain images, we developed a com-
putational pipeline which uses classical image analysis ap-
proaches to detect potentially labelled cells with high sensi-
tivity (cell candidates), at the expense of detecting false pos-
itives (i.e. geometrically similar objects). This is then fol-
lowed by application of a DNN to classify cell candidates as
either true cells, or artefacts to be rejected. Harnessing the
power of deep learning for object classification rather than
cell segmentation at a voxel level speeds up analysis (since
there are billions of voxels, but many fewer cell candidates)
and simplifies the generation of training data. Rather than
annotating cell borders in 3D, cell candidates from the initial
step can be further classified by the addition of a single (cell
or artefact) label.
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Results
To illustrate the problem and to demonstrate the software,
whole mouse brain images were acquired following retro-
grade rabies virus labelling. Viral injections were performed
into visual or retrosplenial cortex, causing thousands of cells
to be cytoplasmically labelled throughout the brain. Data
was acquired using serial two-photon microscopy as previ-
ously described (19) (Fig. 1). Briefly, coronal sections are
imaged at high-resolution (2 µm x 2 µm x 5 µm voxel size)
and stitched to provide a complete coronal section. This is
carried out for ten imaging planes after which a microtome
removes the most superficial 50 µm of tissue and the process
is repeated until the entire brain data set is collected. Light
emitted from the specimen is filtered and detected via at least
two channels, a primary signal channel containing the fluo-
rescence signal from labelled target neurons and a secondary
‘autofluorescence’ channel that does not contain target sig-
nals but provides anatomical outlines. An example single-
plane image is shown in Fig. 2a.

Fig. 1. Simplified schematic diagram of the serial two-photon microscope and
data acquisition process. A: The tissue is excited using a femtosecond Ti-sapphire
laser (emission wavelength = 800 nm). For data collection, 50 µm of tissue (at
approximately 40 µm to 90 µm below the tissue surface) is imaged in ten, 5 µm
thick planes. An in-built microtome then physically removes a 50 µm thick section
from the optical face. This process is repeated to generate a complete 3D dataset
of the specimen. B: For signal collection, the emitted lightpath is split into two
channels whereby the primary channel detects the fluorescence signal of interest
from labelled cells (e.g. mCherry at 610 nm) and the second channel (e.g. at
450 nm) detects the tissue autofluorescence signal that reveals gross anatomical
structure.

Cell candidate detection. When developing any object
detection algorithm, a balance must be struck between
false positives and false negatives. In traditional (two-
dimensional) histology, simple thresholding (e.g. (38)) can
often work well for cell detection. This does not necessarily
apply to whole brain images. In samples with bright, non-
cellular structures (artefacts, Fig. 2c) or lower signal to noise
ratio, simple thresholding can detect many non-cellular ele-

ments. Image preprocessing and subsequent curation of de-
tected objects can overcome some of these issues, but no sin-
gle method works reliably across the brain in multiple sam-
ples. Either some cells are missed (false negatives), or many
artefacts are also detected (false positives). To overcome this,
a traditional image analysis approach was used to detect cell
candidates, i.e. objects of approximately the correct bright-
ness and size to be a cell. This list of candidates is then later
refined by the deep learning step. Crucially, this refinement
allows the traditional analysis to produce many false posi-
tives while minimising the number of false negatives. Im-
ages are median filtered and a Laplacian of Gaussian filter
is used to enhance cell-like objects. The resulting image is
thresholded, and objects of approximately the correct size are
saved as candidate cell positions (Fig. 2d). An overview of
the cell candidate detection steps is shown in Fig. S1. The
thresholding is tuned to pick up every detectable cell but this
also results in the detection of many false positives that of-
ten appear as debris on the surface of the brain and in some
cases unidentified objects within blood vessels. This initial
detection step is based on a number of tunable parameters
(Table 5) which were chosen based on trial and error to be bi-
ased to over detection, and so be relatively robust to changes
in the input data. They may of course need to be tuned for
very different data, in particular the in-plane cell somata di-
ameter which may need to be tuned when different types of
cells are labelled.

Cell candidate classification using deep learning. A
classification step, which uses a 3D adaptation of the ResNet
(39) convolutional neural network (Figs. S2 & S3) is then
used to separate true from false positives. To classify cell can-
didates, a subset of cell candidate positions were manually
annotated (e.g. Fig. 2e). In total, ∼100,000 cell candidates
(50,653 cells and 56,902 non-cells) were labelled from five
brains. Small cuboids of 50 x 50 x 100 µm around each can-
didate were extracted from the primary signal channel along
with the corresponding cuboid in the secondary autofluores-
cence channel (Fig. 3a). This allows the network to “learn”
the difference between neuron-based signals (only present in
the primary signal channel), and other non-neuronal sources
of fluorescence (potentially present in both channels).
The trained classification network is then applied to classify
the cell candidates from the initial detection step (Fig. 2f).
The artefacts (such as those at the surface of the brain and in
vessels) have been correctly rejected, while correctly clas-
sifying the labelled cells. To quantify the performance of
the classification network, and to assess how much training
data is required for good performance, the manually anno-
tated training data was split up into a new training dataset
from four brains, and a test dataset from the fifth brain. A
new network was trained on subsets of the training data, and
performance tested on the fifth brain (15,872 cells and 18,168
non-cells). Fig. 3b shows that relatively little training data
was required for good performance on unseen test data, with
95% of cell candidates classified correctly with ∼7,000 an-
notated cell candidates. Although ∼7,000 data points are
required to train the network from scratch, we provide the

2 | bioRχiv Tyson, Rousseau, Niedworok et al. |

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2020.10.21.348771doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.348771
http://creativecommons.org/licenses/by/4.0/


Fig. 2. Illustration of the cell detection process. A: Single coronal plane of raw data (primary signal channel, Ch1). B: Enlarged insert of cortical region from A showing
examples of structural features (artefacts) often erroneously detected. C: Cortical region shown in B, in the secondary autofluorescence channel (Ch2). Cells can only be seen
in Ch1, but artefacts are visible in both channels. D: Detected cell candidates overlaid on raw data. Labelled cells as well as numerous artefacts are detected. E: Illustration
of training data. A subset of detected cell candidates are classified as cells (yellow) or artefacts (purple). Cuboids of data centered on these selected cell candidates are then
used to train the network. F: Classified cell candidates. The trained cell classification network is applied to all the cell candidates from (E) and correctly rejects the initial false
positives.

network trained on the full dataset with the software. Users
can then re-train this network with a much smaller amount of
experiment-specific training data.

Application. To illustrate the method, the cell detection soft-
ware was applied to data which was not used to develop or
train the classification network. Data from a previous exper-
iment (40) was acquired on a different microscope and was
used to simulate real-world usage in which the SNR charac-
teristics of the data may vary from that used to pre-train the
supplied network. Neurons presynaptic to layer 2/3 primary
visual cortical cells were labeled using rabies virus tracing
(expressing mCherry) in two Penk-Cre mice.
The algorithm was run on these two brains, using the default
candidate detection parameters (Table 5). A small number
(619) of the detected cell candidates were manually anno-
tated on a single brain (brain 1) including confirmations of
correct classifications, and corrections of incorrect classifica-
tions. The pre-trained network was then retrained using these
data points and 10% of the data was held back for validation
during training. The network was trained until the validation
loss function began to plateau, taking 73 minutes. The full
cell detection algorithm was then repeated for both brains us-
ing the re-trained network on a laptop computer. Total time
for cell detection was 83 minutes for brain 1 and 91 minutes
for brain 2 (for full timings see Table 1).
To assign detected cells to a brain region, the Allen Mouse

Brain Reference Atlas (ARA (41)) annotations were regis-
tered to the secondary autofluorescence channel using brain-
reg (42), a Python port of the validated aMAP pipeline (43).
These annotations were overlaid on the raw data (Fig. 4a),
and the number of cells in each brain region were reported,
allowing for quantitative analysis (Table 2).
The new data was noisier than that used to pre-train the
network (possibly due to the use of resonant vs galvanometer
scanning), which lead to false-positives throughout the brain.
A small amount of new training data, taking approximately
five minutes to generate was sufficient to significantly im-
prove performance of the algorithm (Fig. 4b). The re-trained
network removed many of the false-positives, while still
correctly classifying the labelled cells.

Table 1. Algorithm timings on a laptop computer with Intel i9-9900K CPU, 32GB
RAM and an NVIDIA RTX2080 GPU. Data stored on an external solid-state drive.

Brain 1 Brain 2
Number of cell candidates 63995 80122
Number of candidates classified as cells 4266 4021
Time for cell candidate detection 50 minutes 48 minutes
Time for classification 33 minutes 43 minutes
Total time 83 minutes 91 minutes

Validation. To quantify the accuracy of the algorithm brain-
wide, we generated ground truth data for both the brain used
to generate data for re-training (brain 1) and the “unseen”
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Fig. 3. Cell classification. A: The input data to the modified ResNet are 3D image cuboids (50 µm x 50 µm x 100 µm) centered on each cell candidate. There are two
cuboids, one from the primary signal channel, and one from the secondary autofluorescence channel. The data is then fed through the network, resulting in a binary label
of cell or non-cell. During training the network “learns” to distinguish true cells, from other bright non-cellular objects. See Figs. S2 & S3 for more details of the 3D ResNet
architecture. B: Training the initial cell classification network: classification accuracy as a function of training data quantity.

Table 2. Total number of cells in each region, per brain, projecting to layer 2/3
neurons in primary visual cortex. Ten regions with the greatest number of cells
across both brains shown.

Brain structure name Brain 1 Brain 2
Primary visual area, layer 2/3 965 1222
Primary visual area, layer 5 650 558
Dorsal part of the lateral geniculate complex, core 371 340
Lateral posterior nucleus of the thalamus 240 215
Primary visual area, layer 4 207 205
Retrosplenial area, ventral part, layer 5 162 135
Dorsal part of the lateral geniculate complex, shell 122 124
Lateral dorsal nucleus of thalamus 122 107
Retrosplenial area, dorsal part, layer 5 110 103
Posteromedial visual area, layer 5 46 74

brain (brain 2). Two experts manually annotated all labelled
cell somata throughout the brains. These cells were assigned
to regions in the ARA in the same way as the automated cell
counts and an average of the two experts was taken. The com-
parison between the automated counts and the manual counts
is shown in Fig. 4c. Using the pre-trained network, the algo-
rithm detects false positives, including in many areas with no
labelled cells. Re-training the network significantly reduces
the number of false positives, bringing the best-fit line closer
to an exact match to the manual cell counts. For both brains,
a linear fit to the algorithm and manual cell counts is above 1
(brain 1 - 1.113, brain 2 - 1.053), suggesting a small number
of false positives (Table 3).
Although the results from the two brains look similar when
the detected cells are warped to the ARA coordinate space

(Fig. 4d), there is still significant biological variability. For
this reason, most experiments quantify relative, rather than
absolute, cell counts (18, 20, 24, 44). It is therefore important
than the correlation between the automated cell counts and
ground truth is as high as possible. The correlation for
both the brain used for training (brain 1), and the “unseen”
brain (brain 2) is very high (Pearson correlation coefficient,
ρ = 0.999), and higher than the correlation between the
automated cell counts for both brains (ρ= 0.982).

Table 3. Comparison between algorithm and expert cell counting.

Brain 1
Pearson correlation

coefficient
Linear best-fit

slope
Algorithm vs expert 1 0.999 1.054
Algorithm vs expert 2 0.999 1.178
Expert 1 vs expert 2 0.999 1.116
Algorithm vs expert mean 0.999 1.113

Brain 2
Pearson correlation

coefficient
Linear best-fit

slope
Algorithm vs expert 1 0.998 0.964
Algorithm vs expert 2 0.997 1.151
Expert 1 vs expert 2 0.994 1.188
Algorithm vs expert mean 0.999 1.053

Effect of varying axial sampling. All the data presented
was acquired with high axial sampling (5 µm), but this is not
always possible or desirable due to imaging time, data stor-
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Fig. 4. Application of the algorithm to unseen data. Presynaptic neurons labelled by rabies viral injection into layer 2/3 primary visual cortex in Penk-Cre mice. A:
Detected cells overlaid on raw data along with the brain region segmentation for Brain 1 (blue) and 2 (orange). The size of the coloured disk represents the proximity of the
cell centroid to the image plane displayed. B: Comparison of cell detection before and after re-training the pre-trained network in different regions of the image. Cells with
different morphologies are correctly detected in both dense and sparse regions, and artefacts are rejected. VISli — Laterointermediate area, LGd — Dorsal part of the lateral
geniculate complex, DR — Dorsal nucleus raphe, SC/M — Superior colliculus & meninges. C: Comparison of cell counts per ARA brain region between the algorithm and
the mean of the two expert counts. Best fit shown before and after re-training. D: Visualisation of detected cells from both brains warped to the ARA coordinate space in 3D,
along with the rabies virus injection site target (primary visual cortex, wireframe).

age requirements, or biological considerations such as pho-
tobleaching. To assess the performance of the algorithm with
varying optical slice thicknesses, we downsampled the data
from brain 2, to generate synthetic datasets with axial sam-
pling of 5, 10, 20 and 40 µm, and the algorithm was applied
as before.

The cell counts were compared to the mean of expert counts
(Table 4). Performance in terms of absolute cell numbers
(best fit line slope, and Pearson correlation coefficient) was
comparable for 5, 10 and 20 µm, although the 5 µm dataset
was most highly correlated to the ground truth. The perfor-
mance on the 40 µm dataset was much worse. The best-fit
line slope of 0.675 means that many cells have been missed,

although the high correlation (ρ = 0.942) suggests that this
effect is relatively uniform throughout the brain.

The results are not surprising, as even with 20 µm axial
sampling, most cells can still be visualised in multiple image
planes, and so 3D cell detection is still possible. At 40 µm
axial sampling, this is not possible, and so many cells are
missed. Although the correlation coefficients at 10 and
20 µm axial spacing are relatively high (ρ = 0.978,0.981),
they are lower than the correlation between different brains
(ρ = 0.982). This may reduce the likelihood of detecting
small biological effects using data with low axial sampling.
There are also many other factors that affect how many
image planes a cell will appear in, such as the cell somata
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size, and the axial point spread function of the microscope.

Table 4. Algorithm performance compared to mean of expert manual counts with
varying axial sampling.

Axial sampling [µm] Pearson correlation
coefficient

Linear best-fit
slope

5 0.999 1.053
10 0.978 0.906
20 0.981 1.011
40 0.942 0.675

Discussion
Mapping the distribution of labelled neurons across the brain
is critical for a complete understanding of the information
pathways that underlie brain function. Many existing meth-
ods for cell detection in whole-brain images rely on classical
image processing, which can be affected by noise, and may
not detect complex cell morphologies. DNNs can be used for
highly sensitive image processing, but often require labori-
ous generation of training data and are prohibitively slow for
the analysis of large, 3D images. The presented method here
overcomes these limitations by combining traditional image
processing methods for speed, with a DNN to improve accu-
racy.
Recent developments in microscopy technology (e.g. (12))
now allow for quicker, more routine acquisition of whole-
brain datasets. It is important that the image analysis can
be carried out in a timely fashion, and without relying on
large-scale computing infrastructure. Processing time for the
∼180GB images in Fig. 4 on a laptop was around 90 minutes,
so sixteen datasets could be analysed in a single day, much
quicker than the sample preparation and imaging steps. Once
parameters are optimised, and the classification network is
trained, the software can run entirely without user interven-
tion.
In traditional DNN approaches for image analysis, genera-
tion of training data is often a major bottleneck. While large-
scale “citizen science” approaches can be used to generate
large amounts of training data (45), this is not practical for
the majority of applications, e.g. when anatomical expertise
is required. Our method overcomes this by requiring only a
binary label (cell or non-cell) for each cell candidate in the
training dataset, rather than a painstaking 3D outline of each
cell. The software is released with a pre-trained network, and
so the network can be re-trained for specific datasets very
quickly. The total time to generate the new network used to
classify images in Fig. 4 was less than two hours, including
generating training data and retraining the network.
We show that the results of the proposed method compare
well to expert manual counts, particularly the correlation be-
tween counts in different brain areas. However our results
also show the importance of re-training the pre-trained net-
work for new datasets (even if they are superficially simi-
lar). It is important to also bear in mind that although we
quantified performance of the algorithm across the brain, we
did not label every type of cell, and some areas of the brain
with densely packed neurons (e.g. hippocampus) were only

sparsely labelled. When applying this method to very dif-
ferent data, users should ensure that they re-train the model
with representative training data (including different brain ar-
eas, cell types and image artefacts if applicable), and check
the results in detail. The data in Table 4 shows that although
the method is relatively robust to the axial sampling, true 3D
imaging (i.e. labelled cells appear in at least two axial planes)
is required for accurate cell detection using our method.
The ability to quickly detect, visualise and analyse cytoplas-
mically labelled cells across the mouse brain brings a num-
ber of advantages over existing methods. Analysing an entire
brain rather than 2D sections has the potential to detect many
more cells, increasing the statistical power and the likelihood
of finding novel results, particularly when studying rare cell
types. Whole-brain analysis may also be less biased than
analysing a series of 2D planes, especially in regions with
low cell densities, or differing cell sizes.
This software is fully open-source, and has been written with
further development and collaboration in mind. In future we
aim to adapt the network to be flexible as to the number of
input channels, and output labels. The classification network
currently relies on using both the primary signal and the sec-
ondary autofluroescence channel. In the future it would be
valuable to train a network that could achieve a similar level
of performance using a single input channel. Analysing a sin-
gle channel would allow half as much data to be collected (al-
though autofluorescence channels are optimal for atlas regis-
tration). Training a network to produce multiple labels (rather
than just cell or non-cell) would allow for cell-type classi-
fication based on morphology, or based on gene or protein
expression levels if additional signal channels were supplied.
Although the ResNet architecture was chosen based on per-
formance (39) and flexibility in new contexts (e.g. (46)),
there are many newer network architectures that could be im-
plemented to improve performance (e.g. (47, 48)). Lastly,
although this approach was designed for fast analysis of large
whole-brain datasets, the proposed two-step approach could
be used for any kind of large-scale 3D object detection.

DATA AVAILABILITY
The methods outlined in this manuscript are available within the cellfinder software,
part of the BrainGlobe suite of computational neuroanatomy tools. The software is
open-source, written in Python 3 and runs on standard desktop computing hardware
(although a CUDA compatible GPU allows for a considerable reduction in process-
ing time). Source code is available at github.com/brainglobe/cellfinder and pre-built
wheels at pypi.org/project/cellfinder. Documentation, tutorials, and the data under-
lying Fig. 4 are available at docs.brainglobe.info/cellfinder.
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Materials and methods
All experiments were carried out in accordance with the UK
Home Office regulations (Animal Welfare Act 2006) and ap-
proved by the establishments Animal Welfare and Ethical Re-
view Board.

Sample preparation. All mice used were transgenic Cre-
reporter (Ntsr1-Cre, GAD2-IRES-Cre, Rbp4-Cre & Penk-
Cre) mice bred on a C57BL/6 background. The mice were
anesthetized and an AAV Cre-dependent helper virus encod-
ing both the envelope protein receptor and the rabies virus
glycoprotein was stereotactically injected into visual cortex
or retrosplenial cortex. Four days later, a glycoprotein defi-
cient form of the rabies virus expressing mCherry was deliv-
ered into the same site. After ten further days, the animal was
deeply anaesthetized and transcardially perfused with cold
phosphate buffer (0.1 M) followed by 4% paraformaldehyde
(PFA) in PB (0.1 M) and the brain left overnight in 4% PFA
at 4 °C.

Imaging. All data was acquired using serial section two-
photon tomography (8). To generate the data to pre-train the
deep-learning model, fixed brains were embedded in 4% agar
and placed under a two-photon microscope containing an in-
tegrated vibrating microtome and a motorized x-y-z stage as
previously described (19). Coronal images were acquired via
two optical pathways (red and blue) as a set of 6 by 9 tiles
with a voxel size of 1 µm x 1 µm obtained every 5 µm using
an Olympus 10x objective (NA = 0.6) mounted on a piezo-
electric element (Physik Instrumente, Germany). Following
acquisition, image tiles were corrected for uneven illumina-
tion by subtraction of an average image from each physical

section. Tiles were then stitched using a custom FIJI (14) plu-
gin (modified from (49)) and downsampled to 2 µm x 2 µm x
5 µm voxel size.
To generate the data to test the algorithm, data was ac-
quired using a different, custom-built resonant-scanning sys-
tem controlled by ScanImage (v5.6, Vidrio Technologies,
USA) using BakingTray (50), a custom software wrapper for
setting up the imaging parameters. Images were assembled
using StitchIt (51). Both brains were imaged in a single ac-
quisition using a Nikon 16x objective (NA = 0.8) , with a
voxel size of 2.31 µm x 2.31 µm x 5 µm.

Cell candidate detection. To detect cell candidates
(broadly defined as anything of sufficient brightness and of
approximately the correct size to be a cell), initially data from
the primary signal channel was processed in 2D (Fig. S1).
Images were median filtered, and then a Laplacian of Gaus-
sian filter was performed to enhance small, bright structures
(e.g. cells). This filtered image was binarised using a thresh-
old calculated for each image plane (mean of image plane +
10 x image plane standard deviation). The thresholded image
was then passed to an ellipsoidal filter to remove noise. Every
position of this spatial filter in which the majority (given by
an input parameter, ellipsoidal filter overlap threshold frac-
tion) of the filter overlaps with thresholded voxels was saved
as a potential cell candidate. This is used to remove noise
(from e.g. neurites).
All cell candidates that form continuous spatial structures
were merged together, and classed as a single cell candidate.
If the resulting cluster was too large to be a single cell (based
on the input cell somata size parameter), then this cluster was
split into individual cell candidates using an iterative ellip-
soidal filter. Briefly, the ellipsoidal filter was applied to all
voxels within the cell candidate cluster, and any resulting cell
candidate coordinate positions were recorded. The thresh-
olded image was eroded, and the filter was reapplied on the
eroded set of candidate voxels. This process was repeated for
ten iterations, or until there were no cell candidates remain-
ing. This process ensures that densely labelled cells are split
into individual cell candidates.
Once the final list of candidate cells is determined, the
centroid of each cell candidate (based on the 3D mean
coordinate of thresholded voxels) was calculated, and the
coordinates were saved as an XML file. All of these steps
were all carried out using the default software parameters
(Table 5), with the exception of the 40 µm axial spacing
dataset for which the axial extent of the ellipsoid filter was
increased to 30 µm.

Table 5. Default cell detection parameters

Parameter Value
In-plane cell somata diameter (�) 16 µm
Gaussian smoothing sigma 0.2�
Intensity threshold Mean + 10 x SD
In-plane (lateral) ellipsoidal filter width 6 µm
Axial (z) ellipsoidal filter width 15 µm
Ellipsoidal filter overlap threshold fraction 0.6
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Cell candidate classification using deep learning. Cell
candidates were classified using a ResNet (39), implemented
in Keras (52) for TensorFlow (53). 3D adaptations of all net-
works from the original paper are implemented in the soft-
ware (i.e. 18, 34, 50, 101 and 152-layer) and can be cho-
sen by the user, but the 50-layer network was used through-
out this study. The general architecture of these networks is
shown in Figs. S2 & S3.
To generate data to train the classification network, output
from the candidate detection step (cell candidate coordinates)
were manually classified using a custom FIJI (14) plugin, or
an integrated tool (cellfinder-curate) using napari (54) that is
supplied with the software. Expert annotators were presented
with the raw data, with cell candidates represented by hollow
spheres, centered on the cell candidate. By scrolling through
the 2D planes of the 3D dataset, the experts could view the
cell candidate in 3D before marking it as a cell or artefact.
Candidates were determined to be cells or artefacts based on
size, shape (including the presence of neurites) and the flu-
orescence level compared to the secondary autofluorescence
channel (which was visualised at the same time). Candidates
were labelled by three experts, labelling different brains, and
a subset of labelled candidates were cross-checked between
experts.
Image cuboids of 50 µm x 50 µm x 100 µm (resampled to 50
x 50 x 20 voxels) were extracted from both the primary sig-
nal, and secondary autofluorescence channels, centered on
the coordinates of the manually classified cell candidate po-
sitions. To increase the size of the training set, data were
randomly augmented. Each of the following transformations
were applied with a 10% likelihood: (i) flipping in any of the
three axes, (ii) rotation around any of the three axes (between
45° to 45°) and (iii) circular translation along any of the three
axes (up to 5% of the axis length). The networks were trained
using an NVIDIA TITAN RTX GPU with a batch size of 32
and the Adam (55) method was used to minimise the loss
(categorical cross entropy), with a learning rate of 0.0001.
Cell candidates were classified using the trained network, and
saved as an XML file with a cell or artefact label.

Image registration and segmentation. To allow detected
cells to be assigned an anatomical label, and for them to
be analysed in a common coordinate framework, a refer-
ence atlas (Allen Mouse Brain Atlas, ARA, (41), provided
by the BrainGlobe Atlas API (56)) was registered to the aut-
ofluorescence channel. This was carried out using brainreg
(42), a Python port of the automatic mouse atlas propaga-
tion (aMAP) software (43), which itself relies on the medical
image registration library, niftyreg (57). Firstly the sample
brain was downsampled to the same voxel spacing as the at-
las (10 µm isotropic) and was reoriented to the atlas template
brain. These two images were then filtered to remove-high
frequency noise (greyscale opening and flat-field correction).
The images were firstly registered using an affine transform
(reg_aladin (58)), followed by freeform non-linear registra-
tion (reg_f3d (57)). The resulting transformation was applied
to the atlas brain region annotations (and a custom hemi-
spheres atlas) to bring it into the same coordinate space as

the sample brain.

Validation. To compare results of the algorithm to ground
truth, two experts manually annotated each cell in two whole-
brain images using the same cellfinder-curate tool used to
generate the training data. The experts were shown the full-
resolution images, with both channels displayed in different
colors. The experts could scroll through the 3D images plane
by plane, zoom in and out, and adjust contrast settings to
best visualise cells in different brain areas. Experts annotated
cells based on the same criteria as for generating the training
data (shape, size and fluorescence intensity). Annotating a
cell position displayed a hollow sphere on top of the image,
around the cell coordinate. This was visible in multiple im-
age planes to ensure that individual cells were not labelled
more than once.
The cell classification network was retrained for the new
datasets, and the algorithm was run with the default cell can-
didate detection parameters. The images were also registered
to the ARA, and cell coordinates were assigned to brain re-
gions for both the automated and manual cell counts. The
different cell counting approaches were firstly compared by
calculating the Pearson correlation coefficient using Pandas
(59, 60). To assess the bias of the different approaches, they
were compared by calculating the slope of the best fit line by
fitting a linear model using scikit-learn (61).

Effect of varying axial sampling. To generate synthetic
datasets with varying axial sampling, a single brain was
downsampled in 3D by selecting every Nth image plane. For
example, to generate a dataset with 20 µm sampling from
the original dataset sampled at 5 µm, every fourth plane was
used.

Visualisation. For visualisation of data in standard space,
detected cells must be transformed to the atlas coordinate
space. Firstly, the affine transform from the initial registra-
tion was inverted (using reg_transform). The sample brain
was then registered non-linearly to the atlas (again using
reg_f3d) and a deformation field (mapping points in the sam-
ple brain to the atlas) was generated (using reg_transform).
This deformation field was applied to the coordinates of the
detected cells for each sample, transforming them into atlas
coordinate space.
Plots were generated using Matplotlib (62), and image vi-
sualisation was performed using napari (54) and brainrender
(63).
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Supplementary figures

Fig. S1. Overview of the initial cell candidate detection steps, from raw data to a cuboid of data fed into the classification network. Upper row: from left to right, the raw
image is median filtered to remove noise. A Laplacian of Gaussian is then performed to enhance small, bright structures such as the cell soma. Lower row: from right to left,
the image is thresholded and a 3D ellipsoidal filter is used to remove small, non-cellular objects (not shown in this image plane). The centroid of the resulting object is then
used to center the cuboid of data that it passed to the deep learning classification network. Images shown are 100 µm x 100 µm, and the cuboid is 50 µm x 50 µm (and
100 µm in the third dimension).
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Residual block I

Repeated:
18-layer: x2
34-layer: x3

Residual block II

Repeated:
18-layer: x2
34-layer: x4

Residual block III

Repeated:
18-layer: x2
34-layer: x6

Residual block IV

Repeated:
18-layer: x2
34-layer: x3

Input [50, 50, 20, 2]

3D Convolution (7,7,3)

Max Pooling

3D Convolution (3,3,3)

3D Convolution (3,3,3)

3D Convolution (3,3,3)

3D Convolution (3,3,3)

3D Convolution (3,3,3)

3D Convolution (3,3,3)

3D Convolution (3,3,3)
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Identity shortcut
If iteration 1: 3D convolution (1,1,1)
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Addition

Identity shortcut
If iteration 1: 3D convolution (1,1,1)

else: Identity

Addition

Identity shortcut
If iteration 1: 3D convolution (1,1,1)

else: Identity

Addition

Identity shortcut
If iteration 1: 3D convolution (1,1,1)

else: Identity

Addition

Global average pooling

Fully connected

Output [2,]

Fig. S2. Architecture of the 3D ResNet. 3D adaptation of the 2D networks from [38] which are available for use in the software.
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Residual block I
Repeated:
50-layer: x3
101-layer: x3
152-layer: x3

Residual block II
Repeated:
50-layer: x4
101-layer: x4
152-layer: x8

Residual block III
Repeated:
50-layer: x6
101-layer: x23
152-layer: x36

Residual block IV
Repeated:
50-layer: x3
101-layer: x3
152-layer: x3

Input [50, 50, 20, 2]

3D Convolution (7,7,3)

Max Pooling

3D Convolution (1,1,1)

3D Convolution (3,3,3)

3D Convolution (1,1,1)

3D Convolution (1,1,1)

3D Convolution (3,3,3)

3D Convolution (1,1,1)

3D Convolution (1,1,1)

3D Convolution (3,3,3)

3D Convolution (1,1,1)

3D Convolution (1,1,1)

3D Convolution (3,3,3)

3D Convolution (1,1,1)

Identity shortcut
If iteration 1: 3D convolution (1,1,1)

else: Identity

Addition

Identity shortcut
If iteration 1: 3D convolution (1,1,1)
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Addition

Identity shortcut
If iteration 1: 3D convolution (1,1,1)
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Addition

Identity shortcut
If iteration 1: 3D convolution (1,1,1)

else: Identity

Addition

Global average pooling

Fully connected

Output [2,]

Fig. S3. Architecture of the bottleneck 3D ResNet. 3D adaptation of the bottleneck 2D networks from [38] which are available for use in the software. The 50-layer bottleneck
network is used throughout this study, and is used for the pre-trained model supplied with the software.
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