Diet and pathogen susceptibility across species

1 Viral susceptibility across host species is largely independent of dietary

- 2 protein to carbohydrate ratios
- 3
- 4 **Twitter summary**: No role of host diet in susceptibility to a novel viral pathogen
- 5 across host species
- 6
- 7 **Impact Statement:** A successful host shift of a parasite from one susceptible
- 8 species to a novel host can be influenced by many ecological factors. Changes in
- 9 host diet can alter the immune response and outcomes of host-parasite
- 10 interactions and could potentially alter the outcome of a virus host shift. To
- 11 investigate, we infected 27 species of Drosophilidae with an RNA virus (DCV)
- 12 across three food types with differing protein to carbohydrate ratios. We then
- 13 looked at pathogen loads and survival of infected hosts compared to uninfected
- 14 controls. Changes in the ratio of protein to carbohydrate did not alter
- 15 susceptibility to DCV across host species.
- 16

17 Abstract

18 The likelihood of a successful host shift of a parasite to a novel host 19 species can be influenced by environmental factors that can act on both the host 20 and parasite. Changes in nutritional resource availability have been shown to 21 alter pathogen susceptibility and the outcome of infection in a range of systems. 22 Here we examined how dietary protein to carbohydrate altered susceptibility in 23 a large cross infection experiment. We infected 27 species of Drosophilidae with 24 an RNA virus on three food types of differing protein to carbohydrate ratios. We 25 then measured how viral load and mortality across species was affected by

Diet and pathogen susceptibility across species

26	changes in diet. We found that changes in the protein:carbohydrate in the diet
27	did not alter the outcomes of infection, with strong positive inter-species
28	correlations in both viral load and mortality across diets, suggesting no species
29	by diet interaction. Mortality and viral load were strongly positively correlated,
30	and this association was consistent across diets. This suggests changes in diet
31	may give consistent outcomes across host species, and may not be universally
32	important in determining host susceptibility to pathogens.
33	

34 Introduction

35 A key driver of pathogen host shifts – where a pathogen jumps from one host 36 species to another – is environmental change (Hoberg & Brooks, 2015; Carlson et 37 al., 2020). For a host shift to successfully occur a novel host must first be exposed 38 to a parasite, which must then be able to replicate and successfully infect the 39 host, before sufficient onward transmission (Woolhouse *et al.*, 2005). Ecological 40 factors can therefore influence the likelihood of host shifts by altering species 41 distributions and abundances making encounters more likely, or by acting as 42 stressors that alter physiological factors including immunity or virulence. The 43 main ecological factor studied has been temperature, which can have 44 asymmetrical impacts on hosts and parasites and potentially alter the likelihood 45 of host shifts (Brooks & Hoberg, 2007; Hoberg & Brooks, 2015; Kirk *et al.*, 2018; 46 Roberts *et al.*, 2018). The role of other ecological traits such as resource 47 availability, humidity, population density and geographical range, or within host 48 ecological traits such as metabolic rate, have been less well studied in explaining 49 the outcomes of host shifts, despite an increasing understanding of the role such 50 factors play in effecting the outcomes of host parasite interactions (Blanford &

Diet and pathogen susceptibility across species

3

51 Thomas, 1999; Harvell *et al.*, 2002; Ponton *et al.*, 2013; Hayman *et al.*, 2016;

- 52 Cumnock *et al.*, 2018).
- 53

54	Nutrition can shape the outcome of host-parasite interactions through its ability
55	to moderate both parasite virulence and host resistance (Ponton <i>et al.</i> , 2011,
56	2013; Pike et al., 2019). The nutritional resources of a host can impact its ability
57	to resist infection as immune responses are thought to be costly to both maintain
58	and activate (Kraaijeveld & Godfray, 1997; Lochmiller & Deerenberg, 2000;
59	McKean <i>et al.</i> , 2008; Cotter <i>et al.</i> , 2011; Kutzer & Armitage, 2016; Knutie <i>et al.</i> ,
60	2017). Nutrition is known to have long term consequences, with developmental
61	nutritional status being shown to have latent or even trans-generational effects
62	on immune responses (in <i>Drosophila</i> : Fellous & Lazzaro, 2010; Savola <i>et al.,</i>
63	2020b and reviewed in Grueber <i>et al.,</i> 2018). Hosts can also show behavioural
64	modifications in feeding upon infection; parasite-induced anorexia is thought to
65	be an adaptive host response (Ayres & Schneider, 2009; Rao <i>et al.</i> , 2017). In
66	some cases hosts actively increase the consumption of certain nutrients in their
67	diet for example, the African armyworm – <i>S. exempta</i> upon infection with a
68	baculovirus displays macronutrient self-medication (Povey <i>et al.</i> , 2009).
69	Nutrition may constrain the amount of investment that a host can allocate to an
70	energetically demanding immune response (Kraaijeveld & Godfray, 1997;
71	Lochmiller & Deerenberg, 2000; Cotter <i>et al.</i> , 2011; Knutie <i>et al.</i> , 2017), and
72	coping with costs associated with a parasite burden if infection does become
73	established (Sheldon & Verhulst, 1996). A suboptimal nutritional status may lead
74	a host to be unable to suppress or tolerate a parasite challenge they may
75	otherwise have been able to resist; or have reduced fitness from a trade off in

Diet and pathogen susceptibility across species

4

76 resources with life history traits (Kraaijeveld & Godfray, 1997; Lochmiller &

- 77 Deerenberg, 2000; Cotter *et al.*, 2011; Knutie *et al.*, 2017).
- 78

79	From a parasite perspective infecting a host of suboptimal nutritional status may
80	mean they encounter a weaker immune response and therefore infection and
81	establishment is easier (Siva-Jothy & Thompson, 2002). However, once
82	established the parasite may encounter its own resource limitations due to
83	competition with an already depleted host, causing suboptimal growth and
84	potentially affecting onward transmission. Therefore, predicting the outcome of
85	the interaction between nutrition, host immunity and subsequent resistance is
86	complex as the effects on the two parties may be divergent (Bedhomme <i>et al.</i> ,
87	2004).
88	

89	Multiple life history traits are moderated by resource availability, with condition
90	dependency across reproductive traits, aging and lifespan (Lee et al., 2008;
91	Maklakov et al., 2009; Camus et al., 2017; Henry & Colinet, 2018; Henry et al.,
92	2020). Laboratory experiments on dietary restriction, where individuals
93	experienced a reduction in nutrition without inducing malnutrition
94	(differentiated from Calorie Restriction) have been found to extend life span in a
95	range of organisms (Weindruch & Walford, 1982; Klass, 1983; Anderson <i>et al.</i> ,
96	2003; Nakagawa <i>et al.</i> , 2012). The effects of dietary restriction appear to be
97	explained by resource-mediated trade-offs between longevity and reproductive
98	effort (but see review by (Moatt <i>et al.</i> , 2020)). Geometric frameworks – the use of
99	artificial diets with known compositions of specific nutrients that develop an

	Diet and pathogen susceptibility across species	5
100	understanding of dimensional nutrient space – have been used to examine the	
101	consequences of different ratios of macronutrients across a range of	
102	organisms(Simpson & Raubenheimer, 1995, 2011; Raubenheimer & Simpson,	
103	1999). In Drosophila different life-history traits were optimized at different	
104	protein-carbohydrate intakes (Lee <i>et al.,</i> 2008; Skorupa <i>et al.,</i> 2008; Fanson <i>et d</i>	<i>11.</i> ,
105	2009; Jensen et al., 2015). Across multiple species, low protein to carbohydrate	!
106	ratios reduce reproductive rates but maximise lifespan (Nakagawa <i>et al.,</i> 2012;	
107	Le Couteur <i>et al.</i> , 2016). However, individuals with diets higher in protein and	
108	lower in carbohydrates have greater reproductive rates but shorter life spans.	
109	When given a choice of diet, individuals have been shown to optimise	
110	reproduction over lifespan (Bunning <i>et al.</i> , 2016). Host dietary frameworks hav	/e
111	been used to examine effects on bacterial pathogens (Povey et al., 2009; Cotter	et
112	al., 2019; Savola et al., 2020b; Wilson et al., 2020), viral pathogens (Lee et al.,	
113	2006; Povey et al., 2014), and individual aspects of immunity and gene	
114	expression (Cotter <i>et al.</i> , 2011, 2019; Keaton Wilson <i>et al.</i> , 2019). In particular,	
115	studies of viral infection in insects have found that high dietary protein leads to)

116 increased resistance (Lee *et al.*, 2006) indicating there may be higher protein

117 costs of resistance.

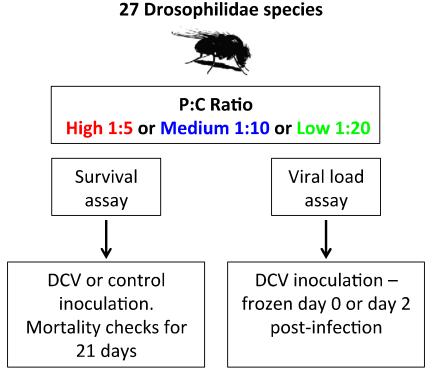
118

119 To investigate the effect that host diet has on the susceptibility of different host

species we infected 27 species of Drosophilidae, with Drosophila C Virus (DCV)

- 121 fed on three diets with varying ratios of protein to carbohydrates but
- 122 comparable calorie content. We then measured the change in viral load and host
- 123 mortality across these different diets. DCV is a positive sense RNA virus in the

Diet and pathogen susceptibility across species


124	family <i>Dicistroviridae</i> . DCV was isolated from <i>D. melanogaster</i> although has also
125	been detected in the closely related <i>D. simulans</i> (Christian, 1987), and in the wild
126	it is thought to be transmitted faecal-orally (Jousset <i>et al.,</i> 1972). Infection of DCV
127	by inoculation is highly pathogenic in adult flies causing increased mortality
128	rates, metabolic and behavioural changes and nutritional stress in the midgut,
129	causing similar pathologies to those seen in starvation (Christian, 1987; Arnold
130	et al., 2013; Chtarbanova et al., 2014; Vale & Jardine, 2017). DCV shows specific
131	tissue tropism in <i>D. melanogaster</i> , with infection of the heart tissue, fat body,
132	visceral muscle cells around the midgut and food storage organ (crop) causing
133	reduced defecation, food blockage and dehydration/starvation (Ferreira et al.,
134	2014). Infection progresses in a similar manner following both oral or septic
135	inoculation, with the same tissues ultimately becoming infected (Cherry $\&$
136	Perrimon, 2004; Arnold <i>et al.</i> , 2013; Chtarbanova <i>et al.</i> , 2014; Ferreira <i>et al.</i> ,
137	2014). If hosts are in a nutritional environment that allows for investment in
138	immune function or damage repair, they may be more able to resist, or tolerate a
139	novel infection (Ponton <i>et al.</i> , 2011, 2013; Pike <i>et al.</i> , 2019). This could then lead
140	to different outcomes following a host shift, either the host could manage to
141	suppress the parasite or avoid infection entirely, or could become infected and
142	minimise parasite damage (Lazzaro & Little, 2009; Howick & Lazzaro, 2014).
143	Alternatively hosts may be fully susceptible to infection, and enriched resources
144	may act to enhance pathogen virulence by enabling within host pathogen growth
145	(Hall et al., 2009; Pike et al., 2019). Previous work has demonstrated that
146	following inoculation into a novel host species, the host phylogeny is an
147	important determinant of susceptibility to DCV (Longdon et al., 2011, 2015). The
148	host phylogeny explains a large proportion of the variation in DCV virulence

Diet and pathogen susceptibility across species

7

149 (mortality) and viral load (75% and 67% respectively) with high virulence being 150 associated with high viral loads (Longdon *et al.*, 2015). One of the fundamental 151 steps needed for a successful host shift is the ability of a pathogen to infect a 152 novel host. Here we ask if the nutritional environment alters the susceptibility to 153 DCV following a shift into a range of novel host species, and whether such 154 patterns are consistent across species. 155 156 Methods 157 **Diet preparation** 158 Three different cornmeal diets were used (Supplementary of species used and 159 food type). The standard cornmeal diet used in our lab comprised a 1:10 protein 160 to carbohydrate ratio and became our "Medium" - protein: carbohydrate ratio 161 diet treatment. We also developed two further diets that were approximately 162 isocaloric, a low protein: carbohydrate food (1: 20 protein to carbohydrate) and 163 a high protein: carbohydrate food (1: 5 protein carbohydrate); see 164 supplementary for full table of food recipes nutrient breakdown. These were 165 based around previous findings that suggested that in *D. melanogaster* lifespan 166 was maximized on a protein: carbohydrate ratio of around 1:16, and fitness -167 measured as lifetime egg production at a ratio of 1:4 (Lee *et al.*, 2008). All diets 168 were manipulated by altering the dextrose and yeast amounts whilst 169 maintaining as close as possible the same calorie content at 142 Calories g/100170 ml. Yeast was manipulated as it provides the majority of the protein as well as 171 other non-caloric nutritional requirements (Piper, 2017). Values were confirmed 172 using the Drosophila Dietary Composition Calculator (Lesperance & Broderick, 173 2020).

Diet and pathogen susceptibility across species

x3 replicates for each

183 Viral Infections

- 184 Twenty-seven different species of Drosophilidae were maintained in multi
- 185 generation populations, in Drosophila stock bottles (Fisherbrand) on 50 ml of
- 186 their respective food medium at 22 $^\circ$ C and 70% relative humidity with a 12-hour
- 187 light-dark cycle (See Supplementary for species and food). Each day, two vials of
- 188 0-1 day old male flies were randomly assigned to one of three potential food

Diet and pathogen susceptibility across species

189	types; low, medium or high, protein: carbohydrate ratio. The mating status of
190	flies was not controlled as some species may reach sexual maturity before
191	collection. We used male flies only for this study to remove any potential effect of
192	sex. Flies were kept on their respective food treatments for 5 days, and tipped
193	onto fresh vials of food every day (Broderick & Lemaitre, 2012; Blum <i>et al.</i> ,
194	2013). After 5 days of acclimatisation on their food treatment flies were
195	experimentally infected with DCV. These collections and inoculations were
196	carried out over three replicate blocks, with each block being completed over
197	consecutive days (Figure 1). The order that the species were infected was
198	randomized each day, as was food treatment for each species.
199	
200	We used Drosophila C virus (DCV) strain B6A (Longdon et al., 2018), which is
201	derived from an isolate collected from <i>D. melanogaster</i> in Charolles, France
202	(Jousset et al., 1972). The virus was prepared as described previously (Longdon
203	et al., 2013). Briefly, DCV was grown in Schneider's Drosophila line 2 cells and
204	the Tissue Culture Infective Dose 50 (TCID50) per ml was calculated using the
205	Reed-Muench end-point method. Flies were anesthetized on CO_2 and inoculated
206	using a 0.0125 mm diameter stainless steel needle that was bent to a right angle
207	\sim 0.25mm from the end (Fine Science Tools, CA, USA). The bent tip of the needle
208	was dipped into the DCV solution (TCID50 = 6.32×10^9) and pricked into the
209	pleural suture on the thorax of the flies (Longdon <i>et al.</i> , 2015). We selected this
210	route of infection as oral inoculation has been shown to lead to stochastic
211	infection outcomes in <i>D. melanogaster</i> , with injection producing a more
212	reproducible infection, that has been found to follow a similar course to an oral
213	infection, with the same tissues ultimately becoming infected by both methods

Diet and pathogen susceptibility across species

10

214	(Cherry & Perrimon, 2004; Chtarbanova <i>et al.</i> , 2014; Ferreira <i>et al.</i> , 2014;
215	Merkling & van Rij, 2015). One vial of inoculated flies was immediately snap
216	frozen in liquid nitrogen to provide a time point zero samples to be used as a
217	reference sample to control for relative viral dose. The second vial of flies were
218	infected and then placed back into a new vial of their respective food treatment.
219	After 2 days (+/- 1 hour) flies were snap frozen in liquid nitrogen. This time
220	point was chosen based on previous studies that show a clear increase in viral
221	growth but little mortality at 2 days post infection (Longdon et al., 2015; Roberts
222	et al., 2018). Each experimental block contained a day 0 and day 2 replicate for
223	each species, at each diet (27 species × 3 diet treatments × 3 experimental
224	blocks). In total, we quantified viral load in 7580 flies in 474 biological replicates
225	(biological replicate = change in viral load from day 0 to day 2 post-infection),
226	with a mean of 16 flies per replicate (range across species = 8-28).
227	

228 Survival

229 In order to measure the effect of diet on virulence we also carried out a survival 230 assay where mortality was recorded following infection. The same infection 231 protocol was carried out as above; one vial of flies was infected with DCV whilst 232 the other was injected using a clean virus free needle dipped in *Drosophila* 233 Ringer's solution (Sullivan *et al.*, 2000) (Figure 1). Flies were maintained in vials 234 as described above and tipped onto their respective fresh food every 2 days. The 235 number of dead flies was counted every day for 21 days. The survival assay was 236 carried out across three blocks with infections carried out over consecutive days, 237 to obtain a control and infected vial per species each day. Treatment (virus or 238 control) and the order in which fly species were inoculated were randomized

Diet and pathogen susceptibility across species

239	between blocks. Diet was randomized across days, so for a given food type a
240	control and viral infected vial was completed each day, and this was repeated
241	over consequent days until there was a control and infected for each species on
242	each food type (27 species × 2 treatments (control or challenged) × 3 diet
243	treatments $ imes$ 3 experimental blocks). In total, we measured mortality in 9222
244	flies with a mean of 20 flies per replicate (range across species: 6–30 flies).
245	

246 Measuring the change in viral load

The change in RNA viral load from day 0 to day 2-post infection was measured
using quantitative Reverse Transcription PCR (qRT-PCR). Frozen flies were
homogenised in Trizol reagent (Invitrogen) using a bead homogeniser for 30

seconds (Bead Ruptor 24; Omni international) and stored at -80°C for later

251 extraction. Total RNA was extracted from the Trizol homogenised flies in a

252 chloroform isopropanol extraction, reverse-transcribed with Promega GoScript

253 reverse transcriptase and random hexamer primers. Viral RNA load was

254 expressed relative to the endogenous control housekeeping gene *RpL32*. Primers

were designed to match the homologous sequence in each species and crossed

an intron-exon boundary so will only amplify mRNA. The primers in *D*.

257 *melanogaster* were *RpL32* qRT-PCR F (5'-TGCTAAGCTGTCGCACAAATGG-3') and

258 *RpL32* qRT-PCR R (5'- TGCGCTTGTTCGATCCGTAAC -3') (see supplementary

table and Longdon *et al.*, 2011). DCV primers were 599F (5'-GACACTGCCTTT

260 GATTAG-3') and 733R (5'CCCTCTGGGAACTAAATG-3') as previously described

261 (Longdon *et al.*, 2015). Two qRT-PCR reactions (technical replicates) were

262 carried out per sample with both the viral and endogenous control primers, with

263 replicates distributed across plates in a randomised block design. qRT-PCR was

Diet and pathogen susceptibility across species

12

264	performed on an Applied Biosystems StepOnePlus system using Sensifast Hi-Rox
265	Sybr kit (Bioline) with the following PCR cycle: 95° C for 2 min followed by 40
266	cycles of: 95°C for 5 sec followed by 60°C for 30 sec. Each qRT-PCR plate
267	contained four standard samples. A linear model was used to correct the cycle
268	threshold (Ct) values for differences between qRT-PCR plates. Samples where
269	the technical replicates had Ct values more than 2 cycles apart after plate
270	correction were repeated. To estimate the change in viral load, we first
271	calculated ΔCt as the difference between the cycle thresholds of the DCV qRT-
272	PCR and the RpL32 endogenous control. For each species the viral load of day 2 $$
273	flies relative to day 0 flies was calculated as $2^{-\Delta\Delta Ct}$; where $\Delta\Delta Ct = \Delta Ct day0 - \Delta Ct$
274	day2. The Δ Ct day 0 and Δ Ct day 2 is a pair of Δ Ct values from a day 0 biological
275	replicate and a day 2 replicate.

- 276
- 277

Diet	Ratio Protein: Carb	Cornmeal (g)	Dextrose (g)	Yeast (g)	Agar (g)	Nipagin (ml)	dH20 (L)	Calories per 100ml
High	1:5	176	131.2	84	22	29	1	142.60
Medium	1:10	176	176	38	22	29	1	142.30
Low	1:20	176	203	10	22	29	1	142.02

278 **Table 1: Ingredients for the experimental diet treatments**. Amounts given

are enough to produce ~ 100 vials of food, with calculated calories per 100ml.

280

281 Effect of Body Size

282 To account for any potential differences in body size between species, we

283 measured wing length as a proxy for body size (Huey *et al.*, 2006). During the

Diet and pathogen susceptibility across species

284	collections for the viral load assay males of each species were collected and
285	immediately stored in ethanol. Subsequently, wings were removed and
286	photographed under a dissecting microscope. Using ImageJ software (version
287	1.48) the length of the IV longitudinal vein from the tip of the proximal segment
288	to where the distal segment joins vein V was recorded, and the mean taken for
289	each species, overall there was a mean of 28 wings measured per species (range
290	20-35).
201	

291

292 Host phylogeny

293 The host phylogeny was inferred as described previously (Longdon *et al.*, 2015)

using seven genes (mitochondrial; *COI, COII*, ribosomal; *28S* and nuclear; *Adh*,

295 SOD, Amyrel, RpL32). Publicly available sequences were downloaded from

Genbank or were Sanger sequenced. In total we had *RpL32* sequences for all 27

species, 28S from 24 species, Adh from 24 species, Amyrel from 15 species, COI

from 27 species, *COII* from 27 species and *SOD* from 12 species. For each gene

the sequences were aligned in Geneious (version 9.1.8) (Kearse *et al.*, 2012)

using the global alignment setting, with free end gaps and a cost matrix of 70%

301 similarity. The phylogeny was inferred using BEAST (v1.10.4) (Drummond *et al.*,

302 2012), with genes partitioned into three groups; mitochondria, ribosomal and

303 nuclear, with their own molecular clock models. A random starting tree was

304 used, with a relaxed uncorrelated lognormal molecular clock. Each of the

305 partitions used a HKY substitution model with a gamma distribution of rate

306 variation with 4 categories and estimated base frequencies. Additionally, the

307 mitochondrial and nuclear data sets were partitioned into codon positions 1+2

Diet and pathogen susceptibility across species

308	and 3, with unlinked substitution rates and base frequencies across codon
309	positions. The tree-shape prior was set to a birth-death process. The BEAST
310	analysis was run twice to ensure convergence for 1000 million MCMC
311	generations sampled every 10000 steps. On completion the MCMC process was
312	examined using the program Tracer (version 1.7.1) (Rambaut et al., 2014) to
313	ensure convergence and adequate sampling, and the constructed tree was then
314	visualised using FigTree (v1.4.4) (Rambaut, 2006).
315	

316 Statistical analysis

317 We used phylogenetic mixed models to look at the effects of host relatedness on

318 mortality and viral load across the three diet treatments. We fitted all models

319 using a Bayesian approach in the R package MCMCglmm version 2.29 (Hadfield,

320 2010) in RStudio (R version 3.5.1) (R Development Core Team, 2005). We used a

321 multivariate model with mortality of the controls, mortality of the virus infected

322 flies and viral load at each of the diets as the response variables. Mortality was

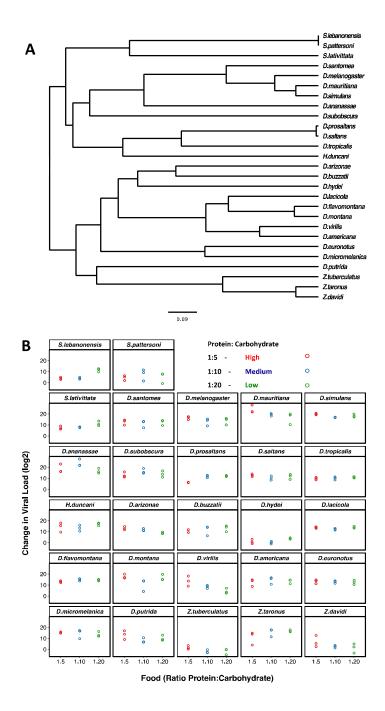
323 calculated as the mean portion of flies alive each day for each vial. The model

- 324 took the following form:
- 325

$$326 \quad y_{hit} = \beta_{1:t} + wingsize\beta_{2:t} + u_{p:ht} + e_{hit}$$

327

328 Where y is the change in viral load of the *i*th biological replicate of host species h, 329 for trait t. β are the fixed effects, with β_1 being the intercepts for each trait and β_2 330 being the effect of wing size. U_p are the random phylogenetic species effects and e 331 the model residuals. The models were also run with a species-specific 332 component independent of phylogeny ($u_{s:ht}$) that allow us to estimate the


Diet and pathogen susceptibility across species

333	proportion of variation that is not explained by the host phylogeny (v_s) (Longdon
334	et al., 2011). The main model was run without this term as it struggled to
335	separate the phylogenetic and non-phylogenetic terms. Our main model
336	therefore assumes a Brownian motion model of evolution (Felsenstein, 1973).
337	The random effects and the residuals are assumed to be multivariate normal
338	with a zero mean and a covariance structure $V_p \otimes A$ for the phylogenetic affects
339	and $V_e \otimes I$ for the residuals (\otimes here is the Kronecker product). A is the
340	phylogenetic relatedness matrix, ${f I}$ is an identity matrix and the ${f V}$ are 9×9
341	(co)variance matrices describing the (co)variances between viral load, mortality
342	in virus infected, and mortality in controls each at the 3 different diet levels. The
343	phylogenetic covariance matrix, $\mathbf{V}_{\mathbf{p}}$ – describes the inter-specific variances in
344	each trait and the inter-specific covariances between them. The residual
345	covariance matrix, $\mathbf{V}_{\mathbf{e}}$ describes the within-species variance that includes both
346	any actual within-species effects and also any measurement or experimental
347	error. The off-diagonal elements in V_e (the covariances) are unable to be
348	estimated because no vial has multiple measurements – so were set to zero. The
349	MCMC chain was run for 1300 million iterations with a burn-in of 30 million
350	iterations and a thinning interval of 1 million. Results were tested for sensitivity
351	to the use of different priors by being run with different prior structures (see
352	supplementary R code), which gave qualitatively similar results. We also ran
353	models with the data subset into viral load and mortality that gave similar
354	results. All confidence intervals (CI's) reported are 95% highest posterior
355	density intervals. In order to test for the interaction between diet and species we
356	calculated correlations between traits from the variance covariance matrix from
357	the diet:species random effect ($u_{p:\mathrm{h}t}$). If the correlations between traits are close

Diet and pathogen susceptibility across species

358	to one and there is no change in the means or the variance, it would suggest that
359	there is no species-by-diet interaction. We confirmed our experimental design
360	and sample sizes had sufficient power to detect effects by down sampling a
361	similar dataset (Roberts <i>et al.,</i> 2018).
362	
363	Results
364	In order to investigate the effect that host diet may have on the likelihood of
365	virus host shifts we quantified DCV viral load in 27 species of Drosophilidae that
366	had been housed on three different diets (Fig.2). Viral loads differed between
367	species, with a billion times more virus in the most susceptible compared to the
368	least susceptible species, consistent with previous studies (Longdon <i>et al.</i> , 2015;
369	Roberts et al., 2018). Viral loads were highly repeatable, with the inter-specific
370	phylogenetic component (v_p) , explaining a high proportion of the variation in
371	viral load across diets with little within species or measurement error (v_e)
372	(Repeatability = $v_p / (v_p + v_e)$; Low = 0.92 (95% CI: 0.86, 0.96); Medium = 0.90
373	(95% CI: 0.84,0.96); High = 0.83 (95% CI: 0.75, 0.92).

Diet and pathogen susceptibility across species

Diet and pathogen susceptibility across species

383	We also partitioned the inter-specific variance into that which can be explained
384	by a Brownian motion model of evolution on the host phylogeny (v_p), and a
385	species-specific component independent of the phylogeny (v_s). The proportion of
386	the between species variance that can be explained by the phylogeny can then be
387	calculated, using $v_p/(v_p + v_s)$ (Freckleton <i>et al.</i> , 2002), and can be equated to the
388	phylogenetic heritability or Pagel's lambda (Pagel, 1999; Housworth <i>et al.</i> , 2004).
389	We found that the host phylogeny explained a modest amount of the inter-
390	specific variation in viral loads across diets, however these estimates had broad
391	confidence intervals (Low = 0.20 (95% CI: 3.5 x10 ⁻⁶ , 0.63); Medium = 0.34 (95%
392	CI: 2.0 x 10 ⁻⁶ , 0.80); High = 0.51 (95% CI: 3.2 x 10 ⁻⁶ , 0.88), due to the model
393	struggling to separate out the phylogenetic and non-phylogenetic components.
394	
395	In order to examine if the susceptibility of species responded in the same or
396	different ways to the changes in diet we examined viral load across the different
397	protein: carbohydrate ratios. We found strong positive inter-specific correlations
398	between viral loads across diet treatments suggesting the species are responding
399	in similar ways to the changes in ratios (Table 2). There was a decline in the
400	between species variance in the high diet compared to low and medium – but
401	this was not significantly different– (v_p : Low =77.13 (95% CI: 35.09, 125.50);
402	Medium =82.33 (95% CI: 37.55, 135.26); High =45.59 (95% CI: 19.61, 76.39) and
403	mean viral loads were similar across the diets (Low = 11.4 (95% CI: 5.3, 17.7);
404	Medium = 10.6 (95% CI: 3.6, 16.6); High = 10.6 (95% CI: 3.6, 16.7). Residual
405	variance did not differ significantly between treatments (Low = 6.45 (95% CI:
406	4.87, 8.04); Medium = 8.23 (95% CI: 6.45, 10.35); High = 8.32 (95% CI: 6.54,
407	10.6).

Diet and pathogen susceptibility across species

19

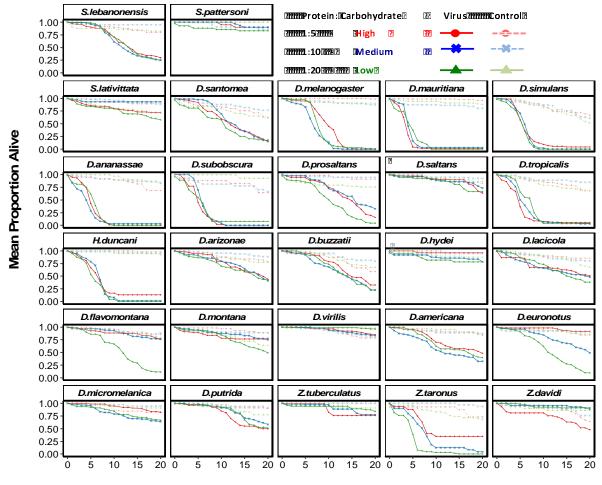
		Interspecific	95% CIs
		Correlation	
	Low - Medium	0.93	0.85, 0.98
Viral load	Medium - High	0.83	0.66, 0.96
	Low - High	0.80	0.63, 0.96
Survival in	Low - Medium	0.93	0.81, 0.99
virus challenged	Medium - High	0.88	0.71, 0.99
	Low - High	0.90	0.73, 0.99

409 **Table 2. Inter-specific correlations between viral load and mortality**

410 measures across the different diet treatments.

411

408


412 As similar pathogen loads can cause different levels of harm to their hosts (Roy & 413 Kirchner, 2000; Boots, 2008; Råberg *et al.*, 2009) we examined if virus induced 414 mortality differed across diets over a 20 day period after viral challenge (Fig. 3). We found differences in the virulence (mortality) caused by DCV between host 415 416 species, with some species seeing no apparent change in mortality over the 417 experimental period compared to sham infected controls, (e.g. S. pattersoni and 418 D. saltans), whilst other species show higher susceptibility with up to 50% of 419 flies dead by day 10 post infection (e.g. *D. simulans* and *D. melanogaster*). As with 420 the viral load data we calculated the repeatability of survival in these virus 421 infected flies which was high in all cases (Repeatability; Low = 0.90 (95% CI: 422 0.78, 0.98); Medium = 0.87 (95% CI: 0.71,0.97); High = 0.98 (95% CI: 0.85, 1.00). 423 We also calculated the proportion of between species variance that can be 424 explained by the phylogeny for the virus infected flies (Phylogenetic effect: Low

Diet and pathogen susceptibility across species

425	= 0.16 (95% CI: 2.58 x10 ⁻⁶ , 0.62); Medium = 0.18 (95% CI: 5.75 x 10 ⁻⁷ , 0.78); High
426	= 0.32 (95% CI: 7.75 x 10 ⁻⁸ , 0.87), which – like the viral load data – had broad
427	confidence intervals due to the model struggling to separate the phylogenetic
428	and non-phylogenetic components.
429	
430	We found strong positive inter-specific correlations between the survival of
431	virus challenged flies across the diets, suggesting the species are responding in
432	similar ways to the dietary changes (Table 2). Among species variance in
433	mortality of virus infected flies was consistent across diets (Low = 0. 18 (95% CI:
434	0.07, 0.31); Medium = 0.16 (95% CI: 0.04, 0.30); High = 0.12 (95% CI: 0.04, 0.23)
435	as was the mean mortality (Low = 0.64 (95% CI: 0.47, 0.82); Medium = 0.58
436	(95% CI: 0.38, 0.75); High = 0.65 (95% CI: 0.47, 0.82). The residual variance was
437	also consistent across the diets (Low = 0.02 (95% CI: 0.01 , 0.03); Medium = 0.02
438	(95% CI: 0.01, 0.04); High = 0.02 (95% CI: 0.01, 0.03).

Diet and pathogen susceptibility across species

21

Day Post Infection

439

440 Figure 3. Mortality in 27 species of Drosophilidae housed on three different

441 **diets of varying protein: carbohydrate ratios.** High- red circles, Medium - blue

442 crosses and Low- green triangles and either control stabbed (dashed line) or

443 virally challenged with DCV (solid lines). Panels are labelled in line with the tips

- 444 in Figure 2A.
- 445

446 We found that there were strong positive correlations between mortality and

447 RNA viral load (interspecific correlations between viral load and survival of virus

- 448 infected flies: Low = 0.89 (95% CI: 0.78, 0.98); Medium = 0.85 (95% CI: 0.67,
- 449 0.97); High = 0.67 (95% CI: 0.35, 0.90). To confirm that these differences are due
- 450 to mortality caused by the virus rather than intrinsic differences in the

Diet and pathogen susceptibility across species

451	survivorship of the different species, we also inoculated flies with a control
452	solution. There was far less mortality in the controls than the virus infected flies
453	(Fig. 3). There was inter-specific variation in control mortality (Low = 0.18 (95%)
454	CI: 0.01, 0.59); Medium = 0.43 (95% CI: 0.01,0.76); High = 0.55 (95% CI: -0.72,
455	1.00) but this was not significantly correlated with survival of the virus infected
456	flies (survival of control versus virus infected on: Low = -0.11 (95% CI: -0.92 ,
457	0.75); Medium = 0.34 (95% CI: -0.48 0.97); High = 0.12 (95% CI: -0.82, 0.89). We
458	found no effect of wing length as a proxy for body size, (mean: -0.05, 95% CI: -
459	0.13, 0.05).
460	
461	Discussion

462 We found dietary treatments of differing protein to carbohydrate ratios did not

463 alter the outcome of infection in 27 species of Drosophilidae infected with DCV.

464 We found strong positive inter-specific correlations across diets in both viral

load and mortality (Table 2), suggesting that the species are in general

466 responding in similar ways to nutritional changes. Despite there being among

467 species variation in susceptibility, generally changes in diet did not affect viral

468 loads, nor did they alter the likelihood of surviving an infection. We found strong

- 469 positive correlations between mortality and viral load on each of the diets,
- 470 suggesting the amount of harm caused to a host is a result of virus accumulation471 within the infected host.

472

473 Although the point estimates of the inter-specific correlations are close to one
474 (Table 2) – suggesting overall there is limited evidence for interactions between

475 species and diet, some species do appear to show differences in mortality on

Diet and pathogen susceptibility across species

23

476	different diets (e.g. <i>D. euronotus</i> and <i>D. flavomontana</i> , Figure 3). These patterns
477	however, are not present when looking at the viral load data for these species,
478	and our power analysis suggests we have enough power to detect interaction
479	effects with our present experimental design. Therefore, further experiments
480	designed to look specifically at the differences within species are required to
481	determine if these patterns of mortality would hold true.
482	
483	Both mounting and maintaining an immune response requires energy and
484	nutrients. During an acute immune challenge the provisioning of nutrients may
485	become more demanding for a host, with pathogen induced malabsorption
486	through damage to or obstruction of digestive tissues (Lochmiller & Deerenberg,
487	2000). DCV is known to cause severe pathology of the tissues of the digestive
488	tract with subsequent accumulation of food in the crop (food storage organ) and
100	

489 obstruction in the intestine (Chtarbanova *et al.*, 2014). These physical symptoms

490 alter an infected hosts energy stores with infected flies showing significantly

491 reduced glycogen and triglyceride levels three to four days post infection

492 (Chtarbanova *et al.*, 2014). DCV infected flies also increase in body mass, with a

493 reduced food intake and reduced metabolism, suggesting that they experience

494 increased water retention (Thomas-Orillard, 1984; Arnold *et al.*, 2013;

495 Chtarbanova *et al.*, 2014). We therefore hypothesised that changing the ratio of

496 protein to carbohydrate in the diet may alter outcome of infection, and as species

497 may all have their own "optimal diet", that species may respond in different ways

498 to such changes. However, this does not appear to be the case.

Diet and pathogen susceptibility across species

24

500	Geometric frameworks for nutrition were developed in response to the fact that
501	what is "optimal" will depend on a balance of particular nutrients in the
502	organism and trait being investigated (Simpson & Raubenheimer, 1995; Archer
503	et al., 2009; Cotter et al., 2019). For example mice infected with Salmonella were
504	found to survive better on diets containing a higher ratio of protein to
505	carbohydrate (Peck et al., 1992). As were army worm caterpillars infected with
506	bacteria, with survival increasing with dietary protein, suggesting high protein
507	requirements are associated with bacterial resistance (Povey et al., 2009). A
508	recent study used 10 different protein: carbohydrate diets and challenged flies
509	with <i>Pseudomonas entomophila</i> bacteria (Savola <i>et al.,</i> 2020a). Survival on low
510	protein diets was found to be lower in infected flies and suggested protein was
511	important for survival during infection. This study also monitored lifespan and
512	reproduction in flies, and found that regardless of injury and infection, dietary
513	restriction extended lifespan and reduced reproductive output (Savola et al.,
514	2020a). One potential mechanism of the interaction of diet and infection has
515	been suggested in research using a model host-pathogen system in vivo and in
516	vitro (Wilson et al., 2020). Caterpillars of S. littoralis challenged with the bacteria
517	X. nematophila in vivo and on high dietary protein had slower bacterial growth
518	with higher survival. When this was combined with <i>in vitro</i> experiments the
519	results suggested this was driven by the osmolality of the hosts' blood
520	(hemolymph) being altered by an increase in solutes in the high protein diets
521	slowing the bacterial growth (Wilson <i>et al.</i> , 2020).
522	
523	Further research on the mechanistic basis of dietary effects on resistance is

524 needed for other pathogen taxa, including viruses. Immunity to DCV inoculation

Diet and pathogen susceptibility across species

25

525	in <i>D. melanogaster</i> has been reported to involve the JAK/STAT and Imd
526	pathways, and potentially phagocytosis (Van Rij <i>et al.</i> , 2006; Zhu <i>et al.</i> , 2013;
527	Lamiable et al., 2016). Additionally, the RNAi pathway is a key antiviral defence
528	mechanism in Drosophila and DCV appears to have evolved to suppress this
529	response (Van Rij et al., 2006). Although we find no interaction between dietary
530	protein:carbohydrate and susceptibility, the multifaceted immune response to
531	DCV may be energetically costly and other nutrients may interact with the ability
532	of a host to allocate resources between an immune response, damage repair and
533	the maintenance of homeostasis (Lochmiller & Deerenberg, 2000; Zuk & Stoehr,
534	2002; Schmid-Hempel, 2005; Sadd & Siva-Jothy, 2006). For example, lipid and
535	fats have been associated with <i>D. melanogaster</i> response to DCV viral infection;
536	peroxisomes were found to be required for host defense to infection, through
537	their primary function in lipid metabolism (Aubert et al., 1995). The lipid level
538	across our diets was held constant, but this may be a potential area for further
539	study. There has been an increased use of a chemically defined (holidic) diet in
540	order to manipulate individual nutrients present in fly diets (Lee et al., 2006).
541	Exome matched diets have been shown to alleviate trade-offs in fecundity and
542	longevity (Piper et al., 2017). A possible extension of this would be to look at the
543	effect of matching diets to transcriptional changes during infection, and seeing if
544	this alleviates (or exacerbates) pathology.
545	

545

Changes in diet have been shown to alter pathogen susceptibility in a number of
systems. We hypothesised that changes in diet could alter the potential outcomes
of virus host shifts. However, we found that overall changes in the ratio of
protein to carbohydrate did not alter susceptibility to DCV across host species in

Diet and pathogen susceptibility across species

- this instance. This suggests dietary protein to carbohydrate ratios are not
- universally important in determining susceptibility to pathogens. It is unclear if
- the lack of studies showing no effect of diet reflect publication biases or whether
- our model system is unusual. However, it highlights the need to examine the
- importance of diet in explaining susceptibility to pathogens across a broad range
- 555 of host and pathogen taxa.

Diet and pathogen susceptibility across species

557	References
558	Anderson, R.M., Latorre-Esteves, M., Neves, A.R., Lavu, S., Medvedik, O., Taylor, C.,
559	et al. 2003. Yeast Life-Span Extension by Calorie Restriction Is Independent
560	of NAD Fluctuation. Science (80). 302: 2124–2126.
561	Archer, C.R., Royle, N., South, S., Selman, C. & Hunt, J. 2009. Nutritional geometry
562	provides food for thought. <i>Journals Gerontol Ser. A Biol. Sci. Med. Sci.</i> 64 :
563	956–959.
564	Arnold, P.A., Johnson, K.N. & White, C.R. 2013. Physiological and metabolic
565	consequences of viral infection in Drosophila melanogaster. J. Exp. Biol. 216:
566	3350-3357.
567	Aubert, A., Goodall, G. & Dantzer, R. 1995. Compared effects of cold ambient
568	temperature and cytokines on macronutrient intake in rats. <i>Physiol. Behav.</i>
569	57 : 869–873. Elsevier.
570	Ayres, J.S. & Schneider, D.S. 2009. The Role of Anorexia in Resistance and
571	Tolerance to Infections in Drosophila. <i>PLoS Biol.</i> 7 : e1000150.
572	Bedhomme, S., Agnew, P., Sidobre, C. & Michalakis, Y. 2004. Virulence reaction
573	norms across a food gradient. <i>Proc. R. Soc. B Biol. Sci.</i> 271 : 739–44.
574	Blanford, S. & Thomas, M.B. 1999. Host thermal biology: the key to
575	understanding host-pathogen interactions and microbial pest control? Agric.
576	For. Entomol. 1: 195–202.
577	Blum, J.E., Fischer, C.N., Miles, J. & Handelsman, J. 2013. Frequent replenishment
578	sustains the beneficial microbiome of Drosophila melanogaster. MBio 4: 1–8.
579	Boots, M. 2008. Fight or learn to live with the consequences? <i>Trends Ecol. Evol.</i>
580	23 : 248–250.
581	Broderick, N.A. & Lemaitre, B. 2012. Gut-associated microbes of Drosophila
582	melanogaster. <i>Gut Microbes</i> 3 : 307–321.
583	Brooks, D.R. & Hoberg, E.P. 2007. How will global climate change affect parasite-
584	host assemblages? <i>Trends Parasitol.</i> 23 : 571–574.
585	Bunning, H., Bassett, L., Clowser, C., Rapkin, J., Jensen, K., House, C.M., <i>et al.</i> 2016.
586	Dietary choice for a balanced nutrient intake increases the mean and
587	reduces the variance in the reproductive performance of male and female
588	cockroaches. <i>Ecol. Evol.</i> 6 : 4711–4730.
589	Camus, M.F.F., Fowler, K., Piper, M.W.D. & Reuter, M. 2017. Sex and genotype
590	effects on nutrient-dependent fitness landscapes in Drosophila
591	melanogaster. Proc. R. Soc. B Biol. Sci. 284: 20172237.
592	Carlson, C.J., Albery, G.F., Merow, C., Trisos, C.H., Zipfel, C.M., Eskew, E.A., <i>et al.</i>
593	2020. Climate change will drive novel cross-species viral transmission.
594	<i>bioRxiv</i> 2020.01.24.918755.
595	Cherry, S. & Perrimon, N. 2004. Entry is a rate-limiting step for viral infection in a
596	Drosophila melanogaster model of pathogenesis. <i>Nat. Immunol.</i> 5 : 81–87.
597	Christian, P.D. 1987. Studies on Drosophila C and A viruses in Australian
598	populations of Drosophila melanogaster. Australian National University.
599	Chtarbanova, S., Lamiable, O., Lee, KZ., Galiana, D., Troxler, L., Meignin, C., <i>et al.</i>
600	2014. Drosophila C virus systemic infection leads to intestinal obstruction. J.
601	<i>Virol.</i> 88: 14057–69.
602	Cotter, S.C., Reavey, C.E., Tummala, Y., Randall, J.L., Holdbrook, R., Ponton, F., <i>et al.</i>
603	2019. Diet modulates the relationship between immune gene expression
604	and functional immune responses. <i>Insect Biochem. Mol. Biol.</i> 109 : 128–141.
605	Cotter, S.C., Simpson, S.J., Raubenheimer, D. & Wilson, K. 2011. Macronutrient

Diet and pathogen susceptibility across species

606	balance mediates trade-offs between immune function and life history
607	traits. Funct. Ecol. 25: 186–198.
608	Cumnock, K., Gupta, A.S., Lissner, M., Chevee, V., Davis, N.M. & Schneider, D.S.
609	2018. Host Energy Source Is Important for Disease Tolerance to Malaria.
610	<i>Curr. Biol.</i> 28 : 1635-1642.e3.
611	Drummond, A., Suchard, M., Xi, E.D. & Rambaut, A. 2012. Bayesian phylogenetics
612	with BEAUti and the BEAST 1.7. Molecular Biology And Evolution 29.
613	Fanson, B.G., Weldon, C.W., Pérez-Staples, D., Simpson, S.J. & Taylor, P.W. 2009.
614	Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies
615	(Bactrocera tryoni). <i>Aging Cell</i> 8: 514–523. John Wiley & Sons, Ltd.
616	Fellous, S. & Lazzaro, B.P. 2010. Larval food quality affects adult (but not larval)
617	immune gene expression independent of effects on general condition. <i>Mol.</i>
618	<i>Ecol.</i> 19 : 1462–1468.
619	Felsenstein, J. 1973. Maximum-likelihood estimation of evolutionary trees from
620	continuous characters. Am. J. Hum. Genet. 25: 471-492.
621	Ferreira, Á.G., Naylor, H., Esteves, S.S., Pais, I.S., Martins, N.E. & Teixeira, L. 2014.
622	The Toll-Dorsal Pathway Is Required for Resistance to Viral Oral Infection in
623	Drosophila. <i>PLoS Pathog.</i> 10 .
624 625	Freckleton, R.P., Harvey, P.H. & Pagel, M. 2002. Phylogenetic analysis and
626	comparative data: a test and review of evidence. <i>Am. Nat.</i> 160 : 712–26. Grueber, C.E., Gray, L.J., Morris, K.M., Simpson, S.J. & Senior, A.M. 2018.
627	Intergenerational effects of nutrition on immunity: a systematic review and
628	meta-analysis. Biol. Rev. Camb. Philos. Soc. 93: 1108–1124.
629	Hadfield, J.D. 2010. MCMC methods for multi-response generalized linear mixed
630	models: The MCMCglmm R package. J. Stat. Softw. 33 : 1–22.
631	Hall, S.R., Knight, C.J., Becker, C.R., Duffy, M.A., Tessier, A.J. & Cáceres, C.E. 2009.
632	Quality matters: Resource quality for hosts and the timing of epidemics.
633	Ecol. Lett. 12 : 118–128.
634	Harvell, C.D., Mitchell, C.E., Ward, J.R., Altizer, S., Dobson, A.P., Ostfeld, R.S., <i>et al.</i>
635	2002. Climate warming and disease risks for terrestrial and marine biota.
636	Science 296 : 2158–62.
637	Hayman, D.T.S., Pulliam, J.R.C., Marshall, J.C., Cryan, P.M. & Webb, C.T. 2016.
638	Environment, host, and fungal traits predict continental-scale white-nose
639	syndrome in bats. <i>Sci. Adv.</i> 2 : e1500831.
640	Henry, Y. & Colinet, H. 2018. Microbiota disruption leads to reduced cold
641	tolerance in Drosophila flies. <i>Sci. Nat.</i> 105 : 59. The Science of Nature.
642	Henry, Y., Overgaard, J. & Colinet, H. 2020. Dietary nutrient balance shapes
643	phenotypic traits of Drosophila melanogaster in interaction with gut
644	microbiota. <i>Comp. Biochem. Physiol. Part A Mol. Integr. Physiol.</i> 241 : 110626.
645	Hoberg, E.P. & Brooks, D.R. 2015. Evolution in action: climate change,
646	biodiversity dynamics and emerging infectious disease. Philos. Trans. R. Soc.
647	<i>Lond. B. Biol. Sci.</i> 370 : 20130553–20130553. The Royal Society.
648	Housworth, E.A., Martins, E.P. & Lynch, M. 2004. The phylogenetic mixed model.
649	<i>Am. Nat.</i> 163 : 84–96.
650	Howick, V.M. & Lazzaro, B.P. 2014. Genotype and diet shape resistance and
651	tolerance across distinct phases of bacterial infection. <i>BMC Evol. Biol.</i> 14 .
652	Huey, R.B., Moreteau, B., Moreteau, JC., Gibert, P., Gilchrist, G.W., Ives, A.R., <i>et al.</i>
653	2006. Sexual size dimorphism in a Drosophila clade, the D. obscura group.
654	Zoology 109 : 318–330.

Diet and pathogen susceptibility across species

655	Jensen, K., McClure, C., Priest, N.K. & Hunt, J. 2015. Sex-specific effects of protein
656	and carbohydrate intake on reproduction but not lifespan in Drosophila
657	melanogaster. Aging Cell 14 : 605–615.
658	Jousset, F.X., Plus, N., Croizier, G. & Thomas, M. 1972. [Existence in Drosophila of
659	2 groups of picornavirus with different biological and serological
660	properties]. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D. 275 : 3043–6.
661	Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., <i>et al.</i>
662	2012. Geneious Basic: an integrated and extendable desktop software
663	platform for the organization and analysis of sequence data. <i>Bioinformatics</i>
664	28 : 1647–1649.
665	Keaton Wilson, J., Ruiz, L. & Davidowitz, G. 2019. Dietary Protein and
666	Carbohydrates Affect Immune Function and Performance in a Specialist
667	Herbivore Insect (Manduca sexta). <i>Physiol. Biochem. Zool.</i> 92 : 58–70.
668	Kirk, D., Jones, N., Peacock, S., Phillips, J., Molnár, P.K., Krkošek, M., et al. 2018.
669	Empirical evidence that metabolic theory describes the temperature
670	dependency of within-host parasite dynamics. <i>PLOS Biol.</i> 16 : e2004608.
671	Klass, M.R. 1983. A method for the isolation of longevity mutants in the
672	nematode Caenorhabditis elegans and initial results. <i>Mech. Ageing Dev.</i> 22 :
673	279–286.
674	Knutie, S.A., Wilkinson, C.L., Wu, Q.C., Ortega, C.N. & Rohr, J.R. 2017. Host
675	resistance and tolerance of parasitic gut worms depend on resource
676	availability. <i>Oecologia</i> 183 : 1031–1040.
677	Kraaijeveld, A.R. & Godfray, H.C. 1997. Trade-off between parasitoid resistance
678	and larval competitive ability in Drosophila melanogaster. <i>Nature</i> 389 : 278–
679	80.
680	Kutzer, M.A.M. & Armitage, S.A.O. 2016. The effect of diet and time after bacterial
681	infection on fecundity, resistance, and tolerance in <i>Drosophila melanogaster</i> .
682	<i>Ecol. Evol.</i> 6 : 4229–4242
683	Lamiable, O., Arnold, J., de Faria, I.J. da S., Olmo, R.P., Bergami, F., Meignin, C., <i>et al.</i>
684	2016. Analysis of the Contribution of Hemocytes and Autophagy to
685	Drosophila Antiviral Immunity. J. Virol. 90: 5415–5426.
686	Lazzaro, B.P. & Little, T.J. 2009. Immunity in a variable world. <i>Philos. Trans. R.</i>
687	Soc. Lond. B. Biol. Sci. 364 : 15–26.
688	Le Couteur, D.G., Solon-Biet, S., Cogger, V.C., Mitchell, S.J., Senior, A., De Cabo, R., <i>et</i>
689	al. 2016. The impact of low-protein high-carbohydrate diets on aging and
690	lifespan. Cell. Mol. Life Sci. 73: 1237–1252.
691	Lee, K., Cory, J., Wilson, K., Raubenheimer, D. & Simpson, S. 2006. Flexible diet
692	choice offsets protein costs of pathogen resistance in a caterpillar. Proc. R.
693	Soc. B Biol. Sci. 273 : 823–829.
694	Lee, K.P., Simpson, S.J. & Wilson, K. 2008. Dietary protein-quality influences
695	melanization and immune function in an insect. <i>Funct. Ecol.</i> 22 : 1052–1061.
696	Lesperance, D.N.A. & Broderick, N.A. 2020. Meta-analysis of Diets Used in
697	Drosophila Microbiome Research and Introduction of the Drosophila
698	Dietary Composition Calculator (DDCC). G3 Genes, Genomes, Genet.
699	g3.401235.2020.
700	Lochmiller, R.L. & Deerenberg, C. 2000. Trade-offs in evolutionary immunology:
701	Just what is the cost of immunity? <i>Oikos</i> 88 : 87–98.
702	Longdon, B., Cao, C., Martinez, J. & Jiggins, F.M. 2013. Previous Exposure to an
703	RNA Virus Does Not Protect against Subsequent Infection in Drosophila

Diet and pathogen susceptibility across species

704	melanogaster. <i>PLoS One</i> 8 : e73833.
705	Longdon, B., Day, J.P., Alves, J.M., Smith, S.C.L., Houslay, T.M., McGonigle, J.E., et al.
706	2018. Host shifts result in parallel genetic changes when viruses evolve in
707	closely related species. <i>PLoS Pathog.</i> 14 : e1006951.
708	Longdon, B., Hadfield, J.D., Day, J.P., Smith, S.C.L., McGonigle, J.E., Cogni, R., et al.
709	2015. The Causes and Consequences of Changes in Virulence following
710	Pathogen Host Shifts. <i>PLOS Pathog.</i> 11 : e1004728.
711	Longdon, B., Hadfield, J.D., Webster, C.L., Obbard, D.J. & Jiggins, F.M. 2011. Host
712	phylogeny determines viral persistence and replication in novel hosts. <i>PLoS</i>
713	Pathog. 7: e1002260.
714	Maklakov, A.A., Hall, M.D., Simpson, S.J., Dessmann, J., Clissold, F.J., Zajitschek, F.,
715	et al. 2009. Sex differences in nutrient-dependent reproductive ageing.
716	Aging Cell 8: 324–330.
717	McKean, K.A., Yourth, C.P., Lazzaro, B.P. & Clark, A.G. 2008. The evolutionary
718	Merkling, S.H. & van Rij, R.P. 2015. Analysis of resistance and tolerance to virus
719	infection in Drosophila. <i>Nat. Protoc.</i> 10 : 1084–97.
720	Moatt, J.P., Savola, E., Regan, J.C., Nussey, D.H. & Walling, C.A. 2020. Lifespan
721	Extension Via Dietary Restriction: Time to Reconsider the Evolutionary
722	Mechanisms? <i>BioEssays</i> 1900241
723	Nakagawa, S., Lagisz, M., Hector, K.L. & Spencer, H.G. 2012. Comparative and
724	meta-analytic insights into life extension via dietary restriction. Aging Cell
725	11 : 401–409.
726	Pagel, M. 1999. Inferring the historical patterns of biological evolution. <i>Nature</i>
727	401 : 877–884.
728	Peck, M.D., Babcock, G.F. & Alexander, J.W. 1992. The role of protein and calorie
729	restriction in outcome from Salmonella infection in mice. J. Parenter. Enter.
730	<i>Nutr.</i> 16 : 561–565.
731	Pike, V.L., Lythgoe, K.A. & King, K.C. 2019. On the diverse and opposing effects of
732	nutrition on pathogen virulence. <i>Proc. R. Soc. B Biol. Sci.</i> 286 : 20191220.
733	Piper, M.D. 2017. Using artificial diets to understand the nutritional physiology of
734	Drosophila melanogaster. <i>Curr. Opin. Insect Sci.</i> 23 : 104–111.
735	Piper, M.D.W., Soultoukis, G.A., Blanc, E., Mesaros, A., Herbert, S.L., Juricic, P., et al.
736	2017. Matching Dietary Amino Acid Balance to the In Silico-Translated
737	Exome Optimizes Growth and Reproduction without Cost to Lifespan. <i>Cell</i>
738	Metab. 25 : 610–621.
739	Ponton, F., Wilson, K., Cotter, S.C., Raubenheimer, D. & Simpson, S.J. 2011.
740	Nutritional immunology: A multi-dimensional approach. <i>PLoS Pathog.</i> 7 :
741	e1002223.
742	Ponton, F., Wilson, K., Holmes, A.J., Cotter, S.C., Raubenheimer, D. & Simpson, S.J.
743	2013. Integrating nutrition and immunology: a new frontier. J. Insect Physiol.
744	59 : 130–7.
745	Povey, S., Cotter, S.C., Simpson, S.J., Lee, K.P. & Wilson, K. 2009. Can the protein
746	costs of bacterial resistance be offset by altered feeding behaviour? <i>J. Anim.</i>
747	<i>Ecol.</i> 78 : 437–446.
748	Povey, S., Cotter, S.C., Simpson, S.J. & Wilson, K. 2014. Dynamics of macronutrient
749	self-medication and illness-induced anorexia in virally infected insects. <i>J.</i>
750	Anim. Ecol. 83: 245–255.
751	R Development Core Team. 2005. R: A Language and Environment for Statistical
752	<i>Computing</i> . R Foundation for Statistical Computing, Vienna, Austria.

Diet and pathogen susceptibility across species

753	Råberg, L., Graham, A.L. & Read, A.F. 2009. Decomposing health: tolerance and
754	resistance to parasites in animals. <i>Philos. Trans. R. Soc. B Biol. Sci.</i> 364 : 37–
755	49.
756	Rambaut, A. 2006. FigTree v1.4.4. Available:
757	http://tree.bio.ed.ac.uk/software/figtree/.
758	Rambaut, A., Suchard, M., Xie, D. & Drummond, A. 2014. Tracer v1.6.
759	https://github.com/beast-dev/tracer/releases/tag/v1.7.1
760	Rao, S., Schieber, A.M.P., O'Connor, C.P., Leblanc, M., Michel, D. & Ayres, J.S. 2017.
761	Pathogen-Mediated Inhibition of Anorexia Promotes Host Survival and
762	Transmission. <i>Cell</i> 168 : 503-516.e12.
763	Raubenheimer, D. & Simpson, S.J. 1999. Integrating nutrition: A geometrical
764	approach. In: <i>Entomologia Experimentalis et Applicata,</i> pp. 67–82. Wiley.
765	Roberts, K.E., Hadfield, J.D., Sharma, M.D. & Longdon, B. 2018. Changes in
766	temperature alter the potential outcomes of virus host shifts. <i>PLOS Pathog.</i>
767	14 : e1007185.
768	Roy, B.A. & Kirchner, J.W. 2000. Evolutionary Dynamics of Pathogen Resistance
769	and Tolerance. <i>Evolution (N. Y)</i> . 54 : 51–63.
770	Sadd, B.M. & Siva-Jothy, M.T. 2006. Self-harm caused by an insect's innate
771	immunity. <i>Proc. Biol. Sci.</i> 273 : 2571–4.
772	Savola, E., Montgomery, C., Waldron, F.M., Monteith, K., Vale, P. & Walling, C.A.
773	2020a. Testing evolutionary explanations for the lifespan benefit of dietary
774	restriction in Drosophila melanogaster. <i>bioRxiv,</i> doi:
775	https://doi.org/10.1101/2020.06.18.159731.
776	Savola, E., Vale, P. & Walling, C.A. 2020b. Larval diet affects adult reproduction
777	but not survival regardless of injury and infection stress in Drosophila
778	melanogaster. <i>bioRxiv</i> 1-29. https://doi.org/10.1101/2020.10.16.342618
779	Schmid-Hempel, P. 2005. Evolutionary ecology of insect immune defenses. Annu.
780	<i>Rev. Entomol.</i> 50 : 529–51.
781	Sheldon, B.C. & Verhulst, S. 1996. Ecological immunology: costly parasite
782	defences and trade offs in evolutionary ecology. <i>Trends Ecol. Evol.</i> 11 : 317–
783	321.
784	Simpson, S.J. & Raubenheimer, D. 1995. The geometric analysis of feeding and
785	nutrition: a user's guide. Pergamon.
786	Simpson, S.J. & Raubenheimer, D. 2011. The nature of nutrition: A unifying
787	framework. <i>Aust. J. Zool.</i> 59 : 350–368.
788	Siva-Jothy, M.T. & Thompson, J.J.W. 2002. Short-term nutrient deprivaion affects
789	immune function. <i>Physiol. Entomol.</i> 27 : 206–212.
790	Skorupa, D.A., Dervisefendic, A., Zwiener, J. & Pletcher, S.D. 2008. Dietary
791	composition specifies consumption, obesity, and lifespan in <i>Drosophila</i>
792	melanogaster. Aging Cell 7: 478-490.
793	Sullivan, W., Ashburner, M. & Hawley, R.S. 2000. Drosophila protocols. <i>Drosoph.</i>
794	Protoc. Cold Spring Harbor Laboratory Press.
795	Thomas-Orillard, M. 1984. Modifications of Mean Ovariole Number, Fresh Weight
796	of Adult Females and Developmental Time in DROSOPHILA
797	MELANOGASTER Induced by Drosophila C Virus. <i>Genetics</i> 107 : 635–63544.
798 799	Vale, P.F. & Jardine, M.D. 2017. Infection avoidance behavior: Viral exposure
800	reduces the motivation to forage in female Drosophila melanogaster. <i>Fly (Austin)</i> . 11 : 3–9.
801	Van Rij, R.P., Saleh, M.C., Berry, B., Foo, C., Houk, A., Antoniewski, C., <i>et al.</i> 2006.
001	\mathbf{v} an \mathbf{x}_{ij} \mathbf{x}_{i} , baren, berry, bij roo, a, nous, \mathbf{x}_{i} Anwine work, \mathbf{u}_{i} $\mathcal{E}(u)$ $\mathcal{L}(0)$.

Diet and pathogen susceptibility across species

- 802 The RNA silencing endonuclease Argonaute 2 mediates specific antiviral 803 immunity in Drosophila melanogaster. Genes Dev. 20: 2985-2995 804 Weindruch, R. & Walford, R.L. 1982. Dietary restriction in mice beginning at 1 805 year of age: Effect on life-span and spontaneous cancer incidence. Science 806 *(80-.).* **215**: 1415–1418. 807 Wilson, K., Holdbrook, R., Reavey, C.E., Randall, J.L., Tummala, Y., Ponton, F., et al. 808 2020. Osmolality as a Novel Mechanism Explaining Diet Effects on the 809 Outcome of Infection with a Blood Parasite. Curr. Biol. 30: 2459-2467. 810 Woolhouse, M.E.J., Haydon, D.T. & Antia, R. 2005. Emerging pathogens: the 811 epidemiology and evolution of species jumps. Trends Ecol. Evol. 20: 238-812 244. 813 Zhu, F., Ding, H. & Zhu, B. 2013. Transcriptional profiling of Drosophila S2 cells in 814 early response to Drosophila Cvirus. Virol. J. 10: 210.
- 815 Zuk, M. & Stoehr, A.M. 2002. Immune Defense and Host Life History. Am. Nat.
- 816 **160**: S9–S22.
- 817