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Abstract 

Interpretation of the function of non-coding risk loci for neuropsychiatric disorders and brain-relevant 

traits via gene expression and alternative splicing is generally performed in bulk post-mortem adult 

tissue. However, genetic risk loci are enriched in regulatory elements active during neocortical 

differentiation, and regulatory effects of risk variants may be masked by heterogeneity in bulk tissue. 

Here, we map expression quantitative trait loci (eQTLs), splicing QTLs (sQTLs), and allele specific 

expression in primary human neural progenitors (n=85) and their sorted neuronal progeny (n=74), 

identifying numerous loci not detected in either bulk developing cortical wall or adult cortex. Using 
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colocalization and genetic imputation via transcriptome wide association, we uncover cell-type specific 

regulatory mechanisms underlying risk for brain-relevant traits that are active during neocortical 

differentiation. Specifically, we identified a progenitor-specific eQTL for CENPW co-localized with 

common variant associations of cortical area and educational attainment. 
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Cell-type specificity; common genetic variants; expression/splicing quantitative loci; neuropsychiatric 

disorders; neurogenesis; genome-wide association study; transcriptome-wide association study 

Introduction 

Genome wide association studies (GWAS) have identified many common non-coding variants 

associated with risk for brain structure, neurodevelopmental disorders, and other brain-related traits 

1–7. However, it is challenging to determine the mechanism of non-coding variants because, in general, 

(1) the genes impacted by non-coding risk variants are unknown, (2) the cell type(s) and 

developmental period(s) where the variants have an effect are not known, (3) and there may be limited 

availability of tissue representing the causal developmental stage and cell type. 

One potential mechanism by which non-coding genetic variation can influence brain traits is through 

alterations in gene expression, or expression quantitative trait loci (eQTLs). Genetic variation also 

impacts transcript splicing 8–10, and several studies have implicated genetically mediated alterations 

in splicing as important risk factors for neuropsychiatric disorders 11–13. 

Most current efforts to explain the function of these risk loci rely on mapping local expression and 

splicing quantitative trait loci (e/sQTLs) in bulk adult brain tissue 14,15. However, genetic risk loci are 

enriched in cell types relevant for neocortical differentiation that are not present in the adult brain 16,17. 

e/sQTL studies have been performed on human fetal brain bulk cortical tissue 18–20, but there are 

advantages to a cell-type specific approach given that regulatory effects of risk variants may be 

masked by heterogeneity in bulk tissue 21–23. 
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Utilizing a cell-type specific in vitro model system including neural progenitors (Ndonor = 85) and their 

virally labelled and sorted neuronal progeny (Ndonor = 74) derived from a multi-ancestry population, 

here we investigated how common genetic variants impact brain related traits through gene 

expression and splicing during human neurogenesis. We discovered 2,079/872 eQTLs in progenitors 

and neurons, and 5,676/4,590 sQTLs in progenitors and neurons, respectively. Importantly, 

66.1%/47% of eQTLs in progenitor/neuron and 78.8%/76.1% sQTLs in progenitor/neuron were 

unique, and were not found in fetal bulk brain e/sQTLs from a largely overlapping sample 19 or in adult 

bulk e/sQTL data from GTEx project 24. We showed both eQTLs and sQTLs colocalized with known 

GWAS loci for neuropsychiatric disorders and other brain relevant traits in a cell-type specific manner. 

By integrating the dataset generated here with cell-type specific chromatin accessibility from the same 

cell lines 16 and brain structure GWAS 4, we propose a regulatory mechanism whereby genetic 

variation influences a proxy of human intelligence across multiple levels of biology. Furthermore, we 

genetically imputed disease/brain trait susceptibility gene expression and alternative splicing in these 

cell types using transcriptome-wide association study (TWAS), that identified cell type and temporal 

specific risk genes and introns. 

Results 

Transcriptomic profiles of primary human progenitors and neurons recapitulates cell-type 

specific characteristics of cortical development 

We established an in vitro culture of primary human neural progenitor cell (phNPC) lines derived from 

genotyped human fetal brain tissue (N = 89 unique donors) at 12-19 post conceptional weeks (PCW) 

(14-21 gestation weeks), that recapitulates the developing human neocortex 25–28 (Figure 1A, 

Methods). Immunofluorescence of the cells showed that undifferentiated progenitors expressed PAX6 

and SOX2 (90-95%), consistent with a homogenous culture of radial glia 29,30 (Figure 1B). At 5 weeks 

post-differentiation, phNPC cultures were transduced with a virus which expresses EGFP in neurons 

(AAV2-hSyn1-EGFP), which enabled us to isolate neurons via FACS sorting at 8 weeks post-

differentiation (Figure 1A and 1B, Figure S1A and S1B, Methods). 
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We acquired transcriptomic profiles of progenitors and neurons via RNA-sequencing, observing a 

strong correlation of libraries from the same donor (Figure S1C). After correction for technical 

confounds (Figure S1D), progenitors and neurons clustered separately by principal component 

analysis (PCA) of global gene expression, indicating global transcriptomic differences by cell type 

(Figure 1C). Both cell types showed expression of a variety of known cell-type specific markers in the 

literature (Figure S1E). Next, we identified differentially expressed genes, which were involved in cell 

cycle and neurotransmission upregulated in progenitors and neurons, respectively (Figure 1D and 

Figure S2F, Table S1).  

  

We evaluated how well the in vitro progenitors and neurons we generated model in vivo 

neurodevelopment. We implemented the transition mapping (TMAP) approach for a global 

assessment of transcriptomic overlap between in vitro cultures and in vivo post-mortem human brain 

samples, as described in our previous work 26 (Methods). We compared the transition from progenitor 

to neurons with laser capture microdissection of cortical laminae from postmortem human fetal brain 

at 15-21 PCW 31. We observed the strongest overlap in the transition from progenitors to neurons with 

the transition from outer subventricular zone (oSVZ) to intermediate zone (IZ) or subplate zone (SP) 

(Figure S1G), supporting the in vivo fidelity of our culture system representing neurogenesis during 

mid-fetal development. 

  

Discovery of cell-type specific genetically altered gene expression via local expression 

quantitative loci (eQTL) analysis 

To investigate the impact of genetic variation on gene expression, we performed a local eQTL analysis 

by testing the association of each gene’s expression levels with genetic variants residing within ±1 Mb 

window of its transcription start site (TSS) 32,33 (Figure S2A, see Methods). We implemented a linear 

mixed effects model to stringently control for population stratification using a kinship matrix as a 

random effect with inferred technical confounders as fixed effects, separately for each cell type (λGC 

for progenitor = 1.028 and λGC for neuron = 1.007; see Methods, Figure S2B-S2G). After retaining 

associations which were lower than 5% false discovery rate with a hierarchical multiple testing 
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correction 34,35 (Methods), we obtained conditionally independent eQTLs (Figure S2B and S2C, see 

Methods). We identified 1,741 eGenes with 2,079 eSNP-eGene pairs in progenitors and 840 eGenes 

with 872 eGene-eSNP pairs in neurons (Figure S3A and Table S1).  47%/68% of progenitor/neuron 

conditionally independent eQTLs were shared with m-value > 0.9 (Figure S3B).  

  

We determined if eSNPs were enriched in chromatin states of the fetal human brain 17,36 (Figure 1E). 

Both progenitor and neuron specific eSNPs were enriched in promoters, enhancers and actively 

transcribed sites present in the fetal brain, but depleted mostly in quiescent chromatin regions. 

Importantly, 32.7%/34.3% of progenitor/neuron specific eQTLs, respectively, were supported by cell-

type specific allele specific expression (ASE), that is not subject to cross donor technical confounding, 

like population stratification 33,37,38 (Figure S3E-S3H, Table S2). These shared eQTLs with genome-

wide significant ASE sites were highly concordant in effect size and direction (Figure 1F). 

 

Cell-type specific eQTLs exhibits both cell-type and temporal specificity 

We aimed to determine the utility of our cell-type specific eQTL study by comparison to pre-existing 

bulk brain eQTL studies. Comparing our results to a bulk fetal cortical wall eQTL dataset from a 

previous study using a partially overlapping set of donors 19, we observed that 40.8%/66.3% of 

progenitor/neuron eQTLs were also detected in the fetal bulk eQTLs  (Figure 1G, m-value > 0.9 

indicates shared effects; odds ratio test between cell type sharing with fetal bulk: p-value: 1.08 × 10-

34, see Figure S3C for LD-based overlap). Taken together, our observations propose that both cell-

type specific eQTLs, but especially progenitor eQTLs in our cell-type specific system offer novel 

regulatory mechanisms which can provide additional information beyond existing prenatal datasets 

18–20. 

  

We next explored the temporal specificity of cell-type specific eQTLs by utilizing adult brain bulk 

cortical eQTL data from the GTEx project 24. We observed 18.9%/28.3% of eSNP-eGene pairs in 

progenitors and neurons, respectively, were also found in adult brain eQTL data (Figure S3D). That 
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suggests largely independent genetic mechanisms regulating genes from development to adulthood 

20. 

 

Cell-type specific identification of splicing quantitative trait loci (sQTL) in developing human 

brain 

Given the impact of genetic variation on alternative splicing 9,11,19,39, we next performed a splicing 

quantitative loci (sQTL) analysis separately within progenitors and neurons. We quantified alternative 

intron excisions as percent spliced in (PSI) by implementing the Leafcutter software, an annotation 

free approach that allows for discovery of novel isoforms 40. We found 34,449/35,285 intron excisions 

present more often in progenitors/neurons, respectively (see Methods, Table S3). As a specific 

example, we found a differential alternative splicing site within the DLG4 gene encoding the 

postsynaptic density protein 95 (PSD-95). An exon skipping splice site supporting nonsense mediated 

decay (splice 1, ENST00000491753) was upregulated in progenitors; while another splice site 

supporting multiple protein coding transcripts (splice 2) was upregulated in neurons (Figure 2A). Post-

transcriptional repression of PSD-95 expression in neural progenitors via nonsense mediated decay 

at splice 1 site has been previously experimentally validated 41,42, giving strong confidence in  the cell-

type specific splicing calls. 

  

For the sQTL analysis, we implemented an association test between PSI of each intron excision and 

genetic variants located within a ± 200 kb window from the start and end of the splice junctions (Figure 

1A and 2B). We retained significant associations which were lower than 5% false discovery rate by 

implementing a hierarchical multiple testing correction (see Methods), and applied conditional analysis 

to identify independent sQTLs (Figure S2C, S2E and S2H). We identified 4,708 intron excisions 

associated with 5,676 sSNPs-intron junction pairs in progenitors and 4,039 intron excisions associated 

with 4,590 sSNPs-intron junction in neurons (Figure S4A and S4B, 52.9%52.3% of progenitor/neuron 

conditionally independent sQTLs were shared with m-value > 0.9, Table S3). As an example, we found 

that the indel variant rs11382548 creating a canonical splice acceptor sequence impacted two 

different intron excisions supporting alternative 3’ splice sites for TMEM216 gene (Figure 2C). Deletion 
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of the A nucleotide at a canonical splice acceptor site of the last exon of TMEM216 leads to disruption 

of the alternative splicing event for transcript ENST00000334888, and increased usage of transcript 

ENST00000398979 and ENST00000515837 in both progenitors and neurons. This sQTL may be 

relevant to neurogenesis because knockdown of the TMEM216 gene reduces division of both apical 

and intermediate progenitor cells during corticogenesis 43. 

 

Interestingly, many splice sites were previously unannotated in the gene models we used (Ensembl 

Release 92). We detected 8.8%/11.3% cryptic at the 5’ end; 12%/12% cryptic 3’end; 8.9%/10.6% both 

cryptic ends for intron excision within progenitors/neurons.  

  

We also found that cell-type specific sQTLs in progenitors/neurons were enriched for RNA binding 

sites from CLIP-seq databases of 74/76 different RNA-binding proteins (RBP) 44  (Figure 2D, Table 

S3). Strikingly, 22/24 of those proteins were specifically enriched in progenitor and neuron specific 

sQTLs, respectively. Among RBP binding sites specifically enriched for progenitor sQTLs, we found 

LIN28B, known to play a role in neural progenitor proliferation and differentiation 45. On the other hand, 

for neurons, we detected enrichment of the NPM1 regulating neuronal survival 46. These observations 

suggest that sQTLs alter the function of RBPs with cell-type specific splicing roles during neural 

development. 

  

In order to examine if variants associated with alternative splicing also alter expression of the same 

genes, we compared cell-type specific sQTLs with cell-type specific eQTLs. Only 17.6%/9.5% of 

sGenes, the genes that harbor intron excisions, were also eGenes for progenitors and neurons 

eQTLs, respectively (Figure S4C, upper panel). Furthermore, we also found that only 2.9% and 1.4% 

of sGene-sSNP pairs overlapped with eGene-eSNP pairs for progenitors and neurons, respectively 

(Figure S4C, lower panel), indicating that sQTLs generally function through independent mechanism 

from eQTLs. 
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We next examined the impact of cell-type specificity on identification of sQTLs. 32.3%/37.9% of 

progenitor/neuron sQTLs were also detected in the fetal bulk sQTLs  (Figure 2E, m-value > 0.9 

indicates shared effects; odds ratio test between cell type sharing with fetal bulk: p-value: 6.07 × 10-

13, see Figure S4D for LD-based overlap). A smaller overlap of progenitor sQTLs with bulk cortical 

fetal tissue as compared to neuron sQTLs indicated that cell-type specificity allowed for novel 

discovery of progenitor sQTLs. Also, we found 6%/2.4% of sSNP-intron junction pairs in progenitors 

and neurons, respectively shared with adult brain bulk cortical sQTL data from GTEx project 24 (Figure 

S4E), showing temporal specificity of cell-type specific sQTLs. 

  

Cell-type specific e/sQTLs proposes regulatory mechanisms of brain related GWAS 

We sought to explain the regulatory mechanism of individual loci associated with neuropsychiatric 

disorders, brain structure traits, and other brain-relevant traits by leveraging genetic variants 

regulating cell-type specific gene expression and splicing. We co-localized GWAS loci of these traits 

with cell-type specific eQTLs and sQTLs using a conditional analysis to ensure the loci were shared 

across traits 47 (see Methods for the list of GWAS used for this analysis). 

  

We discovered 41, 13, and 20 GWAS loci that co-localized specifically with progenitor eQTL, 

specifically with neuron eQTLs, or with both cell types, respectively (Figure 3A, Table S4). These 

observations show that the same genetic variants impact gene expression, neuropsychiatric traits, 

and brain structure in a cell-type specific manner. Importantly, 98 trait associated loci-gene pairs (one 

locus could be associated with multiple different genes) were not found using fetal bulk cortical tissue 

eQTLs, where tissue heterogeneity may have masked their detection (Figure 3B). 

  

Next, we leveraged our cell-type specific chromatin accessibility QTL (caQTL) dataset 16 together with 

eQTLs in order to explain the regulatory mechanism underlying GWAS loci associated with brain 

relevant traits. As a specific example, we found a colocalization of a locus within the CENPW gene 

across caQTLs, eQTLs, GWAS for Global Surface Area (GSA) and for Educational Attainment (EA) 

(Figure 3C). The progenitor index eSNP rs4897179 that was not detected in bulk cortical fetal tissue 
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eQTLs (nominal p-value = 3.26 × 10-7 in progenitors, nominal p-value = 0.068 in neurons, and nominal 

p-value = 0.26 in fetal cortical bulk tissue), for the CENPW eGene, was colocalized with variant 

rs9388490, which is the index SNP for both GSA and EA GWAS (nominal p-value = 4.95 × 10-12 in 

GSA GWAS, and nominal p-value = 1.43 × 10-8 in EA GWAS). Also, we found that a SNP (rs9388486) 

located within a chromatin accessible peak region 107 bp upstream of TSS of the CENPW gene was 

colocalized with the index eSNP. We therefore consider rs9388486 as the potential causal variant, 

and noted that the C allele disrupts the motifs of the transcription factors CREM, ATF2, ATF4 and 

ATF1 (Figure 3D). CENPW is required for appropriate kinetochore formation and centriole splitting 

during mitosis 48, and increased CENPW levels lead to apoptosis in the developing zebrafish central 

nervous system 49. Overall, these observations propose a cell-type specific mechanism whereby the 

C allele at variant rs9388486 disrupts transcription factor binding and diminishes accessibility at the 

CENPW gene promoter, resulting in decreased CENPW gene expression levels in progenitors (Figure 

3E and 3F), presumably altering neurogenesis or reducing apoptosis, leading to increased cortical 

surface area and higher cognitive function. 

 

We also aimed to examine cell-type specific splicing QTLs colocalized with GWAS loci. We observed 

28, 23, and 29 GWAS loci in total that co-localized with specifically progenitor/neuron sQTLs and 

sQTLs present in both cell types (Figure 4A, Table S4). Similar to eQTL colocalizations, we observed 

that 124 trait associated loci-intron junction pairs were detected only with cell-type specific sQTL (one 

locus could be associated with multiple intron junctions), but not fetal bulk cortical sQTLs  (Figure 4B). 

Interestingly, we detected a progenitor sSNP (rs3740400, nominal p-value: 3.29 × 10-10) associated 

with an unannotated exon skipping splicing event for the AS3MT, that was not detected in fetal bulk 

sQTL data (nominal p-value: 0.005), was colocalized with an index GWAS SNP for schizophrenia 

(rs11191419, 1 (Figure 4C). The risk allele for schizophrenia (T) was associated with more usage of 

this splicing site (Figure 4D and 4E). A transcript supported by the same exon skipping event was 

discovered previously in the adult brain, that was regulated by variant rs7085104 in LD with rs3740400 

50. Here, we demonstrate genetically regulated upregulation of this transcript in neural progenitors, but 

not early born neurons, which shows a novel developmental basis for this previously identified 
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association.  We also observed that another progenitor specific sSNP (rs1222218) regulating a novel 

alternative exon skipping event for ARL14EP gene, was colocalized with SCZ index SNP (rs1765142) 

1 (Figure 4F). The risk allele for SCZ led to more frequent skipping of the exon, supporting expression 

of a novel isoform (Figure 4G and 4H). ARL14EP gene has been shown to play a role in axonal 

development in the mouse neurons 51. Here, we propose a novel transcript of this gene with 

expression in progenitors as a risk factor for SCZ. 

 

Genetic imputation of cell-type specific GWAS susceptibility genes and alternative splicing 

Next, we imputed genes and alternative splicing associated with brain related traits by integrating the 

polygenic impact of cell-type specific regulatory variants with GWAS risk variants in a transcriptome-

wide association study (TWAS) approach 52. We found 1,703/973 genes and 6,728/6,799 intron 

junctions as significantly cis-heritable in progenitors/neurons (heritability p-value < 0.01). We found 

the cis-heritable impact of 124/102 genes and 359/365 intron junctions in progenitor/neuron 

significantly correlated with at least one brain related-traits (Table S5). Of those significant TWAS 

genes/introns, we separated conditionally independent genetic predictors from the co-expressed 

ones, and defined them as jointly independent 53. We performed cell-type specific TWAS on both gene 

expression and splicing for schizophrenia (jointly independent genes: 23/26; jointly independent 

introns: 59/64 in progenitor/neuron), IQ (jointly independent genes: 25/24; jointly independent introns: 

38/65 in progenitor/neuron), and neuroticism (jointly independent genes: 13/15 neuron; jointly 

independent introns: 40/32 in progenitor/neuron) (Figure 5A-5C and Figure S5A-S5C). Also, we found 

novel loci not discovered in colocalization analysis per trait, demonstrating the additional power of 

TWAS compared to a single-marker testing approach. Despite the difference in population structure 

between our dataset and European neuropsychiatric GWAS, we observed that TWAS genes/introns 

were highly overlapped when different LD estimates were used (Figure S5E). 

  

We next compared our cell-type specific TWAS approach to TWAS analyses performed using weights 

calculated from bulk cortical fetal tissue 19, and adult brain e/sQTLs from the Common Mind 

Consortium (CMC) 14,53. Most TWAS findings were specific to a cell-type or temporal e/sQTL dataset, 
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rather than broadly detected, indicating that different developmental or cell-type e/sQTL datasets 

contribute complementary information about genes influencing risk for neuropsychiatric disorders or 

other brain traits (Figure S5F and Table S5 for comparison). As an example, despite IQ GWAS falling 

short of the genome-wide significance threshold at B3GALNT2 gene locus, we detected that 

genetically imputed B3GALNT2 expression was significantly correlated with IQ in progenitors, but not 

in neuron, fetal bulk tissue or in CMC adult brain tissue (Figure 5D). Mutations in the B3GALNT2 gene 

play a role in glycosylation of α-dystroglycan and were associated with intellectual disability in 

individuals with congenital muscular dystrophy 54. Overall, here we showed that an increase in 

B3GALNT2 gene expression in progenitors is associated with lower IQ, suggesting this gene’s early 

cell-type specific impact on cognitive function. 

  

Within the cell-type specific splicing TWAS, we found an intron junction of MRM2 more frequently 

spliced that was associated with increased risk for schizophrenia specifically in progenitor cells 

(TWAS-Z: 6.538), but it was not significantly cis-heritable within neuron, fetal bulk or adult bulk data 

(Figure S5D). MRM2 is a mitochondrial rRNA methyltransferase 55, and was found to be associated 

with intellectual disability 56 and mitochondrial encephalopathy 55. We propose a cell-type specific 

developmental basis for alternative splicing of the MRM2 gene associated with risk for schizophrenia. 

 

Discussion 

Here, we investigated the influence of genetic variation on brain related traits within a cell-type specific 

model system recapitulating a critical time period of human brain development, neurogenesis. Our 

analysis discovered features of gene regulation that will be complementary to previous eQTLs and 

sQTLs identified in bulk human brain in that: (1) we identified thousands of novel eQTLs, ASEs, and 

sQTLs during brain development that are enriched in regulatory elements present during 

neurogenesis; (2) most e/sQTLs in progenitors/neurons were not identified in previous fetal bulk post-

mortem tissue datasets indicating the importance of cell-type specificity for identifying genetic 

influences on gene regulation; (3) using this resource, we are able to propose cell-type specific variant-

gene/transcript-trait(s) pathways to further explore molecular and developmental causes of 
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neuropsychiatric disorders; (4) by integrating the polygenic effects across traits and gene expression, 

we are able to impute cell type specific gene expression/alternative splicing dysregulation in 

individuals with neuropsychiatric disorders in time periods prior to disease onset. 

 

As one example of a cell-type specific variant-gene-trait pathway, we discovered a locus near the 

CENPW gene colocalized across cell-type specific caQTL, eQTL, brain size, and cognitive function. 

Through the integration of multi-omic gene-to-trait databases, we hypothesize that the C allele at 

rs9388486 leads to decreased TF binding of up to 4 transcription factors (ATF1/2/4, CREM) in 

progenitors, resulting in decreased chromatin accessibility at the promoter peak, decreased 

expression of CENPW, leading to increased cortical surface area, and increased cognitive function. 

The CENPW gene has a strong role in proliferation, as it is required for kinetochore formation during 

mitosis 57. This is consistent with progenitor proliferation influencing surface area, as described in the 

radial unit hypothesis 58. Increased levels of CENPW may cause death of progenitor cells either by 

directly being an apoptotic inducer or by triggering apoptosis in response to an imbalance in cell 

homeostasis with excessive mitotic activity 49. In all, we demonstrate how integration across multi-

level biological data can be used to propose functional mechanisms underlying complex traits, and 

future studies may be able to develop computational models to propose causal pathways across multi-

omic QTL data 9,59,60. Such information will be crucial to both design efficient functional validation 

experiments as well as to leverage GWAS loci to advance treatment targets for neuropsychiatric 

disorders. 

  

Though the most commonly proposed regulatory mechanism by which non-coding genetic variation 

influences complex traits is through gene expression levels 32, our data also support mechanisms by 

which genetic variants associated with cell-type specific alternative splicing influence complex brain-

relevant traits. Importantly, we observed sQTLs impacting previously unannotated cell-type specific 

alternative splicing events that are also colocalized with brain relevant GWAS. For example, we found 

a progenitor specific sSNP regulating one unannotated exon skipping splice site for the ARL14EP 
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gene also colocalized with an index SNP for schizophrenia GWAS, indicating  a developmental 

molecular pathway contributing to schizophrenia risk. 

  

Our cell-type specific TWAS analysis identified that alteration in expression of multiple genes and 

transcripts are associated with risk for different neuropsychiatric conditions. We followed a unique 

TWAS approach allowing us to explore cell-type and temporal specificity by leveraging existing fetal 

brain bulk and adult e/sQTLs together with the cell-type specific data we generated here. This type of 

analysis allows the imputation of the genetically regulated component of differential expression within 

cell types years prior to disease onset. As such, it allows the knowledge of gene expression 

differences that cannot be gained from post-mortem tissue of cases versus controls, which must be 

acquired after diagnosis. This window into developmental gene expression differences may be 

particularly important to understand disease risk, as these results are not subject to confounding by 

medication use or the altered experiences of the environment of individuals living with a 

neuropsychiatric illness 61. Nevertheless, further support for such data could be gained from iPSC 

lines modeling early developmental time periods from large populations of cases vs controls. 

  

With our cell-type specific model, we propose how and when genetics influence brain related traits 

through gene expression and splicing. Future cell-type specific e/sQTLs acquired using flow cytometry 

or scRNA-seq from the developing post-mortem brain will be useful to validate the in vivo impact of 

genetic variants discovered here using an in vitro system. Nevertheless, this in vitro system has 

particular utility in that, in the future it may be used to determine the impact of genetic variation in 

response to activation of specific pathways or response to environmental stimuli 23. By pursuing cell-

type, temporal, and environmental specificity of e/sQTLs, we expect that a greater degree of 

mechanisms underlying risk for neuropsychiatric disorders and brain-relevant traits can be uncovered. 
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Figure titles and legends 

Figure 1. Study design and cell-type specific eQTL analysis. 

(A) Study design illustrating the fetal brain tissue derived cell-type specific system to perform eQTL 

and sQTL analysis.  

(B) Immunofluorescence of the cells showed that undifferentiated progenitors expressed SOX2 (in 

red) and PAX6 (in green), and expression of EGFP (in green) in 8-week differentiated neurons 

labelled with AAV2-hSyn1-EGFP (scale bar is 100 𝜇𝜇m, DAPI in blue). 

(C) Principal component analysis of progenitor (purple) and neuron (green) transcriptomes from 

each donor indicates cell-type specific clustering. 

(D) MA plot showing differentially expressed genes in progenitor versus neurons.  log2FC > 0 and 

adjusted p-value < 0.05 indicates genes upregulated in neurons shown in green (Neuron up), 

log2FC < 0 and adjusted p-value < 0.05 indicates genes upregulated in progenitors shown in purple 

(Progenitor up) and genes not significantly differentially expressed between two cell types are 

shown in grey. Blue lines indicates |log2FC| > 1.5. 

(E) Enrichment of progenitor eSNPs (left), and neuron eSNPs (right) within chromatin states in the 

fetal brain from chromHMM listed on the y-axis. The x-axis shows the effect size of enrichment with 

95% upper and lower confidence interval and the plot is color-coded based on -log10(p-value) value 

from enrichment analysis. Significant enrichments are shown with an asterisk. Enrichment was 

tested using eQTLs thresholded at the eigenMT-BH p-value. 

(F) Comparison of the effects of shared ASE sites and eQTLs in progenitors (left in purple) and 

neurons (right in green). Nonsignificant ASE sites are shown as darker colors for both cell types, 

and significant ASE sites are shown as lighter colors. Correlation coefficient (r) values are indicated 

in colors for each category and the red dashed line indicates x = y. 
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(G) Overlap percentage of cell-type specific eSNP-eGene pairs shared with fetal bulk eQTLs, 

respectively at m-value > 0.9. Odds ratio (OR) test p-values are shown. 

Figure 2.  Cell-type specific sQTL analysis. 

(A) Differential splicing of two intron junctions within the DLG4 gene. Splice 1 (chr17:7191358-

7192945) supports a previously validated nonsense mediated decay transcript (ENST00000491753) 

with higher expression in progenitors, whereas splice 2 (chr17:7191358-7191893) has higher 

expression in neurons.  

(B) A schematic illustrating splicing QTL mapping. Association of variants locating within 200 kb 

distance from each end of intron junctions were tested. The T allele is associated with more 

frequently splicing of the shorter intron junction. 

(C) Two intron junctions supporting an alternative 3’ splicing site for TMEM216 gene regulated by 

variant rs11382548 located at the splice site. The regional association of variants to two introns is 

shown in the genomic track at the left colored by pairwise LD r2 relative to variant rs11382548, 

association p-values on the y-axis, and genomic location of each variant on the x-axis. Gene model 

of TMEM216 is shown in the upper right with position of the variant rs11382548, green box indicates 

splice site. Box plots in the lower right show quantile normalized PSI values for splice 1 

(chr11:61397975-61398261) and splice 2 (chr11:61397975-61398270) across variant rs11382548. 

(D) Enrichment of cell-type specific sQTLs within RNA-binding protein (RBP) binding sites based on 

a CLIP-seq dataset.  The top 30 RBPs based on -log10(enrichment p-value) are listed on the y-axis, 

and the x-axis shows the effect size from enrichment test, where data points colored by -log10(p-

value) from the enrichment test and cell-type specific RBPs are colored with purple for progenitors at 

the left, and as green for neuron at the right. 

(E) Overlap percentage of cell-type specific sSNP-intron junction pairs shared with fetal bulk sQTLs, 

respectively at m-value > 0.9. Odds ratio (OR) test p-values are shown. 
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Figure 3. Colocalization of cell-type specific eQTLs with GWAS for brain related traits.  

(A) Number of GWAS loci colocalized with progenitor (purple), neuron (green) specific eQTLs or 

both cell types (orange). Each GWAS trait is listed on the y-axis (SA: surface area, TH: thickness). 

(B) Overlap of colocalized GWAS loci-gene pairs per trait combinations across progenitor, neuron and 

fetal bulk eQTL colocalizations for the traits listed in Figure 3A. 

(C) Genomic track showing regional association of variants with educational attainment (EA), global 

surface area (GSA) and CENPW gene expression in progenitors and neurons, association p-values 

(p) on the y-axis, and genomic location of each variant on the x-axis. Progenitor eSNP rs4897179 

(3rd row) was coincident with index SNP (rs9388490) for both EA (1st row) and GSA GWAS (2nd 

row), and conditioning progenitor eSNP rs4897179 on rs9388490 showed colocalization of the two 

signals (5th row). Also, rs4897179 was colocalized with another variant (rs9388486) located in the 

chromatin accessibility peak at the promoter of CENPW gene (6th and 8th rows). Genomic tracks 

were color-coded based on LD r2 relative to the variant rs9388486.  

(D) Plot showing the chromatin accessibility peak (chr6:126339531-126340960) in progenitors 

across different genotypes of rs938848. The C allele of rs9388486 disrupted binding motifs of 

transcription factors including CREM, ATF1, ATF2 and ATF4.  

(E) Box plots showing chromatin accessibility across rs9388486 genotypes in progenitors (purple) 

and neurons (green) (upper panel). Box plots showing VST normalized CENPW gene expression 

across rs9388486 genotypes in progenitors (purple), neurons (green) and fetal bulk (blue) (bottom 

panel). 

(F) A schematic showing that the implicated transcription factor has decreased preference to bind at 

the C allele, which results in lower CENPW expression, increase in global surface area and 

educational attainment. 
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Figure 4. Colocalization of cell-type specific sQTLs with GWAS for brain related traits. 

(A) Number of GWAS loci colocalized with progenitor (purple), neuron (green) specific sQTLs or both 

cell types (orange). Each GWAS trait is listed on the y-axis (SA: surface area, TH: thickness). 

(B) Overlap of colocalized GWAS loci-intron junction pairs per trait across progenitor, neuron and fetal 

bulk sQTL colocalizations for the traits listed in Figure 4A. 

(C) Genomic tracks showing regional association of variants with SCZ and an unannotated exon 

skipping splice site (chr10:102869593-102872448) for AS3MT gene in progenitors and neurons 

association p-values on the y-axis, and genomic location of each variant on the x-axis. The splice site  

was associated with progenitor sSNP (rs3740400) colocalized with SCZ GWAS index SNP 

(rs11191419). Genomic tracks were color-coded based on LD r2 relative to the variant rs3740400.  

(D) Sashimi plots showing the gene model of AS3MT and the genomic position of unannotated splice 

site (blue) overlapping with AS3MT gene. 

(E) Average INT normalized PSI values for the splice site are shown for each genotype group. 

Schizophrenia risk allele T regulates the exon skipping event in progenitors. Boxplots showing INT 

normalized PSI values for splice across. 

(F)  Genomic tracks color-coded based on pairwise LD r2 relative to the variant rs1222218 showing 

regional association of variants with SCZ and an unannotated alternative splicing event for ARL14EP 

gene in progenitors and neurons, association p-values on the y-axis, and genomic location of each 

variant on the x-axis. A cryptic exon skipping splice site (chr11:30323202-30332866) was associated 

with progenitor sSNP (rs1222218) colocalized with SCZ GWAS index SNP (rs1765142).  

(G) Sashimi plots with the gene model of ARL14EP and the genomic position of the unannotated 

splice site (blue) overlapping with ARL14EP gene. Average INT normalized PSI values for the splice 

site are shown for each genotype group. Schizophrenia risk allele G regulates the exon skipping event 

in progenitors.  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2020.10.21.349019doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.349019
http://creativecommons.org/licenses/by/4.0/


19 

(H) Boxplots showing INT normalized PSI values for splice across rs1222218 genotypes in progenitors 

and neurons.  

Figure 5. Prediction of gene expression during human brain development via TWAS. 

(A) Manhattan plots for schizophrenia, IQ, and neuroticism TWAS for progenitors (purple-grey, top) 

and neurons (green-grey, bottom) where the LD matrix used was based on a European population. 

Each dot shows -log10 (TWAS p-value) for each gene on the y-axis, genes were color-coded based 

on discovery also in colocalization analysis (orange), defined as the nearest gene to GWAS loci (dark 

pink), being in both these two categories (blue), and discovered only in TWAS analysis (black). Only 

joint independent genes are labelled (positively and negatively correlated genes represented by 

triangle and square, respectively and red line used for TWAS significant threshold) 

(B) Manhattan plots for IQ TWAS, as described in A. 

(C) Manhattan plots for neuroticism TWAS, as described in A. 

(D) IQ TWAS results for the B3GALNT2 gene, regional association of variants to IQ trait shown at the 

top, and statistics from each TWAS study shown at the bottom (red line used for genome-wide 

significant threshold 5 x 10-8). 

 

Supplemental Information titles and legends 

Figure S1, related to Figure 1: Pre-processing RNA-seq data and evaluation of the fidelity of in vitro 

cell-type specific system. 

(A) Flow cytometry results showing sorting of live EGFP positive neurons in pink. The y-axis marks 

fluorescence from a live/dead stain (annexin V/SYTOX) and the x-axis marks fluorescence from GFP. 

(B) Immunolabeling indicates outer radial glia marker HOPX in green, proliferation marker Ki67 in 

yellow and pan-radial glia marker SOX2 in red were expressed in undifferentiated progenitor cultures, 
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and the neuronal marker TUJ1 was expressed in neurons from 8 week differentiated cultures (scale 

bar is 100 𝜇𝜇m, DAPI in blue). 

(C) Replicate correlation of RNA-seq libraries across donors and within donors. Gene expression 

profiles were more correlated between libraries generated from the same donor thawed at different 

times as compared to libraries across different donors for both progenitors (left, p-value=0.001775 ) 

and neurons (right, p-value=0.0189).  

(D) Principal component analysis (PCA) before and after batch correction of neuron for the machine 

(Sony SH800S in blue, FACS Aria II in red, progenitors not sorted in grey) used for sorting. 

(E) Heatmap showing cell-type specific expression of literature based progenitor (PAN-RG: Pan-

radial glia, V-RG: ventricular radial glia, O-RG: outer radial glia) and neuronal markers listed on the 

y-axis. The x-axis indicates progenitor (purple) or neuron (green) cells from each donor. The color of 

the heatmap indicates the relative gene expression normalized for each gene between 0 and 1. 

(F) Gene ontology (GO) analysis showing pathways enriched for genes upregulated in progenitors 

(left, in purple), and for genes upregulated in neurons (right, in green). The x-axis shows adjusted -

log10(p-values) for enrichment and each GO term is listed in the y-axis. 

(G) Comparison of the transitions between mitotic and postmitotic regions of in vivo cortical laminae 

in the developing cortex and in vitro progenitor and neurons with rank-rank hypergeometric overlap 

(RRHO) maps. The extent of overlap between in vivo and in vitro transcriptome was represented by 

each heatmap colored based on -log10(p) value from a hypergeometric test. Each map shows the 

extent of overlapped upregulated genes in the bottom left corner, whereas shared downregulated 

genes are displayed in the top right corners (ventricular zone - VZ; inner and outer subventricular 

zone - i/oSVZ, intermediate zone - IZ; subplate - SP; inner and outer cortical plate - i/oCP, marginal 

zone - MZ). 
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Figure S2, related to Figure 1, Figure 2 and Methods: Local eQTL/conditional analysis design and 

the detection of covariates for e/sQTLs. 

(A) A schematic showing that variants within +/- 1MB cis window from the transcription start site 

(TSS) of each gene were tested for the association with gene expression. 

(B)  A schematic showing the conditional e/sQTL procedure. Conditionally independent SNPs were 

found conditioning on the genetic variant with the most significant association, and iteratively applying 

the same algorithm until there were no further significant associations with local variants.  

(C) Number of eGenes on the x-axis regulated by number of conditionally independent eSNPs on the 

y-axis indicated by eQTL order (left). Number of intron junctions on the x-axis regulated by number of 

conditionally independent sSNPs on the y-axis indicated by sQTL order (right). 

(D) Correlation of technical confounders with the top 10 principal components of gene expression in 

progenitor, neurons and all data (asterisk indicates significant correlation). 

(E) Covariate selection analysis for eQTLs with number of eGene vs. number of global gene 

expression PCs (left, progenitors in purple, neurons in green). Covariate selection analysis for sQTLs 

with number of significant intron vs. number of global splicing PCs (right, progenitors in purple, 

neurons in green). Blue arrows indicate the number of PCs used in each dataset. 

(F) Multidimensional scaling (MDS) of global genotypes showing the multi-ancestry donors in our 

study. MDS1 vs MDS2 values plotted where each red circle represents a unique donor in our study 

and each different color represents different ancestry from HapMap3 (ASW: African ancestry, 

CEU:Northern and Western European ancestry, CHB: Han Chinese ancestry, CHD: Chinese in 

metropolitan Denver, GIH:  Gujarati Indians in Houston, JPT: Japanese in Tokyo, LWK: Luhya in 

Webuye, MEX:Mexican ancestry, MKK: Maasai in Kinyawa, TSI:  Toscani in Italy, YRI: Yoruba in 

Ibadan). 

(G) Comparison of genomic inflation factor (λGC) without controlling for population structure and 

technical confounders (no control), only controlling for technical confounders by adding global gene 

expression PCs, controlling for both population structure (10 MDS of global genotype) and technical 

confounders, and controlling for kinship matrix in addition to the previous covariates. 
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(H) Correlation of technical confounders with  top 10 principal components of splicing in progenitor, 

neurons and all data (asterisk indicates significant correlation). 

Figure S3, related to Figure 1: Cell-type and temporal specificity of eQTLs and ASE analysis. 

(A) Overlap between progenitor and neuron eQTLs for eSNP-eGene pairs and eGenes. 

(B) Posterior probability of shared effect size (m-value). Upper pie shows the  percentage of 

conditionally independent progenitor eQTLs shared with neuron eQTLs, and lower pie shows the 

percentage of conditionally independent neuron eQTLs shared with progenitor eQTLs at m-value > 

0.9. 

(C) Overlap percentage of cell-type specific eSNP-eGene pairs shared (pink) with fetal  

bulk eQTLs (variants with LD r2 > 0.8 were considered as the same loci). Odds ratio test p-value is 

shown. 

(D) Overlap between progenitor/neuron eQTLs and adult brain cortex eQTLs for eSNP-eGene pairs. 

(E) A schematic illustrating allele specific expression (ASE) in a heterozygous individual for a variant 

of interest. 

(F) Overlap between progenitor and neuron specific ASE sites. 

(G) Overlap between eGenes and genes with ASE (progenitors in purple, neurons in green). 

(H) Overlap between cell-type specific eSNPs and ASE sites (progenitors in purple, neurons in green). 

 

Figure S4, related to Figure 2: Cell-type and temporal specificity of sQTLs. 

(A) Overlap of intron junctions, sGenes that are the genes intron junctions span and  sSNP-intron 

junction pairs for progenitor vs neuron sQTLs 

(B) Posterior probability of shared effect size (m-value). Upper pie shows the  percentage of 

conditionally independent progenitor sQTLs shared with neuron sQTLs, and lower pie shows the 

percentage of conditionally independent neuron sQTLs shared with progenitor sQTLs at m-value > 

0.9. 
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C) Comparison of cell-type specific sQTL vs eQTLs, progenitor in purple and neuron in green. 

Overlap between sGenes and eGenes, upper panel; overlap between sGene-sSNP and eGene- 

eSNP pairs, lower panel. 

(D) Overlap percentage of cell-type specific sSNP-intron junction pairs shared (pink) with fetal  

bulk sQTLs (variants with LD r2 > 0.8 were considered as the same loci). Odds ratio test p-value is 

shown 

(E) Overlap between progenitor (in purple)/neuron (in green) sQTLs and adult brain cortex sQTLs (in 

red) for intron junction-sSNP pairs. 

 

Figure S5, related to Figure 5: Prediction of alternative splicing events during human brain 

development via TWAS, and cell-type/temporal specificity of TWAS genes and introns. 

(A)  Manhattan plots for schizophrenia TWAS for progenitors (purple-grey, top) and neurons (green-

grey, bottom) where LD matrix calculated based on a European population. Each dot shows the -

log10(TWAS p-value) for each intron junctions on the y-axis,  introns were color-coded based on 

discovery also in colocalization analysis (orange), and being jointly independent (asteriks), where 

positively and negatively correlated splicing represented by triangle and square, respectively.  

(B) Manhattan plots for IQ TWAS with graphic design described in A. 

(C) Manhattan plots for Neuroticism TWAS with graphic design described in A. 

(D) SCZ TWAS results for intron junction (splice, chr7:2235564-2239418) of the MRM2 gene, 

regional association of variants, that were used to test polygenic impact on introns to SCZ are 

shown on the left.  Gene-model for MRM2 is shown on the right with matching introns and statistics 

from each TWAS study shown at the bottom (red line used for genome-wide significant threshold of 

5 x 10-8). 

(E) Comparison of TWAS genes performed by using different LD matrices based on European (LD 

European) and population included in our QTL study (LD Study) (upper plot). Comparison of TWAS 

introns performed by using different LD matrices based on European (LD European) and population 

included in our QTL study (LD Study) (lower plot). 
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(F) Overlap of cell-type specific TWAS genes (from the analysis where LD was estimated from 

European population) with fetal brain bulk and adult brain bulk TWAS genes (upper plot). Overlap of 

cell-type specific TWAS introns (from the analysis where LD was estimated from European 

population) with fetal brain bulk and adult brain bulk TWAS introns (lower plot). 

Supplementary Table legends 

Table S1, related to Figure 1, S1, S2 and S3:  

Sheet 1: Differential gene expression analysis progenitor vs neurons (FDR < 0.05):  gene is the 

ensemblID, logFC is the expression fold change logFC > 0 indicates a gene more frequently 

expressed in neurons than progenitors; AveExpr is the average vst normalized expression of all 

samples. t is the expression fold change divided by its standard error 35. P.Value is the nominal p-

value from the testing differential expression; adj.P.Val is the Benjamini-Hochberg FDR adjusted p-

value; B is log-odds for the differentially expressed gene in limma. 

Sheet 2-4: List of cell-type specific conditionally independent eQTLs for progenitor, neurons and 

fetal bulk: snp is the variant tested in QTL; beta is the beta coefficient; pval is the nominal p-value; 

gene is the ensemblID of the gene tested; rank is the eQTL order; chr is the chromosome number, 

BP is the genomic position of the variant; Cond.beta is the beta after conditional analysis; Cond.pval 

is the p-value after conditional analysis; A1 is the effect allele. 

 

Table S2, related to Figure 1 and S3F: Allele specific expression analysis (FDR < 0.05). SNP is the 

variant tested for allele specific expression analysis, baseMean is the average of the normalized count 

values divided by size factors from DESeq2 71; log2FoldChange is the expression fold change logFC 

> 0 indicates reads more frequently expressed in donors with reference allele than donors with 

alternative allele; lfcSE is the standard error estimate for log2FoldChange; stat is the test statistics 

performed in DESEq2; pvalue is the nominal p-value from the testing differential expression; padj is 

the Benjamini-Hochberg FDR adjusted p-value; refAllele is the reference allele of the variant. 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2020.10.21.349019doi: bioRxiv preprint 

https://paperpile.com/c/22nx7h/XXCxJ
https://paperpile.com/c/Dt0kT8/tfjdB
https://doi.org/10.1101/2020.10.21.349019
http://creativecommons.org/licenses/by/4.0/


25 

Table S3, related to Figure 2 and S4:  

Sheet 1: Differential splicing analysis progenitor vs neurons (FDR < 0.05): intron is the splice junction, 

logFC is the expression fold change logFC > 0 indicates a gene more frequently expressed in neurons 

than progenitors; AveExpr is the average vst normalized expression of all samples. t is the expression 

fold change divided by its standard error 35. P.Value is the nominal p-value from the testing differential 

expression; adj.P.Val is the Benjamini-Hochberg FDR adjusted p-value; B is log-odds for the 

differentially expressed intron in limma; chr is the chromosome, start is the start position of the 

junction; end is the end position of the junction; clusterID is the cluster identified from Leafcutter, 

cluster is the clusterID combined with chromosome number, verdict is the annotation status; gene is 

the gene symbol of the gene that introns junctions overlap with; ensemblID is the ensemblID of that 

gene; transcripts is the transcripts where intron junction overlap with; constitutive.score: degree of the 

junction shown in each transcript. 

 

Sheet 2-4: List of cell-type specific conditionally independent sQTLs for progenitor, neuron and fetal 

bulk sQTLs: snp is the variant tested; beta is the beta coefficient, pval is the nominal p-value; intron 

is the intron junction as chromosome:start position:end position format; rank is the order of sQTL after 

conditional analysis; chr is the chromosome, start is the start position of the junction; end is the end 

position of the junction; clusterID is the cluster identified from Leafcutter, cluster is the clusterID 

combined with chromosome number, verdict is the annotation status; gene is the gene symbol of the 

gene that introns junctions overlap with; ensemblID is the ensemblID of that gene; transcripts is the 

transcripts where intron junction overlap with; constitutive.score: degree of the junction shown in each 

transcript; Cond.beta is the beta coefficient after conditional analysis (for primary QTLs, it is identical 

to beta); Cond.pval is the p-value after conditional analysis (for primary QTLs, it is identical to pval), 

A1 is the effect allele; rsid is the rs id of the allele matching in 1000 Genome Phase 3. 

 

Sheet 5: Enrichment of RNA binding protein (RBP) sites within cell-type specific sQTLs. PThresh is 

the p-value threshold used for enrichment; OR is the odd ratio; Pvalue is enrichment p-value; Beta is 

the beta coefficient after enrichment test via GARFIELD 83; SE is the standard error; CI95_lower is the 
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lower bound of 95% confidence interval; CI95_upper is the upper bound of 95% confidence interval; 

NAnnotThesh is the is the number of annotated variants at the p-value threshold; NAnnot is the total 

number of variants after pruning; NThresh is the number of variant passing p-value threshold after 

pruning; N is the number of variants remained after pruning; linkID is the ID in annotation file; 

Annotation is the RNA-binding protein; Tissue is the the type of tissue used; Type is the cell type used 

for enrichment test. 

 

Table S4, related to Figure 3 and 4: Colocalization of GWAS for neuropsychiatric disease and other 

brain related traits with cell-type specific e/sQTLs and fetal bulk e/sQTLs: e/sQTLsnp is the e/sSNP; 

inibeta is the beta coefficient before conditioning on GWAS SNP; pval is the nominal p-value prior to 

conditional analysis, gene/intron is the ensemblID of gene/intron junction associated with the e/sSNP; 

A1 is the effect allele for e/sQTL index SNP; GWASsnp is the variant e/sSNP colocalized with; 

Condbeta is the beta estimate of e/sQTL after conditional analysis; Condpval is the p-value after 

conditional analysis; r2 is the linkage disequilibrium (LD) r2; pop is the population used to estimate LD 

r2 (European population, with “European” or the population used in the QTL study with “Study”); 

symbol of the symbol of the gene (for eQTLs); biotype is the biotype of the gene for eQTLs; trait is the 

trait for GWAS. 

 

Table S5, related to Figure 5 and S5:  

Sheet 1-8: List of cell-type specific/fetal bulk/adult bulk TWAS gene and introns for neuropsychiatric 

disease and other brain related traits. Output from FUSION 52 : ID is the gene ensemblID or intron id; 

CHR is the chromosome number; HSQ is the heritability; BEST.GWAS.ID is the GWAS SNP in the 

locus with the most significant association; BEST.GWAS.Z is the z-score of the best GWAS SNP; 

EQTL.ID is the best e/sQTL in the locus; EQTL.R2 is the cross-validation R2 of the best e/sQTL in the 

locus; EQTL.Z is the z-score of the best e/sQTL in the locus; EQTL.GWAS.Z is the GWAS Z-score 

for this e/sQTL; NSNP is the number of SNPs in the locus; NWGT is the number of snps with non-

zero weights; MODEL is the best performing model; MODELCV.R2 is the the cross-validation R2 of 

the best performing model; MODELCV.PV is the p-value from the cross-validation of the best 
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performing model; TWAS.Z is the TWAS z-score; TWAS.P is the TWAS p-value; trait is the GWAS 

trait; pop is the population used to estimate LD; joint_independent is the status if a gene/intron jointly 

independent (YES, if it is independent; NO, if it is not independent; NA, if it was not tested for the trait). 

 

Sheet 9-10: Summary of heritability (p-value < 0.01) and cross validation r2 from prediction models 

across cell-type specific/fetal bulk/adult bulk for gene and intron TWAS: hsq is the mean heritability of 

the genes/introns; hsq.se is the mean standard error of estimated heritability; hsq.pv is the mean p-

value of the heritability; emmax.rsq is the mean cross-validation R2 training via EMMAX with p-value 

as emmax.pval; lasso.rsq is mean the cross-validation R2 via LASSO with p-value as lasso.pval; 

enet.rsq is mean the cross-validation R2 via elastic net with p-value as enet.pval; blup.rsq is mean the 

cross-validation R2 via BLUP with p-value as blup.pval; bslmm.rsq is the mean cross-validation R2 via 

BSLMM with p-value as bslmm.pval; top1.rsq is the mean cross-validation R2 via standard marginal 

e/sQTL Z-scores computation with p-value as top1.pval. 95 % confidence intervals per parameter are 

shown their below. 

 

Material and Methods 

Cell Culture 

Generation of human neural progenitor cells was previously described16,26. Briefly, human fetal brain 

tissue was acquired from the UCLA Gene and Cell Therapy Core following IRB regulations from 

approximately 14-21 gestation weeks (inferred to be 12-19 postconceptional weeks). Presumably 

cortical tissue was selected by visual inspection, subjected to single cell dissociation, and cultured 

as neurospheres. Neurospheres were plated on laminin/fibronectin and polyornithine coated plates 

for an average of 2.5 ± 1.8 s.d. passages, and cryopreserved as primary human neural progenitors 

(phNPCs). 
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Cryopreserved phNPCs were transferred to UNC Chapel Hill, after material transfer agreement, where 

all downstream culture and analyses were completed. Donors processed for ATAC-seq (described 

previously 16) and RNA-seq (described here) were cultured simultaneously. The overall design of the 

experiment and media used for culture was previously described 16. Briefly, we cultured 89 unique 

donors for subsequent RNA-seq library preparation. We first randomly assigned the approximately 8-

9 donors into 10-12 rounds for a feasible cell culture workload. We thawed one round every three 

weeks. To reduce batch effects, we processed each round on the same day of the week and 

designated the same person to do each task as much as possible. Cells were isolated at two time 

points: progenitor and their differentiated and virally labeled neuronal progeny. Progenitors were 

cultured in proliferation media including growth factors for 3 weeks, and we lifted them with trypsin to 

prepare RNA-seq libraries. Differentiation was performed for 5 weeks, after which the culture was 

transduced with AAV2-hSyn1-eGFP (https://www.addgene.org/50465/) virus at 20,000 multiplicity of 

infection (MOI) to label neurons and then differentiated for another 3 weeks. FACS sorting (using 

either BD FACS Aria II or Sony SH800S) at 84 days post-differentiation was used to isolate EGFP 

labelled neurons (Figure S1A). After cells were isolated as either progenitors or neurons, we added 

Qiazol and stored the mixture at -80°C for randomized RNA isolation to reduce batch effects. 

  

Immunofluorescence labeling and imaging  

At the progenitor stage or after 8 weeks of differentiation, we fixed the cells by incubating them in 4% 

PFA, and performed permeabilization with 0.4% Triton in PBST. We used 10% goat serum dissolved 

in PBST for blocking. We incubated blocked samples with primary antibodies dissolved in PBST 

solution with 3% goat serum at 4°C overnight followed by  washing 3 times with PBST. Samples were 

subject to incubation in fluorophore-conjugated secondary antibodies, for 1 hour at room temperature, 

then they were stained with DNA-binding dye DAPI with 10 minutes incubation. We used antibodies 

with concentrations listed as following: SOX2 (1:400, rabbit, Millipore #AB5603), Ki67 (1:1000, rat, 

Invitrogen #14-5698-82), TUJ1 (1:2000, mouse, Biolegend #801202), Alexa Fluor 568 (1:1000, goat 

anti-rabbit, Invitrogen #A11036), Alexa Fluor 647 (1:1000, goat anti-rat, Invitrogen #A21247), Alexa 

Fluor 488 (1:1000, goat anti-mouse, Invitrogen #A11001). 
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RNA-seq Library Preparation 

We isolated RNA from progenitors and neurons using Qiagen miRNeasy Minelute kit, quantified RNA 

concentration with a Qubit 2.0 fluorometer, and assessed RNA integrity via eRIN scores using the 

Agilent Tapestation.  We prepared libraries for sequencing using Kapa Biosystems KAPA Stranded 

RNA-seq with Riboerase (HMR) kit by loading 50 ng of total RNA into the initial reaction. We followed 

the manufacturer's  instructions for fragmentation and PCR steps. To obtain ~350 bp average insert 

size, we fragmented cDNA at 85°C for 6 min. Final library concentrations were determined using Qubit 

2.0 fluorometer and pooled to a normalized input library.  Pools were sequenced on a  NovaSeq S2 

flowcell using 150 bp PE reads with an average read depth of 99M per sample. 

 

RNA-sequencing data processing 

We merged fastq files from the same library when sequenced on multiple flow cells and trimmed the 

adapters using sequences provided by Illumina with Cutadapt/1.1562. Quality control of each library 

was performed with FastQC (https://www.bioinformatics.babraham.ac. uk/projects/fastqc/).  For 

alignment, we first integrated the sequence of AAV2-hSyn1-eGFP plasmid 

(https://www.addgene.org/50465/) used for labeling neurons into GRCh38 release92 reference 

genome (https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38/). Then, we aligned the fastq 

files to this combined reference genome by implementing STAR/2.6.0a aligner 63. 

  

We processed aligned data further with different steps based on downstream analyses. To estimate 

gene expression levels, we quantified reads with the union exon based approach using featureCounts, 

where for each gene, all overlapping exons were merged to form union exons, and the reads mapped 

to those union exons with the same strandedness were counted 64. Gene models were identified using 

the GTF file Homo_sapiens.GRCh38.92 (http://ftp.ensembl.org/pub/release-

92/gtf/homo_sapiens/Homo_sapiens.GRCh38.92.gtf.gz) merged with AAV2-hSyn1-eGFP plasmid. 

  

For allele specific expression and splicing quantification, we remapped the aligned data with WASP 

software(v2018-07)65 to reduce reference mapping bias. First, we identified reads overlapping with bi-
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allelic SNPs within our acquired genotype data. Following this, the genotype of any reads overlapping 

with a SNP was swapped with the other allele, and re-mapped. WASP discarded re-mapped reads 

that did not map to the same genomic position. As a final step, we implemented  rmdup.py script 

provided in the WASP software which removes duplicate reads randomly,  regardless of their mapping 

score. 

  

Mycoplasma contamination test 

Adapter trimmed reads (see above) were mapped using STAR to a combined reference including the 

GRCh38 release 92 human reference genome, AAV2-hSyn1-eGFP plasmid, and over 1400 

mycoplasma genomes. Alignment parameters allowed for simultaneous mapping of reads to one or 

more human and mycoplasma genomes. No sample exceeded 0.11% of total reads mapping to any 

mycoplasma genome, indicating none of our cultures were contaminated with mycoplasma. This 

mapping was only used for mycoplasma contamination analysis and not for subsequent analyses. 

  

Genotype processing 

We performed genotyping using Illumina HumanOmni2.5 or HumanOmni2.5Exome platform, and 

exported SNP genotypes to PLINK format following the procedure previously described 16. Briefly, we 

converted SNP marker names from Illumina KGP IDs to rsIDs using the conversion file provided by 

Illumina. We performed quality control with PLINK v1.90b3 software 66 as follows. We filtered out SNPs 

with the following criteria: variant missing genotype rate > 5% (--geno 0.05) , deviations from Hardy-

Weinberg equilibrium at p<1x10-6 (--hwe 10-6), minor allele frequency > 1% (--maf 0.01). We also 

filtered out individuals with missing genotype rate > 10% (--mind 0.10). We obtained 1,760,704 directly 

genotyped variants surviving our QC procedure. Lastly, we called sex from genotype data using PLINK 

v1.90b3 software based on heterozygosity on the X chromosome. When there was an ambiguity for 

sex assessment based on genotype data, we checked Xist gene expression. We estimated the 

population structure of our study cohort by implementing multidimensional scaling (MDS) for genotype 

data of our samples and genotype data from HapMap3 
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(https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html). We followed the protocol 

from ENIGMA consortium 

( http://enigma.ini.usc.edu/wp-content/uploads/2012/07/ENIGMA2_1KGP_cookbook_v3.pdf ). By 

plotting MDS1 vs MDS2, we visually show each donor’s ancestry relative to known populations (Figure 

S2F).  

  

Imputation 

After filtering genotype data, we pre-phased the data with SHAPEIT v2.837 67. For our imputation 

reference panel, we used 1000 Genomes Project Phase 3 that contains a total of 37.9 million SNPs 

in 2,504 individuals with multiple ancestries, including those from West Africa, East Asia and Europe 

68). Imputation was implemented using Minimac4 software 69 (v1.0.0). On the X chromosome, we 

separately performed pre-phasing and imputation steps for the pseudoautosomal region and non-

pseudoautosomal regions. Following imputation, we retained any variants with missing genotype rate 

lower than 0.05, Hardy-Weinberg equilibrium p-value lower than 1 x 10-6 and minor allele frequency 

(MAF) bigger than 1%. We retained SNPs with sufficient imputation quality (R2 > 0.3), and obtained 

approximately 13.6 million SNPs in total. 

  

Sample quality control 

One library with missing eRIN score and one library with missing final cDNA concentration from 

neurons were removed. In order to detect sample swaps or mixing between samples, we evaluated 

consistency of genotypes called from the RNA-seq and genotyping array via VerifyBamID v1.1.3 70. 

We removed RNA-seq libraries file with [FREEMIX] > 0.04 or [CHIPMIX] > 0.04 (Nlibrary = 8). Also, we 

corrected samples where we detected swaps (Nlibrary= 7). After quality control, we retained 85 unique 

donors for progenitors, and 74 unique donors for neurons for subsequent analyses. 

  

Replicate correlation and determination of technical factors correlating with gene expression 

Quantified RNA-seq reads with featureCounts were imported to generate a gene count matrix in 

DESeqDataSet format from DESeq2 R package 71. We filtered out the lowly expressed genes (those 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2021. ; https://doi.org/10.1101/2020.10.21.349019doi: bioRxiv preprint 

https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html
http://enigma.ini.usc.edu/wp-content/uploads/2012/07/ENIGMA2_1KGP_cookbook_v3.pdf
https://paperpile.com/c/Dt0kT8/eaAJe
https://paperpile.com/c/Dt0kT8/296wM
https://paperpile.com/c/Dt0kT8/F0wqQ
https://paperpile.com/c/Dt0kT8/MO52k
https://paperpile.com/c/Dt0kT8/tfjdB
https://doi.org/10.1101/2020.10.21.349019
http://creativecommons.org/licenses/by/4.0/


32 

where fewer than 10 read counts of a gene were observed in fewer than 5% of samples), and 

normalized the data via variance stabilizing transformation (vst()) function from DESeq2 R package 

71. We included genes on the X and Y chromosomes and genes transcribed from mitochondrial DNA 

meeting the expression criteria. We subset the normalized gene expression matrix into progenitor and 

neuron specific samples. To identify major axes of variation in gene expression across samples, we 

computed principal components of gene expression with prcomp() function from stats R package for 

each cell-type separately, and reported the proportion of variance explained by each component. 

  

We recorded biological and technical variables for each sample which may potentially impact gene 

expression: cell type, postconception week, sex, tissue acquisition date, researcher extracting RNA 

and preparing libraries, RNA input amount, index number and bases, final cDNA concentration, 

BioAnalyzer run date, average basepair of BioAnalyzer cDNA, sequencing pool, cell input, Qiazol lot 

number and addition date, eRIN, RNA extraction date, RNA tapestation date, Qiagen extraction kit lot 

number, FACS sorting date and time, total live cells during sorting, FACS machines used, researcher 

performing FACS sorting, papain lot number and addition date, differentiation rank (a qualitative 

assessment of cell health evaluated under the microscope), well location in the 6-well plate, date to 

plate for differentiation, researcher washing and differentiating cells and date, virus addition date, 

researcher adding virus, PBS lot number used for cell proliferation and differentiation, laminin, 

polyornithine lot numbers used for proliferation and differentiation, donor ID, round, media lot numbers 

used for proliferation, passage number, split dates, researcher performing each split, rank for 

proliferation (qualitative assessment of cell health), trypsin lot number used for splitting cells, and 

fibronectin lot number. To identify technical covariates impacting expression levels, we assessed if 

any recorded biological or technical variables were significantly correlating with first 10 expression 

PCs separately for each cell type. We observed that different FACS machines (Sony SH800S with 

Ndonor = 8; FACS Aria II with Ndonor= 66) used to isolate GFP labelled neurons had a strong impact on 

global gene expression in neurons (PC1: r = 0.59, p-value = 1.782e-08; PC2: r = 0.58, p-value = 

3.972e-08) (Figure S2D). To remove the impact of sorter on global neuron expression profiles prior to 
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differential expression analysis, we implemented  function 72. Then, we combined the gene expression 

matrix from batch corrected neurons with progenitors gene expression data. 

  

We cultured several donors multiple times during the course of the experiment in order to quantify cell 

culture induced noise. We calculated Pearson’s correlation of gene expression between libraries from 

the same donors (Ncorrelation = 11 in both progenitors and neurons), and between each library across 

donors in a pairwise manner (Ncorrelation = 11,556 for progenitors; Ncorrelation = 9,312 for neurons). For 

neurons, we used gene expression values after batch correction with the limma R package for the 

sorter type, as described above. We performed an unpaired two-sided t-test for statistical assessment 

of mean difference between these two categories after fisher’s z transformation of correlation r values. 

  

Differential gene expression analysis 

We identified differentially expressed genes between progenitors and neurons by using vst normalized 

expression values corrected for sorter with limma R package 72.  We retained the genes if at least 10 

counts of the gene were present in more than 5% of the samples from either one of the cell type. To 

perform a paired differential gene expression analysis which inherently controls for donor related 

differences, we established the following  design matrix: model.matrix(~ CellType + as.factor(DonorID) 

+ RIN, data). Following this, we adjusted p-values for each gene via multiple test correction with the 

Benjamini-Hochberg procedure 73, and defined significant differentially expressed genes as adjusted 

p-value < 0.05. 

  

Gene Ontology analysis 

We performed gene ontology enrichment analysis by using the gprofiler2 package as the R interface 

to the g:Profiler tools by using GO:BP database 74. For differentially expressed genes, after performing 

DGE analysis, we categorized the genes into two groups as upregulated in progenitors (logFC < -1.5 

and adjusted p-value < 0.05), and upregulated in neurons (logFC > 1.5 and adjusted p-value < 0.05) 

(Figure 1D). For each enrichment analysis, we applied multiple correction test, and considered only 
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pathway enrichments with adjusted p-value lower than 5% false discovery rate as statistically 

significant. 

  

Transition Mapping (TMAP) 

To evaluate the transcriptomic similarity between our in vitro culture system and the in vivo brain, we 

performed  transition mapping analysis as described in our previous work 26,75. To evaluate 

transcriptomic similarity to cortical laminae in the developing brain, we used previously published 

laminar expression data from laser capture microdissected of prenatal human brain 31 (H376.IIIB.02. 

female, 16 pcw, brainspan.org). In our comparison, genes were retained which showed expression in 

either cell-type and were present on the array in which the in vivo data was acquired. We used gene 

symbols to find ensemblIDs, and used ensemblIDs to match with in vitro data. When multiple probes 

were present for a given gene on the array, the probe with the highest expression per gene was used. 

We quantile normalized the gene expression, and we performed in vivo differential gene expression 

via limma between every two laminae. Similarly, we performed differential expression analysis in our 

in vitro cultures as described above. We applied transition mapping via RRHO2 R package with 

“stratified approach” to avoid misinterpretation of the discordant overlaps 76. In this algorithm, firstly 

genes were ranked based on their degree of differential expression (DDE) (i.e., −log10(p-value) × 

signed effect size) separately for in vivo and in vitro data. Following ranking, a hypergeometric test 

was applied to assess enrichment for each overlap between two datasets for a series of arbitrary 

cutoffs set through the highest degree to the lowest. By employing a stratified algorithm, we computed 

the degree of overlap. Finally, we visualized hypergeometric test -log10(p-values) as a heatmap 

(Figure S1G). 

  

Cell type specific local eQTL mapping 

To perform local eQTL analysis, we conducted an association test between gene expression (retaining 

genes if at least 10 counts of the gene were present in more than 5% of the samples of that cell type, 

resulting in 24,767 and 27,638 genes for progenitors and neurons, respectively) with genetic variants 

within ± 1 Mb window of gene TSS for both autosomal chromosomes and X chromosome, for 
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progenitors and neurons separately. Each gene TSS was defined as the transcription start site of the 

gene isoform with most upstream exon based on GTF file Homo_sapiens.GRCh38.92 

(http://ftp.ensembl.org/pub/release-92/gtf/homo_sapiens/Homo_sapiens.GRCh38.92.gtf.gz). 

  

We removed variants of low allele frequency in order to prevent one donor from strongly influencing 

association results. For variant selection, PLINK v1.90b3 software function was implemented to obtain 

donor counts per genotype group for each variant. We included only variants with at least 2 

heterozygous donors and no homozygous minor allele donors, or at least 2 minor allele homozygous 

donors for autosomal chromosomes, and for X chromosome we retained the variants with at least 2 

haploid allele counts in addition to this criteria. 

  

For eQTL mapping, we established a linear mixed effects regression model to control for population 

stratification and cryptic relatedness with EMMAX software 77. To compute the kinship matrix, we 

implemented  algorithm creating the identity by state (IBS) kinship matrix by excluding all genetic 

variants located on the same chromosome as the tested variant from non-imputed genotype data for 

each single variant association test (MLMe method; see 78. We used additional ancestry control by 

including the first 10 MDS components from genotype data 79.  In order to control for unmeasured 

technical variables impacting gene expression, we sequentially added gene expression PCs and re-

ran the genetic associations via EMMAX. For neurons, we included a covariate for FACS sorter for 

each run given its strong impact on gene expression. 

The full association model for neurons was: 

expression ~ SNP + 10 MDS of global genotype + kinship matrix + FACS sorter + PCs of global 

gene expression  

The full model for progenitors was: 

expression ~ SNP + 10 MDS of global genotype + kinship matrix + PCs of global gene expression 

  

For each run, we adjusted nominal values of all gene variant associations, and defined significant 

associations with nominal p-value lower than  5% false discovery rate (FDR)73.  We found that 10 PCs 
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and 12 PCs of gene expression resulted in a maximum number of eGenes discovery in progenitors 

and neurons, respectively (Figure S2E). Our final eQTL model was: 

Neuron: 

expression ~ SNP + 10 MDS of global genotype + kinship matrix + FACS sorter + 12 PCs of global 

gene expression 

Progenitors: 

expression ~ SNP + 10 MDS of global genotype + kinship matrix + 10 PCs of global gene expression 

In order to stringently control our association results for both number of variants and genes tested, we 

further implemented a hierarchical correction procedure called eigenMT-BH 35. Using this method, as 

Step 1, we adjusted the nominal p-values of the all cis SNPs  separately for each gene to compute 

locally adjusted p-values with eigenMT method 34  In Step 2,  locally adjusted minimum p-values for 

all genes were then subjected to BH procedure to obtain globally adjusted p-values.  In Step 3, we 

defined eGenes as genes with globally adjusted p-value lower than 0.05. Then, to find other 

independent SNPs for those eGenes, we set the significance threshold as the maximum nominal p-

value from step 1 that had corresponding globally adjusted p-value lower than 0.05. 

  

We performed conditional analysis by using this threshold p-value gathered from the eigenMT-BH 

multiple correction method to identify independent significant eQTLs. To identify conditionally 

independent eQTLs, for each eGene (a gene significantly associated with at least one variant), we 

iteratively included the hard call genotype  of the variant with strongest association with eGene as a 

covariate, and re-ran the regression model specified above (Figure S2B). We defined a variant as 

“conditionally independent” from the variant conditioned on, if the association of the variant with the 

eGene was still significant based on the initial threshold p-value. Then, we conditioned on those 

variants that met threshold p-value condition at the first round plus the primary variant, and identified 

third conditionally independent eQTLs. We applied this procedure iteratively until no additional 

significant eQTLs remained 80,81. 
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Comparison of degree of controlling population structure between EMMAX vs FastQTL 

We applied FastQTL 82 method in nominal pass mode for different models (1) without controlling for 

either for population structure or technical confounders (2) controlling for only technical confounders, 

(3) controlling for 10 MDS of global genotype and global gene expression PCs. Following this analysis, 

we compared genomic inflation factors (λGC) across those three groups to our data where we 

controlled for 10 MDS of global genotype and global gene expression, as well as the cryptic 

relatedness with kinship matrix. 

  

Bulk Fetal brain eQTL mapping 

We utilized bulk fetal cortical wall eQTL data described previously 19. We re-analyzed data in this study 

with the following modifications to harmonize with the eQTL approach implemented in this study: (1) 

we controlled for population stratification using a linear mixed effects model as described above, and 

(2) we included 23 additional donors which were genotyped after the publication of the previous 

manuscript. We used rRNA-depleted RNA-seq data from flash frozen human fetal brain cortical wall 

tissues derived from 240 donors at 14-21 gestation weeks (inferred to be 12-19 post conception 

weeks). We excluded 4 donors for sample swap and contamination based on verifyBAMID analysis, 

and one donor with sex ambiguity, resulted in 235 unique donors for eQTL analysis (35 of unique 

donors shared with cell type specific data). Gene based annotations of the genome were derived from 

Homo sapiens gene ensembl version 92 (GRCh38) for eQTLs. We included only genes with at least 

10 counts in 5% of donors. We normalized the data with the VST method to be used as phenotype in 

eQTL analysis. We also extracted genomic DNA from the same donors, and performed genotyping 

on a dense array (Illumina Omni 2.5+Exome) and imputation to a common reference panel (1000 

Genomes Phase 3; described above). Variants were retained in the analysis if there were at least 2 

heterozygous donors and no homozygous minor allele donors, or if there were at least 2 minor allele 

homozygous donors as for cell type specific eQTLs, as described above. 

  

We performed local eQTL analysis to test the association between each gene’s expression and 

variants within the ±1 Mb window of the transcription start site of each gene. We applied linear mixed 
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model association software, EMMAX 77 to control for population stratification and cryptic relatedness 

(as described above for cell type specific eQTL analysis). We used the linear mixed effects regression 

model testing association between expression of each gene and nearby genetic variants, controlling 

for 10 MDS genotype components, 10 PCs of gene expression, and a kinship matrix as random effect 

excluding the chromosome genotypes testing with the MLMe approach 78. After association, nominal 

p-values were corrected for hierarchical multiple testing using the eigenMT-BH method as described 

above, and we obtained independent eQTLs performing conditional analysis as described for cell type 

specific eQTLs above. 

  

Enrichment of eQTLs within functional genomic annotations 

To identify enrichment of eQTLs and sQTLs within functionally annotated genomic regions, we 

implemented GARFIELD software to control for the distance to TSS, LD and minor allele frequency 

(MAF) of QTLs 83. We used functional genomic annotations from 25 chromatin states given in the 

ChromHMM BED files of Roadmap Epigenomics project from human male fetal brain36,84 lifted over 

from hg19 to hg38, splice sites, introns, 5’ and 3’ UTR. We extracted 5’ and 3’ splice sites (splice 

donor and splice acceptor sites) from Homo_sapiens.GRCh38.92 GTF file implementing 

hisat2_extract_splice_sites.py algorithm of hisat2 software (Kim, Langmead, and Salzberg 2015), and 

defined  exon-intron boundaries as the region between those splice sites. 5’ and 3’ UTR were also 

defined based on the coordinates in the same GTF file. For all e/sQTLs, we extracted the p-value from 

the strongest association for each variant  (with minimum p-value) in the case that one variant was 

associated with multiple genes/intron junctions. To create annotations files, we considered a variant 

overlapping with a functional element if the variant itself or any of the variants in high LD within 500kb 

(r2 > 0.8) overlapped with each of annotation categories. LD pruning83 was performed at r2 > 0.01 

within GARFIELD software. Following this, a logistic regression model controlling for the distance to 

TSS, LD proxies and MAF binned for five quantiles was performed with GARFIELD software for 

enrichment at eigenMT-BH p-value thresholds defined in eQTL analysis. The effective number of 

annotations were estimated and multiple testing adjusted p-values were computed by the software to 

identify enrichment of eQTLs within defined annotations. 
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RNA binding protein motif analysis 

We performed sQTL enrichment in RNA binding protein binding sites via GARFIELD as described 

above. In this analysis, we used BED files including RNA binding protein sites  from a CLIP-seq 

database as annotation files 44, and assessed significant enrichment of cell type specific sQTLs for 

binding sites of each RBP. 

 

Allele specific expression analysis pipeline 

To identify sites with Allele Specific Expression (ASE), we applied the ASEReadCounter algorithm 

from GATK tools 85 to the RNA-seq data remapped with WASP to reduce mapping bias and to discard 

duplicate reads. For each donor, we counted allele specific reads overlapping with bi-allelic variants 

identified in the genotypeVCF files. We retained only variants with at least 5 heterozygous donors, 

and at least 10 counts from either allele. ASE can be falsely called when genotyping errors are present 

in the dataset. We used two approaches to identify and remove potential genotyping errors: (1) We 

detected wrongly called variant genotypes by assessing concordance between genotypes called by 

DNA versus RNA 37. We removed variants that were called homozygous based on the genotype data 

when at least 10 counts of the alternate allele were present in the RNA-seq data, (2) we discarded 

variants where at least 7 heterozygous donors  based on genotype data have zero counts for one of 

the alleles, which may indicate a donor falsely called as heterozygote when in truth the donor is a 

homozygote (given that (1/2)^7 = 0.008, meaning that probability of having all donors receiving an 

imprinted allele from either mother or father is low). Because ASEReadCount does not disambiguate 

the strandedness of reads, it is not possible to confidently assign reads overlapping with multiple gene 

annotations to a specific gene 64. Therefore, if a variant overlapped with more than one gene 

annotation, we removed the variant by implementing findOverlaps function from IRanges R package 

86 for genes based on their genomic coordinates defined GTF file Homo_sapiens.GRCh38.92 

(http://ftp.ensembl.org/pub/release-92/gtf/homo_sapiens/Homo_sapiens.GRCh38.92.gtf.gz). 

To evaluate allelic imbalance, we used DESeq2 with the design: design = ~0 + RNAid + Allele. 

Excluding homozygous donors, we computed the log2 fold change of non-reference allele counts over 
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reference allele counts and used a Wald test to detect allelic imbalance. Multiple test correction was 

performed with the Benjamini and Hochberg method, and we defined significant ASE sites as those 

with adjusted p-values lower than 0.05. 

To compare eQTLs with ASE sites (Figure S3E-S3H),  we extracted eQTLs associations with the 

same filtering criteria of variants used for ASE analysis (at least 5 heterozygous donors and 

overlapping with at least 10 RNA-seq reads). We also extracted eGenes (defined based on significant 

eigenMT-BH global p-value) with at least 10 counts per donor. 

  

Quantification of Intron Excisions 

To identify alternatively excised introns, separately for each cell type, we extracted exon-exon 

junctions from WASP-mapped RNA-seq data in BAM format via regtools  function where reads map 

to a minimum of 6 nt of each exon 87. Next, we processed those junctions that are called intron 

excisions or exon-exon junctions with the pipeline provided by Leafcutter software 40. Firstly, intron 

excisions with shared splice junctions were clustered together applying an iterative procedure until 

each cluster has at least 50 reads across donors and introns with maximum 50 kb length, separately 

for progenitors and neurons. For differential splicing analysis, we performed clustering by combining 

exon-exon junctions files from each cell type. For each cluster, intron excisions supported by at least 

one count in more than 5 donors (within each set of donors contributing to the 3 different sQTL 

analyses for that cell type (progenitor, neuron) or tissue class (fetal brain bulk); or for differential 

splicing analysis across donors from both cell types used (progenitor + neuron) were retained. We 

further calculated intron excision ratios, and filtered out introns represented in less than 40% of donors 

(within each set of donors contributing to the 3 different sQTL analyses for that cell type (progenitor, 

neuron) or tissue class (fetal brain bulk); or for differential splicing analysis across donors from both 

cell types used (progenitor + neuron) with  algorithm. We referred to each intron excision ratio as 

percent spliced in (PSI) that corresponds to the usage of each intron compared to other introns in the 

same cluster. Standardized and quantile normalized intron excision ratios, and global alternative 

splicing PCs computed with those ratios were used for downstream analysis. 
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Differential splicing analysis 

To perform differential splicing analysis, we used quantile normalized PSI values as input to the limma 

package 72. Identical to differential expression analysis, neuron splice ratios were corrected for batch 

including FACS machine used for sorting with  function. Batch corrected neuron splice ratios were 

combined with progenitor data. We implemented a paired differential splicing analysis inherently 

controlling donor related differences with the design matrix: model.matrix(~CellType + 

as.factor(DonorID) + RIN, data). We defined intron junctions with adjusted p-values from via multiple 

test correction with Benjamini-Hochberg procedure 73 lower than 0.05 as significant differentially 

spliced introns. 

  

Splicing QTL mapping 

We performed cell type specific splicing QTL analysis by testing the association of PSI with the genetic 

variants located within the ± 200 kb window from starting and end points of the splice junctions for 

autosomal chromosomes and the X chromosome. Identical to local eQTL analysis, we used only 

genetic variants that met the following criteria: if there were at least 2 heterozygous donors and no 

homozygous minor allele donors, or if there were at least 2 minor allele homozygous donors.  

  

We used standardized and normalized intron excision ratios (percent spliced in) calculated by 

leafcutter as the phenotype for sQTL mapping. EMMAX 77 was used to test for association between 

SNPs within a cis-region of ± 200kb of the intron cluster and intron ratios within cluster. We controlled 

for population stratification and cryptic relatedness as described above for eQTL mapping. Also, we 

controlled for unmeasured technical variables impacting alternative splicing by sequentially adding 

global splicing PCs to the genetic associations via EMMAX. Again for neurons, we additionally 

controlled for FACS sorter for each run given its strong impact on splicing as well. 

The full model for neurons was: 

PSI ~ SNP + 10 MDS of global genotype + kinship matrix + FACS sorter + PCs of global splicing 

The full model for progenitors was: 
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PSI ~ SNP + 10 MDS of global genotype + kinship matrix + PCs of global splicing 

For every run, we adjusted nominal values of all PSI variant associations, and defined significant 

associations with lower than at 5% false discovery rate (FDR) 73.  We found that 1 PC and 1 PC across 

the PSI matrix resulted in a maximum number of intron excisions with at least one significant 

association  in progenitors and neurons, respectively (Figure S2E). Our final sQTL model was: 

Neuron: 

PSI ~ SNP + 10 MDS of global genotype + kinship matrix + FACS sorter + 1 PCs of global splicing 

Progenitors: 

PSI ~ SNP + 10 MDS of global genotype + kinship matrix + 1 PCs of global splicing 

Implementing a hierarchical correction procedure called eigenMT-BH 35, firstly, we adjusted the p-

values of the all cis SNPs strongest association separately for each intron excision to compute locally 

adjusted p-values with the eigenMT method 34, and then locally adjusted minimum p-values for all 

intron excisions were subjected to the BH procedure giving globally adjusted p-values. Intron excision 

with corresponding global p-value lower than 0.05 were considered as significant alternative splicing 

events. In order to find other independent significant sQTLs in addition to the ones associated with 

lowest p-values, we applied conditional analysis at eigenMT-BH p-value threshold as described for 

eQTL analysis. 

  

For bulk fetal cortical tissue sQTL mapping, we applied the same strategy used for cell type specific 

sQTLs, and found the  following model maximized significant intron junctions  discovery: 

PSI ~ SNP + 10 MDS of global genotype + kinship matrix + 5 PCs of global splicing 

 

After calculating eigenMT-BH threshold p-value, we performed conditional analysis to define 

independent significant sQTLs. 

  

To find genes overlapping with intron excision, we annotated intron junctions by using Leafcutter 

based on genomic coordinates and gene model provided in GTF file Homo_sapiens.GRCh38.92. 

Intron junctions assigned as cryptic 5’, cryptic 3’, novel annotated pair were considered as novel 
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splicing events for the genes overlapped with junctions. For unannotated splice sites for AS3MT and 

ARL14EP genes, we additionally checked  for overlap with known splice sites up to Ensembl Release 

100. 

 

Estimation of m-values for cross cell comparison 

We estimated m-values to assess cell type specificity of SNP-gene or SNP-intron excision pairs with 

Metasoft 88. Prior to software implementation, we extracted e/sQTLs from the neuron data 

corresponding to conditionally independent progenitor e/sQTLs to see overlap of sharing significant 

progenitor e/sQTLs with neuron eQTLs. Similarly, we extracted e/sQTLs from the progenitor data 

corresponding to conditionally independent neuron e/sQTLs to see overlap of sharing significant 

neuron eQTLs with progenitor e/sQTLs. We estimated standard errors via dividing beta estimates 

from EMMAX by t-statistics for each association p-value. We considered associations shared across 

different QTLs for the m-value > 0.9. 

 

Similarly, in order to find significant progenitor/neuron e/sQTLs shared with fetal bulk e/sQTLs, we 

extracted e/sQTLs from the fetal bulk data corresponding to conditionally independent 

progenitor/neuron e/sQTLs, and defined shared at m-value > 0.9. 

  

Comparison of cell-type specific vs fetal and adult bulk brain e/sQTLs 

We considered an overlap of e/sQTLs between two datasets when the index e/sSNPs were in LD 

(r2>0.8 where LD was calculated in our sample population) and  the eSNP-eGene/sSNP-intron pairs 

were shared. To determine the total number of eSNP-eGene/sSNP-intron pairs as the universe for 

enrichment analyses, we pruned all variants associated with each gene per gene for r2 > 0.01 by using 

PLINK command plink --indep-pairwise 50 5 0.01. To determine if different proportions of sharing were 

observed between two cell types, we performed an odds ratio test described here 89. 

  

To test temporal specificity of cell type specific e/sQTL data, we downloaded GTEx data adult brain 

e/sQTL data 24. We called loci from the two datasets as colocalized when, (1) index adult brain 
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e/sQTLs are found within LD buddies of cell type specific e/sQTLs at LD r2 > 0.8 (where LD is 

calculated using either the European population from 1000 Genomes or our study’s population), and 

(2) when the cell-type specific e/sQTL data conditioned on index adult brain e/sQTLs, the index brain 

e/sQTL no longer survives the global significance threshold. 

   

LD-thresholded colocalization with brain disorders and traits GWAS 

To find eQTLs and sQTLs colocalized with index GWAS loci, we performed LD-thresholded 

colocalization analysis for each cell type separately 47. We used summary statistics of GWAS for 

schizophrenia (SCZ) 1, major depression disorder (MDD) 90, bipolar disorder (BP) 2, educational 

attainment (EA)91, neuroticism 92, IQ 5, cognitive performance (CP) 91,  attention-deficit/hyperactivity 

disorder (ADHD) 93, Alzheimer's disease (AD) 94, Parkinson’s disease (PD) 95, Insomnia 96, epilepsy97, 

autism spectrum disorder (ASD) 98, and cortical thickness and surface area from ENIGMA project 4. 

We liftovered positions of variants in GWAS summary statistics from hg19 to hg38 with  function from 

R rtracklayer package 99. Variant rsids were assigned with dbSNP151 based on positions of variants 

in summary statistics data. To define index GWAS SNPs at genome-wide significant threshold p-value 

(5x10-8), we implemented a clumping procedure, where we defined two LD-independent GWAS 

signals so as to have pairwise LD r2 < 0.5 based on LD matrix computed with European population of 

1000 Genomes (1000G European phase 3). Prior to clumping, duplicated rsIDs in 1000G EUR 

genotype files were assigned with unique names, and BIM files were modified for each chromosome. 

Following a unique id assignment, BIM files were merged back to BED and FAM files with --bmerge 

function of PLINK1.9 software (plink --bfile BED file --bmerge modified_BIM file). Since all GWAS we 

leveraged in our colocalization analysis have been conducted in populations of European ancestry, 

and our study population is multi-ancestry, we computed  LD r2  separately within these two different 

populations. We considered the index eQTL or sQTL SNP coincident with the index GWAS SNP if the 

pairwise LD r2 between them was greater than 0.8 based on either the LD matrix computed via either 

European 1000 Genomes Phase 3 data or our study population. Following that, we performed a 

conditional eQTL/sQTL analysis by conditioning on the coincident index GWAS SNP. If the 

association of index QTL and gene expression or intron excision was no longer significant based on 
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p-value thresholds defined with eigenMT-BH method for each dataset, we identified that cell type 

specific  and fetal bulk eQTL/sQTL as a colocalized loci with the given GWAS trait. Since GTEx raw 

data is not available publicly, conditional analysis was not performed to infer colocalization. 

  

Transcription factor motif analysis 

We used motif breaker R to detect the disruption of the transcription motif binding site where there 

was a variant within a chromatin accessibility peak (Figure 3D)100. 

  

TWAS analysis 

We performed transcriptome wide association analysis for progenitor and neurons separately with 

FUSION software (http://gusevlab.org/projects/fusion/, 52). First, we obtained a set of variants shared 

between the genotypes from 1000 Genome European phase 3 68 and our study population restricted 

to variants described for eQTL analysis, and removed monomorphic variants within European 

genotype data. We estimated cis-heritability of genes (including variants within ± 1 MB window of the 

TSS) and intron junctions (including variants within ± 200kb window of two ends of intron junctions) 

with GCTA software 101 by controlling for same covariates for global gene expression/splicing and 10 

PCs of global genotypes used in e/sQTL analysis. VST normalized gene expressions were further 

subject to quantile normalization for heritability estimation. 1,703/973 genes and 6,728/6,799 intron 

junctions were significantly cis-heritable in progenitors/neurons for heritability p-value < 0.01. To 

determine the method to be used to estimate genetic component of gene expression/splicing 

(weights), we performed leave-one-out cross validation 102 for the prediction models including LASSO 

regression 103, Elastic-net regression 104 and EMMAX 77 within FUSION software. We used the weights 

computed from the prediction model with the highest cross validation R2 (the highest performance) 

per gene/intron junction for downstream analysis for progenitor, neuron and fetal bulk brain tissue. 

For adult brain bulk tissue data, we obtained the weights of genes and intron junctions from 

CommonMind Consortium study 53. 
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Before running TWAS analysis, we prepared GWAS summary statistics for schizophrenia (SCZ)1, 

major depression disorder (MDD) 90, educational attainment (EA)91, neuroticism 92, IQ 105, Alzheimer's 

disease (AD) 106, Parkinson’s disease (PD) 95, and Global Surface Area (GSA) and average thickness 

from ENIGMA study 4 with following adaptations: (1) we obtained common variants found both in 

genotype files from our study and in GWAS summary statistics; (2) we calculated z-score by dividing 

the beta coefficient by the standard error if the beta coefficient was available in the summary statistics, 

or dividing the natural logarithm of odds ratio by the standard error if odds ratio was given in the 

summary statistics; (3) The sign of the z-score were matched based on the allelic directionality of 

weights from FUSION software. 

  

To perform TWAS analysis, we tested the association between the predicted gene expression/splicing 

(w) and brain traits listed above (Z) by implementing the algorithm ZTWAS= w’ Z/sqrt(w’Dw) where D is 

the LD matrix as the covariance among all cis-variants from the FUSION software 52,53. Since the 

population structure of our dataset was different from European neuropsychiatric GWAS, we 

performed TWAS analysis separately with different LD estimates computed based on our study or 

European population from 1000 Genomes Phase 3 as the covariance. For variants missing in GWAS 

summary statistics which existed in our study’s genotypes, we implemented IMPG imputation 107 

allowing 40% of missing variants as maximum ratio within the FUSION algorithm. 

  

To identify genes/intron junctions not driven by co-expression, we defined jointly independent 

genes/intron junctions through performing summary-statistic-based joint analysis 108, where we 

replaced SNPs with genes/intron junctions as described in previous work 53 within the FUSION 

software. Implementing genes/intron junctions to the model one at a time in decreasing order of 

significance, we evaluated whether the conditional TWAS test remained significant. Those with 

significant conditional TWAS association were defined as jointly independent. 
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