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Abstract8

Inferring the dynamics of pathogen transmission during an outbreak is an important9

problem in both infectious disease epidemiology and phylodynamics. In mathematical epi-10

demiology, estimates are often informed by time-series of infected cases while in phylody-11

namics genetic sequences sampled through time are the primary data source. Each data12

type provides different, and potentially complementary, insights into transmission. How-13

ever inference methods are typically highly specialised and field-specific. Recent studies14

have recognised the benefits of combining data sources, which include improved estimates15

of the transmission rate and number of infected individuals. However, the methods they16

employ are either computationally prohibitive or require intensive simulation, limiting their17

real-time utility. We present a novel birth-death phylogenetic model, called TimTam which18

can be informed by both phylogenetic and epidemiological data. Moreover, we derive a19

tractable analytic approximation of the TimTam likelihood, the computational complexity20

of which is linear in the size of the dataset. Using the TimTam we show how key param-21

eters of transmission dynamics and the number of unreported infections can be estimated22

accurately using these heterogeneous data sources. The approximate likelihood facilitates23

inference on large data sets, an important consideration as such data become increasingly24

common due to improving sequencing capability.25
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1 Introduction26

Estimating the prevalence of infection and transmission dynamics of an outbreak are central27

objectives of both infectious disease epidemiology and phylodynamics. In mathematical epi-28

demiology, time series of reported numbers of infections (known as the epidemic curve or time29

series) are combined with epidemiological models to infer key parameters, such as the basic30

reproduction number (R0); a fundamental descriptor of transmission dynamics (Brauer et al.,31

2008; Grassly and Fraser, 2008). In phylodynamics, as applied to infectious disease epidemiol-32

ogy, phylogenies reconstructed from pathogen genetic sequences sampled over the course of an33

outbreak are used to estimate either the size or growth rate of the infected population (Pybus34

and Rambaut, 2009; Stadler et al., 2012).35

Combining information from multiple data sources has the potential to improve estimates of36

transmission rates and prevalence (Rasmussen et al., 2011; Moss et al., 2019), however doing so37

raises substantial challenges (Angelis et al., 2015). Technical challenges and the diversity of the38

data types used has meant that phylogenetic and epidemiological inference methods have been39

developed and examined largely in isolation of each other (Parag and Donnelly, 2020; Ypma40

et al., 2013).41

The two main phylodynamic models used to describe the growth of an infectious disease42

outbreak are the phylogenetic birth-death (BD) model, which estimates the rate of spread of the43

pathogen (Nee et al., 1994; Kendall, 1948), and the coalescent process, which estimates the effec-44

tive size of the infected population (Kingman, 1982; Pybus et al., 2000). Within the coalescent45

framework, a phylogeny reconstructed from sampled sequences is related to the effective size of46

the infected population, assuming that the fraction of the population sampled is small (King-47

man, 1982). This relationship, when interpreted under a suitable dynamical model, allows the48

inference of epidemic dynamics (Pybus et al., 2001; Volz et al., 2009). Both differential equation49

and stochastic epidemic models have been fit to sequence data (Volz et al., 2009; Popinga et al.,50

2015; Tang et al., 2019), providing estimates of prevalence and R0. Gill et al., 2016 introduced51

an additional way to model effective population sizes by considering the association between52

effective population size and time-varying covariates.53

Rasmussen et al., (2011) showed how combining sequence data with an epidemic time series54

could allow inference of not just the epidemic size but also its growth parameters. However, this55

approach treated the epidemic time series as independent of the sequence data, an approximation56

which only holds when the number of sequences is small relative to the outbreak size. Previously,57

coalescent models have neglected the informativeness of sequence sampling times, although recent58

work has found estimates of the effective size could be improved by incorporating sampling times59

(Karcher et al., 2016; Parag et al., 2020). To the best of our knowledge, no coalescent model so60

far has utilised both epidemic time series and sequence sampling times.61

Within the BD framework, births represent transmission events and deaths the cessation of62

being infectious (e.g. due to death, isolation or recovery). Stadler, (2010)’s birth-death-sampling63

(BDS) extension of Kendall’s BD model (Kendall, 1948) incorporated serially-sampled sequences,64

which allowed estimation of the underlying epidemic growth and sampling trends. This approach65

was extended by Kühnert et al., (2014), who linked the BDS process to a stochastic epidemic66

(SIR) model under strong simplifying assumptions. The resulting model improved estimates of67

R0 and provided the first means of inferring the number of unsampled members of the infected68

population (via estimates of epidemic prevalence). Deterministic SIR models have also been used69

in both BD (MacPherson et al., 2020) and coalescent frameworks (Volz et al., 2009).70

Vaughan et al., (2019) relaxed the assumptions in Kühnert et al., (2014)’s model using a71

particle-filter approach for inference. The flexibility of the particle-filter enabled the use of both72

sequence and epidemic time series data. While the particle-filter represents a comprehensive ap-73
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proach to fusing epidemiological and phylogenetic data, it is computationally intractable, relying74

on intensive simulation, which can limit its application. Recent work from Manceau et al., (2020)75

and Gupta et al., (2020) developed a numerical scheme for computing the same likelihood (and76

so facilitates equivalent estimates). The numerical scheme has a smaller computational overhead,77

but requires calculations that have a quadratic computational complexity, i.e., that grow as the78

square of the size of the dataset. Moreover, the approximation used can be numerically unstable79

under certain conditions.80

To the best of out knowledge, there is currently no existing phylogenetic inference method,81

in either the BD or coalescent frameworks, that can (i) formally combine both epidemiological82

and sequence data, (ii) estimate the prevalence of infection and (iii) be practically applied to83

large data sets. As sequencing costs continue to decline and large genome sequence datasets84

collected over the course of an outbreak become the norm, the need for a tractable solution to85

these problems grows. Here we present the first steps towards such a solution by approximating,86

and then generalising, the model of Manceau et al., 2020.87

In this manuscript we describe the Time-series Integration by Moment Approximation (Tim-88

Tam), a novel approach for incorporating both epidemiological and sequence data at scale. The89

novelty of this approach stems from two aspects. First, motivated by a result from Kendall,90

(1948) we approximate the prevalence distribution (and the number of unobserved lineages)91

with a negative binomial distribution; this approximation allows us to derive an analytic ap-92

proximation to the likelihood that has a computational complexity that scales linearly with the93

size of the dataset. Consequently, our approach can be applied to much larger data sets than94

was previously possible. Second, the mathematical tractability of TimTam allows us to provide95

an extension to the sampling models previously considered which more closely represents how96

epidemiological data is usually recorded in practice. Since epidemiological data is usually only97

available in the form of binned (e.g. daily or weekly) counts, a time series of such observations98

align more closely with the data generating process (Wallinga and Teunis, 2004). For example,99

if a health centre is unable to report new cases over the weekend one can expect scheduled cases100

at the start of the following week. This is in contrast to sequence data, which is usually reported101

with the exact sampling date.102
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2 Methods103

Birth-death-sampling (BDS) models, as presented in Stadler, (2010) and Stadler et al., (2013),104

describe sequence data that have either been collected at pre-determined points in time (hereafter105

scheduled observations), or opportunistically, when cases have presented themselves, (hereafter106

unscheduled observations). Models such as those considered in Vaughan et al., (2019) and107

Manceau et al., (2020) incorporate an additional data type in their sampling model, occurrence108

data, which represents the unscheduled observation (and subsequent removal) of infectious in-109

dividuals without including them in the reconstructed phylogeny. Such occurrence data may110

arise e.g. when an individual receives treatment, but the pathogen genome is not sequenced.111

Unscheduled observations generate a point process of removal events from the infectious popu-112

lation (Stadler et al., 2013). The above suggests a categorisation of observations based on two113

attributes, (i) whether they were observed at predetermined times (scheduled observations) or114

following a point process (unscheduled observations), and (ii) whether the observation is included115

in the reconstructed phylogeny (a sequenced observation), or not (an unsequenced observation).116

The categorisation above suggests a fourth data type: the scheduled observation of unse-117

quenced (occurrence) data, which corresponds to the removal of multiple individuals from the118

infectious population at the same time, without incorporating them into the reconstructed phy-119

logeny. There are several benefits to being able to describe such data. First, since epidemiological120

data are often given as a time series (instead of a point process) this is arguably a more natural121

way to utilise occurrence data in the transmission process (Wallinga and Teunis, 2004). The same122

could be said for sequenced samples where there may be multiple samples collected on the same123

day (Parag et al., 2020). The second benefit is computational. Treating observations as arising124

from scheduled rather than unscheduled observations simplifies the likelihood, since each sched-125

uled event can account for multiple observations. As sequencing of pathogen genomes becomes126

more commonplace, the capacity to deal with large data sets becomes increasingly important.127

As far as we are aware, scheduled occurrence data has not been considered in any phylogenetic128

inference method. Below we describe this sampling model formally and the TimTam approach129

to evaluating its likelihood. An implementation of the likelihood is available upon request from130

the corresponding author.131

Phylogenetic Birth-Death Process132

The phylogenetic birth-death process starts with a single infectious individual at the origin time,133

t = 0. Infectious individuals “give birth” to new infectious individuals at rate λ, and are removed134

from the process either through naturally ceasing to be infectious (at rate µ, often called the135

“death” rate), or through being sampled (an observation). Unscheduled sampling of infectious136

individuals occurs at different rates depending on whether samples are sequenced (at rate ψ)137

or not (at rate ω). Individuals can also be removed in scheduled sampling events. Scheduled138

sampling occurs at predetermined times when each infectious individual is independently removed139

with a fixed probability; ρ for sequenced samples and ν for unsequenced samples. An illustrative140

example is shown in Figure 1. For ease of notation we assume that all samples arising from a141

scheduled sampling event are either sequenced or not. We denote these times ri for the sequenced142

sampling events and ui for the unsequenced ones, and assume these times are known a priori,143

since they are under the control of those observing the system. The parameters of interest in144

this combined process are θ := (λ, µ, ψ, ρ, ω, ν).145

Realisations of the process are binary trees with internal nodes corresponding to infection146

events and terminal nodes representing one of the removal events as shown in Figure 1. Note that147

we assume the edges of the tree are labelled with their length to ensure that the nodes appear at148
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the correct depth. We refer to the resulting tree of all infected individuals as the transmission149

tree. The subtree containing only the terminal nodes corresponding to sequenced samples (both150

scheduled and unscheduled) is called the reconstructed tree. In practice, the reconstructed tree151

is estimated from pathogen genomes; here we assume the reconstructed tree is known a priori.152

The reconstructed tree can be summarised by its lineages through time (LTT) plot, which153

depicts the number of lineages in the tree at each point in time. We define the number of hidden154

lineages through time as the count of lineages that appear in the transmission tree but not in the155

reconstructed tree. The LTT and the unscheduled (point process) and scheduled (time series) of156

unsequenced samples can all be reduced to a sequence of events, E1:N , starting from the origin157

and moving forward through time up to the present (i.e., the time of the last observation):158

E1:N = {(∆ti, ei)}i=1...N (1)

with ∆ti denoting the time since the previous observation and ei describing the event that was159

observed at that time: ei ∈ {λ-event, ψ-event, ρ-event, ω-event, ν-event}. The sequence of events160

identified from Equation (1) will be used to derive the likelihood of the process.161

For ease of notation, the time of event number i is denoted ti, so ti := ∆t1 + · · ·+ ∆ti. The162

value of Ki is the number of lineages in the reconstructed tree directly after the event at time163

ti and Hi denotes the number of hidden lineages. Note that while Ki remains constant between164

observations, H(t) may change. The changes in the LTT and the number of hidden lineages at165

time ti is denoted ∆Ki and ∆Hi.166

There are some differences between the process described above and that of (Manceau et al.,167

2020). Manceau et al., 2020 allow for the observation of infectious individuals without removal,168

i.e., allowing them to appear as an unscheduled sample but potentially able to subsequently give169

birth to new infections. Accounting for these so-called sampled ancestors introduces an additional170

parameter which is the probability of removal upon sampling (Stadler, 2010; Gavryushkina et al.,171

2014). As mentioned above, the inclusion of scheduled occurrence data is novel, hence is not172

part of the process considered by Manceau et al., (2020) or any other work, as far as we know.173

The Likelihood174

Here we describe the likelihood function for the process described above and the distribution of175

the number of hidden lineages, H(t), conditional upon the observed N events from Equation (1).176

The joint posterior distribution of these quantities can be factorised as follows:177

f(θ,H(t) | E1:N ) ∝ f(H(t) | E1:N , θ)f(E1:N | θ)π(θ). (2)

with π(θ) as a prior distribution over the parameters of the process, θ. The constant of propor-178

tionality is simply that required to normalise the resulting posterior distribution f(θ,H(t) | E1:N ).179

The remaining two terms compose the process likelihood. The first, which is the distribution180

of H(t), is calculated incidentally while evaluating f(E1:N | θ) as explained below. The second181

term, f(E1:N | θ), is the likelihood of the observed events given the process parameters. While182

each observed event depends on all the prior observations, we can factorise this likelihood into183

sequential terms:184

f(E1:N | θ) =
N∏
i=1

f(Ei | E1:(i−1), θ) =
N∏
i=1

cili

where ci is the probability that during the interval (ti−1, ti) (i.e., between events Ei−1 and Ei)185

there was no observed event, and li is the probability of observing event ei.186

5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.349068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.349068
http://creativecommons.org/licenses/by-nc-nd/4.0/


Time

Delay Event

1 λ

2 ψ

1 λ

2 ψ

2 ω

3 ρ1

1 ω

μ (removed)
ω (observed) 

ψ (sequenced)

λ (infection)

ρ (catastrophe)

a b

Figure 1: An illustration of birth-death-sampling process and the resulting data set: the tree
depicts the BD process with the shapes indicating which events occurred when; each horizontal
line corresponds to the time an individual was infectious. The table shows the corresponding
data set with the delay between subsequent observations and the observed event after that
delay. At time a there is a ω-event, then after a delay of 3 units of time until time b when
there is ρ-event with one individual sampled, denoted ρ1.

To describe how many hidden linages there are at time t, H(t), we define a generating function187

M(t, z) for the distribution conditional upon events that have been observed by time t. This is188

defined as189

M(t, z) =
∑
h

P(H(t) = h|E1:x ≤ t)zh,

where we have abused our notation by using E1:x ≤ t to denote just the events which occur190

at times not after t. The ci and li can be computed using properties of the generating function191

M(t, z). Further, to indicate the generating function over a particular interval of time, let Mi(t, z)192

denote M(t, z) for ti ≤ t < ti+1, i.e., between events Ei and Ei+1. For each of these intervals, we193

can describe Mi using a PDE derived from the master equations of the process we have described194

above.195

Since the process starts with only a single infected individual (who appears as the root of196

the tree), by definition H(0) = 0. Therefore the initial condition of the generating function is197

M0(0, z) = 1, and the PDEs describing the Mi are:198

Mi(ti, z) = Fi(z) (3)

∂tMi = (λz2 − γz + µ)∂zMi +Ki(2λz − γ)Mi. (4)

Here γ = λ + µ + ψ + ω, the parameters ρ and ν do not appear in the PDE because they only199

occur in the boundary conditions at the scheduled events. The boundary condition, Fi(z), is200

the PGF of H after the observation at ti. The number of lineages in the reconstructed tree, Ki,201
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only changes when there is a birth, or a sequenced sample and so is a constant in the PDE. The202

solution during the intervals between observations is1
203

Mi(t, z) = Fi (p0(ti+1 − t, z))
(
p1(ti+1 − t, z)

1− z

)Ki

. (5)

The functions p0 and p1 are standard results for birth-death-sampling models (see Stadler, (2010))204

and a derivation is given in Supplementary Materials.205

Before proceeding, we discuss an important property of the solution given in Equation (5): the206

coefficients of the generating function Mi do not sum to unity for all t. The normalising constant207

for Mi(ti+1, z) is the probability, ci+1, of there having been no event during the preceding interval208

of time. Hence, we can calculate the ci+1 by evaluating Mi(ti+1, z) at z = 1. Therefore the209

generating function of the distribution of H(t−t+1) (i.e., the limiting distribution of the number of210

hidden distributions prior to an observation) isMi := Mi(t
−
i+1)/ci, where we use the notation t±211

to indicate the left and right limits respectively and the inclusion of the denominator ci ensures212

that the coefficients sum to 1.213

To calculate the PGF of H(ti+1), (i.e., the PGF conditioning on the observation at time214

ti+1,) we need li+1. To do this we consider the changes to the distribution of H that result from215

observing each possible event. Since λ- and ψ-events do not influence the number of H-lineages,216

the PGF does not change: Mi+1(ti+1) :=Mi(ti+1). The likelihood of these events, ei, is λ and217

ψ respectively. For a ω-event we need to shift the whole distribution of H and account for the218

unknown number of hidden lineages that could have been sampled, this is achieved by taking the219

partial derivative of the generating function2. The likelihood of an ω-event is the normalising220

constant after the differentiation:221

li+1 = lim
z→1−

ω∂zMi(ti+1, z), and so

Mi+1(ti+1) =
ω

li+1
∂zMi(ti+1, z).

(6)

For a scheduled sampling event, at time r with removal probability ρ, we need to account for the222

survival of each of the H-lineages that were not sampled, those that were, and the number of223

lineages in the reconstructed tree that were not removed during this scheduled sampling. This224

leads to the following likelihood factor and updated PGF:225

li+1 = (1− ρ)Ki+1ρ∆Ki+1 lim
z→1−

Mi(ti+1, (1− ρ)z) and

Mi+1(ti+1) =
(1− ρ)Ki+1ρ∆Ki+1

li+1
Mi(ti+1, (1− ρ)z).

(7)

Last, we include scheduled unsequenced samples, i.e. the observation and simultaneous removal226

of multiple lineages without subsequent inclusion in the reconstructed phylogeny. Previously, we227

noted that a single ω-sampling corresponds to differentiating the PGF of H once. If at time u228

each lineage is sampled with probability ν and n lineages in total are sampled, then we must take229

the n-th derivative and accumulate a likelihood factor for the removed and non-removed lineages230

of (1 − ν)Kνn; while scaling z by a factor of 1 − ν to account for the H-lineages that were not231

sampled. Using Equations (6) and (7), the likelihood and updated PGF after a ν-sample are:232

1This appears as Proposition 4.1 in Manceau et al., 2020.
2 Differentiation of the PGF achieves this because it shifts the coefficients of the series and weights them by

the number of possible ways in which the sample could have been drawn. For example, consider the term of the
series hjz

j which then becomes jhjz
j−1 because after the sample the probability of there being j − 1 hidden

lineages is the probability there were previously j and that one of those j lineages was sampled.
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li+1 = (1− ν)Ki+1ν∆Hi+1 lim
z→1−

∂∆Hi+1
z Mi(ti+1, (1− ν)z) and

Mi+1(ti+1) =
(1− ν)Ki+1ν∆Hi+1

li+1
∂∆Hi+1
z Mi(ti+1, (1− ν)z).

(8)

Above we have derived expressions for ci and li which allow us to compute the likelihood of233

an observed set of events, E1:N . The outline of the likelihood calculation above is similar to234

that of Manceau et al., (2020) but with the addition of scheduled unsequenced samples, and235

greater emphasis on the handling of repeated scheduled sequenced sampling. Unfortunately,236

the expressions above are in terms of limits and derivatives of generating functions that are237

difficult to manipulate. As noted by Manceau et al., (2020), the evaluation of these expressions238

becomes increasingly computationally demanding when done numerically and attempts to find a239

simplified expression using computer algebra systems did not yield suitable results. The strategy240

followed in Manceau et al., (2020) was to either solve the differential equations numerically241

or to approximate it with a set of basis functions. The former approach requires truncating242

an infinite linear system of ordinary differential equations (ODEs) and solving it for each time243

interval, an operation which is cubic in the size of the truncated system (due to taking the244

matrix exponential). The latter approach attains quadratic complexity albeit by introducing a245

further approximation. The accuracy of the numerical solution of Manceau et al., (2020) will246

increase initially with the size of the truncated system, but at larger values, numerical error from247

computing the matrix exponential could become significant. The TimTam approach we describe248

below is our novel approach for avoiding these problems; it has a linear complexity and avoids249

the need for any numerical integration.250

An Analytic Approximation251

To apply this approximation, recall that we can evaluate the full PGF point-wise given the252

boundary condition Fi (see Equation 3). Moreover, as shown in the Supplementary Materi-253

als, the generating function of the negative binomial (NB) distribution is closed under partial254

derivatives (up to a simple multiplicative constant) and partial derivatives of PGFs can be used255

to calculate the mean and variance of a distribution. Our TimTam model can be described as256

simply replacing the PGF of H with a NB PGF with equivalent mean and variance whenever257

necessary. Algorithmically this can be expressed in the following steps:258

1. Start at time ti with Mi and solve for Mi at time ti+1.259

2. Define ci := Mi(ti+1, 1
−).260

3. Define Mi := Mi/ci.261

4. Define M̃i to be the NB approximation to the distribution with PGF Mi.262

5. Use M̃i to compute the likelihood of Ei+1 and call it li.263

6. Define Mi+1 as the PGF of the distribution obtained by conditioning the NB approximation264

on Ei+1.265

7. Increment the log-likelihood by log (cili).266

The steps involved only require the evaluation of closed form expressions and the amount of267

computational work is linear in the number of observed events.268
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Our use of a NB moment-matching approximation is not arbitrary. Kendall observed that269

the number of lineages descending from a single lineage has a zero-inflated geometric distribu-270

tion (Kendall, 1948). Moreover, it is well known that the sum of independent and identically271

distributed geometric random variables follows a NB distribution. Our approach of treating the272

number of lineages derived from n individuals as a NB random variable is somewhat motivated273

by combining these two properties. Further support for our approximation is obtained by con-274

sidering an equivalent BD process, but with the modified total birth rate of λn+ a where a is a275

small offset representing an immigration rate that leads to the removal of the extra (unobserv-276

able) zeros. Such processes can be described by NB lineage distributions at all times of their277

evolution and are stable to the inclusion of additional event types. (Ycart, 1988; Kapodistria278

et al., 2016).279

It is interesting to note that both partial differentiation by z and scaling z by a constant280

factor in the PGF of a NB random variable produces another PGF for a NB random variable281

with a multiplicative factor. Put another way, the family of NB PGFs is invariant (up to a282

multiplicative constant) under the algebraic operations we care about. The significance of this is283

that if we assume that the distribution of H is NB, then conditioning on an event does not require284

any further approximation to produce subsequent NB distributions as the initial condition of the285

next interval.286

Additional comments287

Conditioning upon observation288

The likelihood developed above applies to an arbitrary realisation of the birth-death process.289

However in practice, the existence of a data set usually means the outbreak has escaped extinc-290

tion due to stochastic effects. This generates a survivorship bias i.e. we only ever consider the291

likelihood of realisations which generate at least one observation. In the phylogenetic BD litera-292

ture, this is readily acknowledged and accounted for by conditioning the process in one of several293

ways (Nee et al., 1994; Stadler, 2012)3. To adjust for this, one should condition upon there being294

at least n ≥ 1 observations between the origin and the present. If there were only unscheduled295

samples in our data set, existing approaches to conditioning the process against extinction could296

easily be applied to this model. Here we do not consider the problem of conditioning the process297

against extinction under the repeated scheduled sampling setting.298

Origin time vs TMRCA299

The definition of the likelihood above assumes that the origin of the phylogeny is known a priori300

or is a parameter to be estimated. This is because we need the initial condition M0(0, z) = 1.301

In practice this is unlikely to be the case as the phylogeny will likely only be known up to the302

time of the most recent common ancestor (TMRCA). There are two ways in which this might303

be remedied. The first, and simplest, is to treat the origin time as an additional parameter to304

be estimated. The second is to set a boundary condition at the TMRCA and to estimate the305

distribution of H.306

If we were confident that the outbreak stemmed from a single initial case, then the former307

method would be more suitable, especially if there was prior knowledge that could constrain308

the estimate of the origin time. On the other hand, if we faced substantial uncertainty about309

how the outbreak began and sequencing was sparse, i.e., low ψ and ρ, then the TMRCA may310

be relatively recent and estimating the origin could be particularly challenging. In this case,311

3There are similar results in the mathematical epidemiology literature, however they are less frequently used,
e.g. (Mercer et al., 2011).
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the latter approach may be more suitable. This would involve estimating the distribution of312

H(tTMRCA) and hence its generating function M1(tTMRCA, z), presumably from the family of313

NB distributions.314

We have presented the log-likelihood in terms of the assumption of a known origin time, be-315

cause that is a more mathematically convenient approach, however the most appropriate method316

will depend on the types of questions to be answered and the potential availability of prior in-317

formation to inform the estimate of the origin time.318
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3 Results319

Comparison with existing results320

In this section we validate and compare our TimTam approach to the method from Manceau321

et al., (2020), hereafter called the Manceau algorithm. Figure 2 shows the the log-likelihood322

function evaluated under the TimTam approach and the Manceau algorithm, for 40 simulated323

data sets. The simulation used the parameters given in Table 1 was repeated to get a range324

of sample sizes from 5 to 200 observed events (which includes both births and samples). Both325

methods produce very similar log-likelihood values with the TimTam approach explaining 99%326

of the variation in the Manceau algorithm values under a linear model.327

Since the Manceau algorithm requires a truncation parameter to be specified, we first obtained328

sensible values on a per simulation basis by increasing this value until the log-likelihood changed329

by less than 0.1% if the truncation parameter was incremented further. The resulting truncation330

parameters are shown in Supplementary Figure 1. The full details regarding how the simulated331

data were generated, how the benchmarks where evaluated and how the truncation parameter332

for the Manceau algorithm was selected are given in the Supplementary Materials.333
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Figure 2: The value of the log-likelihood using the TimTam approximation and the numerical
scheme from Manceau et al., (2020). The values are in good agreement with an R2 of 0.99.
The solid black line shows a linear model fit to the data and the grey dashed line follows y = x.

To understand the computational efficiency of our new approach, we recorded the time re-334

quired to evaluate the log-likelihood on each of the data sets considered above. In these simula-335

tions we selected the truncation parameter of the Manceau et al algorithm before we estimated336

the evaluation time of the likelihood so that this computation was not included as part of the337

evaluation time. The average times to evaluate the likelihood are shown in Figure 3. For Tim-338

Tam the evaluation time grows approximately linearly with the size of the dataset, ∝ n1.08 where339

the 95% CI on the exponent is (1.07,1.10). On the other hand, for Manceau et al., (2020)’s nu-340

merical scheme the evaluation time grows approximately quadratically, ∝ n2.10 CI (1.82,2.38).341

In addition to the improvement in computational complexity, the average evaluation times over342

the example data sets are orders of magnitude smaller for TimTam, which takes less than a343

millisecond in comparison to the several seconds required by the implementation presented in344
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Manceau et al., (2020). We caution against reading too much into the absolute average computa-345

tion times, since we used Haskell to implement our method, whereas Manceau et al., (2020) used346

a combination of C and Python, hence it is likely that the faster computation time is a feature347

of the programming language used and not the algorithm (both implementations are available348

online). Nonetheless, the computational complexities are features of the respective algorithms349

and means that the TimTam approach will outperform the Manceau algorithm for large datasets,350

regardless of the implementation.351
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Figure 3: The average time taken to evaluate the likelihood grows approximately linearly with
the number of data points: ∝ n1.08 (1.07,1.10) using TimTam while the algorithm from
Manceau et al (2020) has approximately quadratic growth ∝ n2.10 (1.82,2.38). The grey
points in the second panel show the TimTam values again on the same scale.

Large data set example352

Having validated TimTam against the Manceau algorithm, we now showcase our approach as an353

estimation scheme that merges all the data types considered in this manuscript. We used the354

parameters listed in Table 2 to generate a larger simulation. To show the effect of the simulation355

length and the number of observations on statistical power, we truncated our simulation at356

two timepoints, t = 12 and t = 16. The numbers of observations of each type in each of the357

two partial datasets are shown in Table 3. Figure 4 shows cross-sections of the TimTam log-358

likelihood function generated by fixing the parameters and then varying each element of the359

parameter vector individually to explore the surface. This was done using the data from t = 16360

in the simulation centered about two sets of parameters: those used in the simulation and the361

maximum-likelihood parameter estimates, obtained by numerically optimising the log-likelihood362

function while fixing the death rate (µ) to its true value. The log-likelihood cross-sections for363

the datasets truncated at t = 12 is shown in Supplementary Figures 2.364

We also investigated how well TimTam estimates the prevalence of hidden lineages through365

time. Figure 5 shows the number of hidden lineages in the simulation at various snapshots,366

together with the estimated solution to the filtering problem, i.e., estimation of the prevalence367
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given the incomplete data available at that point in the simulation.368
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Figure 4: Cross sections of the log-likelihood function taken about the parameter values used in
the simulation (lilac) and the estimated values (green), both of which are indicated by vertical
lines, given the data that was available at t = 16.
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Figure 5: The LTT plot of the simulated data set and the estimates of the prevalence generated
at a couple points in the simulation (based on only the data prior to that point in time)
using either the “true” parameters responsible for the simulated data or the estimated values
conditional upon the data up to that point in the simulation.
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4 Discussion369

We have described an analytic approximation, called TimTam, for the likelihood of a birth-death-370

sampling model which can also describe scheduled data i.e. cohort sampling at pre-determined371

times. TimTam can be used with both sequenced and unsequenced samples, i.e., the observations372

can either be included in the reconstructed tree, or as occurrence data. Our approach generalises373

previous birth-death estimation frameworks by accommodating and exploiting more data types374

than have been previously considered and makes it possible to scale existing analyses to larger375

data sets.376

Our work is a step towards more flexible time series-based approaches to phylodynamics,377

where samples from multiple lineages are considered contemporaneously. This extends the more378

common point-process based paradigm in which lineages are sampled continuously through time379

and therefore must be considered individually. In addition, the TimTam likelihood provides an380

estimate of the distribution of the final prevalence of infection, allowing both the estimation of381

summary statistics such as R0 and the total number of cases. Comparison of TimTam to existing382

algorithms on small to moderate sized data sets suggests this is a faithful representation of the383

true likelihood function and that the empirical complexity behaves as expected.384

The strength of TimTam lies in its use of moment matching. This simplifying assumption385

allowed us to extend the existing observation models to include the scheduled observation of386

unsequenced infections. The computational efficiency means that even when we integrate these387

heterogeneous data sources, our framework remains tractable even for large datasets. Taken388

together this means phylodynamics can utilise a greater amount and variety of data generated389

by surveillance and sequencing efforts, both of which are becoming increasingly common in390

contemporary epidemiology. Moreover, we anticipate this underlying approach will allow us to391

generate analogous approximations for other phylodynamic models.392

At present, we cannot provide rigorous bounds on the error introduced by this approximation393

(although work is underway on this). However, based on the motivating work from Kendall,394

(1948), we conjecture that if the probability of extinction becomes large, the zero inflation in395

the geometric distributions describing the number of descending lineages might become an issue.396

Since our focus is on large datasets, which will describe established epidemics, we suspect that397

in practice this situation will rarely arise. Additionally, as the death rate increases, the power of398

birth-death models as an inference tool is naturally limited by a lack of data (Kubo and Iwasa,399

1995; Pyron and Burbink, 2013).400

If this method is to be used in small outbreaks or, when the reproduction number is low,401

sensitivity analyses will be necessary to check the fidelity of the NB approximation, as in this402

situation the zero-inflation lost in our approximation may become substantial. Moreover, we403

have neither examined the conditions necessary for statistical identifiability of the parameters404

nor adapted our model likelihood to condition it against extinction (Stadler, 2012; Parag and405

Pybus, 2018). Calculating extinction probabilities for this model is complicated by the iterated406

scheduled sampling events and the unsequenced samples.407

Our work echoes the frameworks of Vaughan et al., 2019 and Manceau et al., 2020, but trades408

some generality for simplicity and tractability. Specifically, Vaughan et al., 2019 presented a409

particle filtering method that can be applied more generally, while Manceau et al., 2020 derived410

a complete posterior predictive distribution of prevalence over time, which allows the optimal411

study of historical transmission. While the former is able to describe a greater variety of birth-412

death processes and the latter can be used to estimate additional properties of the processes413

considered, there are substantial limitations of scalability in both. While TimTam may not414

match the current level of generality in Vaughan et al., 2019 or the rigour of Manceau et al., 2020,415

our method provides a computationally efficient method for handling diverse data types that is416
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scalable to modern datasets. We are pursuing the aggregation of point-process observations into417

a time series which provides a closer link to how epidemiological data is usually recorded where418

it is typically available at a daily or weekly resolution. Moreover, this leads to improvements in419

performance for large datasets as multiple data points can be handled in a single expression. As420

the availability of phylogenetic data (derived from sequences or contact tracing) increases and421

the size of these data grows, such approximation schemes will become increasingly valuable.422
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Table 1: The parameters used to simulate the data sets for the empirical investigation of the
computational complexity.

Parameter Description Value
λ Birth rate 1.5
µ Death rate 0.3
ψ Sequenced sampling rate 0.3
ρ Scheduled sequenced sampling probability 0.5
r Scheduled sequenced sampling time 6
ω Unsequenced sampling rate 0.3

Simulation duration 6
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Table 2: The parameters used to simulate the large data set.

Parameter Description Value
λ Birth rate 1.5
µ Death rate 0.5
ψ Sequenced sampling rate 0.2
ρ Scheduled sequenced sampling probability 0.2
ri Scheduled sequenced sampling times {2.5, 4, 5.5, 7, 8.5, 10, 11.5, 13, 14.5, 16, 17.5}
ω Unsequenced sampling rate 0.2
ν Scheduled unsequenced sampling probability 0.15
ui Scheduled unsequenced sampling times {2, 3.5, 5, 6.5, 8, 9.5, 11, 12.5, 14, 15.5, 17}

Simulation duration 17
Inference times {12, 16}

18

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.21.349068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.349068
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3: The number of events that had been observed at each point in the simulation where
inference was carried out.

Observation time Number of observed events
12 315
16 1415
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