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Abstract

Inferring the dynamics of pathogen transmission during an outbreak is an important

problem in both infectious disease epidemiology. In mathematical epidemiology,

estimates are often informed by time series of confirmed cases, while in phylodynamics

genetic sequences of the pathogen, sampled through time, are the primary data source.

Each data type provides different, and potentially complementary, insight; recent

studies have recognised that combining data sources can improve estimates of the

transmission rate and number of infected individuals. However, inference methods are

typically highly specialised and field-specific and are either computationally prohibitive

or require intensive simulation, limiting their real-time utility.

We present a novel birth-death phylogenetic model and derive a tractable analytic

approximation of its likelihood, the computational complexity of which is linear in the

size of the dataset. This approach combines epidemiological and phylodynamic data to

produce estimates of key parameters of transmission dynamics and the number of

unreported infections. Using simulated data we show (a) that the approximation agrees

June 3, 2021 1/28

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2020.10.21.349068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.349068
http://creativecommons.org/licenses/by-nc-nd/4.0/


well with existing methods, (b) validate the claim of linear complexity and (c) explore

robustness to model misspecification. This approximation facilitates inference on large

datasets, which is increasingly important as large genomic sequence datasets become

commonplace.

Author summary

Mathematical epidemiologists typically studies time series of cases, ie the epidemic

curve, to understand the spread of pathogens. Genetic epidemiologists study similar

problems but do so using measurements of the genetic sequence of the pathogen which

also contain information about the transmission process. There have been many

attempts to unite these approaches so that both data sources can be utilised. However,

striking a suitable balance between model flexibility and fidelity, in a way that is

computationally tractable, has proven challenging; there are several competing methods

but for large datasets they are intractable. As sequencing of pathogen genomes becomes

more common, and an increasing amount of epidemiological data is collected, this

situation will only be exacerbated. To bridge the gap between the time series and

genomic methods we developed an approximation scheme, called TimTam, which can

accurately and efficiently estimate key features of an epidemic such as the prevalence of

the infection and the effective reproduction number, ie how many people are currently

infected and the degree to which the infection is spreading.

Introduction 1

Estimating the prevalence of infection and transmission dynamics of an outbreak are 2

central objectives of both infectious disease epidemiology and phylodynamics. In 3

mathematical epidemiology, a time series of reported infections (known as the epidemic 4

curve) is combined with epidemiological models to infer key parameters, such as the 5

basic reproduction number, R0, which is a fundamental descriptor of transmission 6

potential [21, 53]. In phylodynamics, as applied to infectious disease epidemiology, 7

phylogenies reconstructed from pathogen genetic sequences sampled over the course of 8

an outbreak are used to estimate the size and/or growth rate of the infected population 9

June 3, 2021 2/28

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2020.10.21.349068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.21.349068
http://creativecommons.org/licenses/by-nc-nd/4.0/


(eg [7, 30]). 10

Combining data from multiple sources has the potential to improve estimates of 11

transmission rates and prevalence [9, 22,33]. However doing so raises substantial 12

technical challenges [23]. As a result phylogenetic and epidemiological inference 13

methods have been developed and examined largely in isolation of each other [38,46]. 14

The two main frameworks for phylodynamic inference use the phylogenetic 15

birth-death (BD) model, which estimates the rate of spread of the pathogen (eg [29,39]), 16

and the coalescent process, which estimates the effective size of the infected population 17

(eg [26,45]). Within the coalescent framework, a phylogeny reconstructed from sampled 18

sequences is related to the effective size of the infected population and assumes that the 19

fraction of the population that has been sampled is small [26]. This relationship, when 20

interpreted under a suitable dynamical model, allows the inference of epidemic 21

dynamics [16,17]. Both deterministic and stochastic epidemic models have been fitted 22

to sequence data [16,18,55], providing estimates of prevalence and R0. [14] introduced 23

an additional way to model effective population sizes, by considering the association 24

between effective population size and time-varying covariates. [33] showed that 25

combining sequence data with an epidemic time series could allow inference of not just 26

the epidemic size but also its growth parameters. However, this approach treated the 27

epidemic time series as being independent of the sequence data, an approximation which 28

only holds when the number of sequences is small relative to the outbreak size. 29

Previously, coalescent models have neglected the informativeness of sequence sampling 30

times, although recent work has found estimates of the effective size can be improved 31

substantially by incorporating sampling times (eg [27,42]). 32

In the BD framework, births represent transmission events and deaths represent 33

cessation of being infectious, eg due to death, isolation or recovery [50]. [48] extended 34

this by modelling serially-sampled sequences as another type of death event. This 35

approach was extended by [25], who linked the BD process to a stochastic epidemic 36

(SIR) model under strong simplifying assumptions. The resulting model improved 37

estimates of R0 and provided the first means of inferring the number of unsampled 38

members of the infected population (via estimates of epidemic prevalence). 39

Deterministic SIR models have also been used in both BD [11] and coalescent 40

frameworks [16]. 41
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[51] relaxed the assumptions in [25]’s model. This was made possible via the use of 42

a particle-filter approach which enabled joint analysis of both sequence and epidemic 43

time series data. While the particle-filter represents a comprehensive approach to fusing 44

epidemiological and phylogenetic data, it is computationally intractable, relying on 45

intensive simulation, which can limit its application. Data augmentation also provides a 46

powerful approach to the inference problem, but again relies on intensive simulation [3]. 47

Recently, [49] and [47] developed numerical schemes for computing the same 48

likelihood, thereby facilitating equivalent estimation. Their methods have a smaller 49

computational overhead, but still requires calculations that have a quadratic 50

computational complexity, ie grow with the square of the size of the dataset. Moreover, 51

the approximation used can be numerically unstable under certain conditions [1]. 52

To the best of our knowledge, there is currently no existing phylogenetic inference 53

method, in either the BD or coalescent frameworks, that can (i) formally combine both 54

epidemiological and sequence data, (ii) estimate the prevalence of infection and growth 55

rate, and (iii) be applied practically to large datasets. As sequencing costs continue to 56

decline and large genome sequence datasets collected over the course of an outbreak 57

become the norm, the need for a tractable solution to these problems grows [2]. Here we 58

present the first steps towards such a solution by approximating, and then modifying, 59

the model of [49]. 60

In this manuscript we describe a novel birth-death-sampling model tailored for use in 61

estimating the reproduction number and prevalence of infection in an epidemic. We start 62

by reviewing existing sampling models for birth-death processes and derive a missing 63

sampling model which has a natural interpretation in epidemiology, where data is 64

usually only available in the form of binned (eg daily or weekly) counts. For example, if 65

a health care provider is unable to report new cases over the weekend one might expect 66

an aggregated number of cases to be reported at the start of the following week. This is 67

in contrast to sequence data, which is often reported with the exact sampling date. 68

With several simulation studies we demonstrate empirically that our approximation 69

(a) agrees with the output of an existing numerical scheme, (b) has linear complexity, 70

considerably improving on existing computational approaches, which grow quadratically 71

with the size of the data set, and (c) even with aggregated (binned) data, key 72

parameters can still be recovered. Finally, we discuss the practical applications and 73
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benefits of TimTam and the limitations of our approach. 74

Methods 75

Birth-death-sampling models are used to describe sequence data that have been either 76

collected at predetermined points in time, hereafter scheduled observations, or 77

opportunistically, ie when cases have presented themselves, hereafter unscheduled 78

observations [29, 48]. The relationship between these sequences is described by the 79

reconstructed phylogeny. The models of [51] and [49] consider an additional data type, 80

which they term occurrence data, that represents unscheduled observation of infectious 81

individuals without their inclusion in the reconstructed phylogeny. Such occurrence 82

data may arise, for example, when an individual tests positive for infection but the 83

pathogen genome is not sequenced. 84

We categorise observations based on two attributes, (i) whether the infected 85

individuals were observed at predetermined times (scheduled observations) or follow a 86

point process (unscheduled observations), and (ii) whether the observed cases were 87

included in the reconstructed phylogeny (a sequenced observation), or not (an 88

unsequenced observation). 89

This categorisation suggests an additional data type: the scheduled observation of 90

unsequenced cases, which corresponds to the removal of multiple individuals from the 91

infectious population at the same time, without incorporating them into the 92

reconstructed phylogeny. There are several benefits to being able to incorporate such 93

data. First, since epidemiological data are often given as a time series (instead of a 94

point process) this is arguably a more natural way to utilise occurrence data in the 95

estimation process [12]. The same could be said for the sequenced samples in instances 96

when multiple samples are collected on the same day [27]. The second benefit is 97

computational. Modelling observations as scheduled rather than unscheduled simplifies 98

the likelihood, because a single scheduled observation can account for multiple 99

unscheduled observations. As far as we are aware, scheduled unsequenced observations 100

have not been considered in any phylodynamic inference method. Below we describe the 101

sampling model formally and the method used to approximation of its likelihood, 102

TimTam. An implementation of this method is available from 103
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(https://github.com/aezarebski/timtam). 104

Phylogenetic Birth-Death Process 105

The birth-death (BD) process starts with a single infectious individual at the time of 106

origin, t = 0. Infectious individuals “give birth” to new infectious individuals at rate λ, 107

and are removed from the process either through naturally ceasing to be infectious (at 108

rate µ, often called the “death” rate), or through being sampled. Unscheduled sampling 109

of infectious individuals occurs at different rates depending on whether the samples are 110

sequenced (which occurs at rate ψ) or not (which occurs at rate ω). An illustrative 111

example of this process is shown in Panel A of Fig 1. Individuals can also be removed in 112

scheduled sampling events. Scheduled sampling occurs at predetermined times, during 113

which each infectious individual is independently sampled with a fixed probability: for a 114

sequenced sample each lineages is sampled with probability ρ and for an unsequenced 115

sample each lineage is sampled with probability ν. An illustrative example of the 116

process with both scheduled and unscheduled sampling is shown in Fig S1. We denote 117

scheduled sampling times ri for sequenced sampling and ui for unsequenced sampling, 118

and assume these times are known a priori, since they are under the control of those 119

observing the system. 120

Realisations of the process are binary trees with internal nodes corresponding to 121

infection events and terminal nodes representing removal events as shown in Fig 1 and 122

S1. We assume the edges of the tree are labelled with their length to ensure the nodes 123

appear at the correct depth. The tree containing all infected individuals is the 124

transmission tree (Fig 1A, and S1B). The subtree containing only the terminal nodes 125

corresponding to sequenced samples (both scheduled and unscheduled) is called the 126

reconstructed tree [39], (Fig 1C, and S1C). In practice, the topology and branch lengths 127

of the reconstructed tree are estimated from the pathogen genomes; here we assume 128

these are known a priori. 129

Trees can be summarised by their lineages through time (LTT) plot, which describes 130

the number of lineages in the tree at each point in time. We denote the number of 131

lineages in the reconstructed tree at time ti by Ki (Fig 1B). We define the number of 132

hidden lineages through time as the number of lineages that appear in the transmission 133
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tree but not in the reconstructed tree. The number of hidden lineages at time t is 134

denoted H(t), and for convenience as Hi at time ti. The types of data that we consider 135

can be thought of as a sequence of N events, E1:N , starting from the origin and moving 136

forward in time up to the present (ie the time of the last observation): 137

E1:N = {(∆ti, ei,∆Ki,∆Hi)}i=1...N with ∆ti denoting the time since the previous 138

observation (ie ∆ti := ti − ti−1) and ei describing the event that was observed at that 139

time: ei ∈ {λ-event, ψ-event, ρ-event, ω-event, ν-event}. The changes in the LTT and 140

number of hidden lineages at time ti are denoted ∆Ki, so Ki = Ki−1 −∆Ki, and ∆Hi, 141

so H(ti) = H(t−i )−∆Hi. 142

There are two important assumptions in the description above. The first is that once 143

and individual has been sampled they are removed from the infectious population. This 144

is a standard, though not universal, assumption and often justified by the fact that 145

sampling broadly coincides with receiving medical care, and hence taking care not to 146

spread the infection further. The second is that if there is a scheduled sample, it 147

contains either all sequenced samples or all unsequenced samples, ie there are no 148

scheduled samples with both sequenced and unsequenced observations. 149

The Likelihood 150

The joint conditional distribution of the process parameters, θ = (λ, µ, ψ, ρ, ω, ν), and 151

the number of hidden lineages at time tN , H(tN ), factorises as follows: 152

f(θ,HN | E1:N ) ∝ f(HN | E1:N , θ) f(E1:N | θ)︸ ︷︷ ︸
Likelihood

π(θ)︸︷︷︸
Prior

,

where f(HN | E1:N , θ) is the posterior distribution of the prevalence given θ which can 153

be used to obtain the posterior predictive distribution of the prevalence: f(HN | E1:N ). 154

The likelihood has a natural factorisation which corresponds to processing the data 155

from the origin through to the present: 156

f(E1:N | θ) =

N∏
i=1

f(Ei | E1:(i−1), θ) =

N∏
i=1

cili. (1)

Since the likelihood of each observation depends on the distribution of the number of 157

hidden lineages, the distribution of Ei depends on the whole history E1:(i−1). Each 158
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t0

ρ-eventν-event

Fig 1. Birth-death model of transmission and observation. The process can be
observed in several ways leading to different data types. (A) The transmission process
produces a binary tree (the transmission tree) where an infection corresponds to a
λ-event and a branch node and ceasing to be infectious corresponds to a µ-, ψ- or
ω-event and a leaf node. (B) The number of lineages in the transmission tree through
time, ie the prevalence of infection, and the number of lineages in the reconstructed tree,
known as the lineages through time (LTT) plot, K.. (C) The tree reconstructed from
the sequenced samples: ψ-events. The pathogen sequences allow the phylogeny
connecting the infections and the timing of λ-events to be inferred. The unsequenced,
ω-events form the point process on the horizontal axis. (D) Multiple ψ-events can be
aggregated into a single ρ-event, such as the one at time r2. This loses information due
to the discretization of the observation time, indicated by the dashed line segment. The
same approach is used to aggregate ω-events into a single ν-event, eg the observation
made at time u2.
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factor, f(Ei | E1:(i−1), θ), can be expressed as a product, cili, where ci is the probability 159

that no events where observed during the interval of time, (ti−1, ti), and li is the 160

probability that the event observed at the end of the interval is ei. 161

Let M(t, z) be the generating function (GF) for the distribution of H(t) and the 162

observations up until time t, 163

M(t, z) :=
∑
h

P(H(t) = h, E1:x : tx ≤ t)zh.

The likelihood is evaluated by traversing the data from the start of the process through 164

to the present, calculating the distribution of hidden lineages and the ci and li along the 165

way. 166

Consider a sequence of functions, Mi(t, z), which correspond to M(t, z) over the 167

intervals (ti, ti+1), up to a normalisation constant which ensures Mi(ti, 1) = 1. We 168

define the Mi with a system of partial differential equations (PDEs) derived using the 169

Master equations for the number of hidden lineages changes through time. 170

Mi(ti, z) = Fi(z)

∂tMi = (λz2 − γz + µ)∂zMi +Ki(2λz − γ)Mi,

(2)

where γ = λ+ µ+ ψ + ω and ∂x is used to indicate partial differentiation with respect 171

to the variable x. The number of lineages in the reconstructed tree, Ki, only changes 172

when there is a birth, or a sequenced sample and so is a constant over each interval. 173

The process starts with a single infected individual, so initially there are no hidden 174

lineages and consequently the initial condition on the first interval is M0(0, z) = 1. 175

Subsequent boundary conditions, Fi(z), are based on the solution over the previous 176

interval, Mi−1 and the event that was observed at time ti. 177

The solution to Eq (2), first given as Proposition 4.1 in [49], is 178

Mi(t, z) = Fi (p0(ti+1 − t, z))
(
p1(ti+1 − t, z)

1− z

)Ki

. (3)

The functions p0 and p1 are standard results describing the probability of an individual 179

and their descendents giving rise to exactly zero or one observation over a duration of 180
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length ti+1 − t; see [48] and the additional comments in the Appendix for further details. 181

Using Eq (3) the probability of not observing anything between times ti and ti+1, 182

and the probability generating function for the number of hidden lineages just prior to 183

the observation at ti+1 are 184

ci+1 = Mi(ti+1, 1) and Mi(z) := Mi(ti+1, z)/ci+1. (4)

The process of calculating li+1, the likelihood of observing Ei+1, and the next 185

boundary condition, Fi+1(z), the PGF of the number of hidden lineages at ti+1 is 186

carried out in two steps. First, we transform Mi to account for the observation of Ei+1 187

and evaluate the resulting expression at z = 1 to obtain li+1 (using the transformations 188

described below in Eq (5), (6), (7) and (8)). Second, we normalise the coefficients of 189

this GF to get the PGF of H(ti+1), which is the boundary condition, Fi+1(z), in the 190

PDE for Mi+1 in Eq (2). This process is repeated for each interval of time to get all the 191

ci and li in Eq (1). 192

We will now describe the transformations to Mi used to account for the observation 193

of Ei+1. Since λ- and ψ-events are only observed upon the reconstructed tree and do not 194

influence the number of hidden lineages, Mi is left unchanged when these are observed, 195

li+1 =


λ Ei+1 is a λ-event

ψ Ei+1 is a ψ-event

Fi+1(z) =Mi(z).

(5)

For an ω-event we need to shift the whole distribution of H and account for the 196

unknown number of hidden lineages that could have been sampled, this is achieved by 197

taking the partial derivative of the GF, which we denote by ∂z, as elaborated upon in 198

the Appendix. The likelihood of an ω-event is the normalising constant after the 199

differentiation: 200

li+1 = ω∂zMi(z)|z=1,

Fi+1(z) =
ω

li+1
∂zMi(z).

(6)

For a scheduled sampling event, at time ri+1 with removal probability ρ, we need to 201
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account for the survival of each of the H-lineages that were not sampled, those that 202

were, and the number of lineages in the reconstructed tree that were not removed during 203

this scheduled sampling. This leads to the following likelihood factor and updated PGF: 204

li+1 =
(1− ρ)

Ki+1ρ∆Ki+1

(∆Ki+1)!
Mi(1− ρ),

Fi+1(z) =
(1− ρ)

Ki+1ρ∆Ki+1

(∆Ki+1)!li+1
Mi((1− ρ)z).

(7)

The factor of 1− ρ in the argument of Mi is to account for the H-lineages that were 205

not sampled. The factors of (1− ρ)
Ki+1 and ρ∆Ki+1 come from the lineages in the 206

reconstructed tree that were not sampled (of which there are Ki+1), and those that 207

were sampled (of which there are ∆Ki+1). 208

Last, we include scheduled unsequenced samples, ie the observation and 209

simultaneous removal of multiple lineages without subsequent inclusion in the 210

reconstructed phylogeny. For Equations (6), we noted that a single ω-sampling event 211

corresponds to differentiating the PGF of H once. If at time ti+1 there is a scheduled 212

unsequenced sample where each infectious individual is sampled with probability ν, and 213

n lineages in total are sampled, then we must take the n-th derivative and accumulate a 214

likelihood factor for the removed and non-removed lineages of (1− ν)Kνn (assuming the 215

LTT at that time is K). We also have to scale z by a factor of 1− ν to account for the 216

H-lineages that were not sampled. Therefore, as in Equations (6) and (7), the 217

likelihood and updated PGF after a ν-sample are: 218

li+1 =
(1− ν)Ki+1ν∆Hi+1

(∆Hi+1)!
∂

∆Hi+1

ẑ Mi(ẑ)|ẑ=(1−ν)

Fi+1(z) =
(1− ν)Ki+1ν∆Hi+1

(∆Hi+1)!li+1
∂

∆Hi+1

ẑ Mi(ẑ)|ẑ=(1−ν)z,

(8)

where the use of ẑ has been used to make explicit the order of operations. 219

Evaluating the expressions above numerically typically requires truncating a system 220

of ordinary differential equations (ODEs) and solving them on each interval. This 221

operation has a complexity which is cubic in the size of the truncated system (as a 222

matrix exponential is required). [49] derives an approximation which has a quadratic 223

complexity, albeit by introducing a further approximation. Our TimTam approximation, 224

the main contribution of this paper, is as accurate as existing methods and has only a 225
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linear complexity. 226

An Analytic Approximation 227

Our analytic approximation, TimTam, can be described as simply replacing the PGF of 228

H with a more convenient PGF which describes a random variable with the same mean 229

and variance. Specifically, we use the negative binomial (NB) distribution. We note two 230

facts: first, we can evaluate the full PGF point-wise described above and, second, as 231

shown in the Appendix, the GF of the negative binomial (NB) distribution is closed (up 232

to a simple multiplicative factor) under partial derivatives and scaling of the parameter 233

z. Together, these mean we can construct a NB approximation of the PGF at any point 234

in the process and hence evaluate the resulting approximate likelihood and the 235

distribution of hidden lineages. Algorithmically, this method can be expressed in the 236

following steps: 237

1. Start at time ti with the PGF Mi and use Equation (3) to obtain Mi at time ti+1. 238

2. Calculate ci = Mi(ti+1, 1
−), the probability of not observing any events during 239

the interval (ti, ti+1). 240

3. Define the PGF Mi = Mi/ci and the PGF resulting from approximating it with a 241

NB distribution: M̃i. 242

4. Use M̃i to compute, li, the likelihood of observing Ei+1 and let Mi+1 be the PGF 243

of the number of H-lineages conditioning upon this observation (see Equations 244

(6), (7) and (8).) 245

5. Increment the log-likelihood by log (cili) and return to Step 1 with an 246

incremented i if there are remaining observations. 247

The steps involved require only the evaluation of closed form expressions and the 248

number of iterations is linear with the number of observed events. 249

Our use of a NB moment-matching approximation is not arbitrary. [50] observed 250

that the number of lineages descending from a single lineage has a zero-inflated 251

geometric distribution and the sum of independent and identically distributed geometric 252

random variables follows a NB distribution. Our approach of treating the number of 253
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lineages derived from n individuals as a NB random variable is somewhat motivated by 254

combining these two properties. Further support for our approximation is obtained by 255

considering an equivalent BD process, but with the modified total birth rate of λn+ a 256

where a is a small offset representing an immigration rate that leads to the removal of 257

the extra (unobservable) zeros. Such processes can be described by NB lineage 258

distributions at all times of their evolution and are stable to the inclusion of additional 259

event types. [19, 24]. 260

Origin time vs TMRCA 261

The definition of the likelihood above assumes the origin of the phylogeny, t0 in Fig 1, is 262

known or is a parameter to be estimated. This follows as we require the initial condition 263

M0(0, z) = 1. In practice the phylogeny will likely only be known up to the time of the 264

most recent common ancestor (TMRCA), t1 in Fig 1. We might account for this in one 265

of two ways. The first, and simplest, is to treat the origin time as an additional 266

parameter to be estimated. The second is to set a boundary condition at the TMRCA 267

and to estimate the distribution of hidden lineages at that point, H1. 268

If one were confident the outbreak had stemmed from a single initial case, then the 269

former method would be more suitable, especially if there was prior knowledge to 270

constrain the time of origin. On the other hand, if we faced substantial uncertainty 271

about how the outbreak began and sequencing was sparse, ie small ψ and ρ, then the 272

TMRCA may be considerably more recent than the origin time and estimating the 273

origin would be challenging. In this case, the latter approach may be more suitable. 274

This would involve estimating the distribution of HTMRCA and hence its GF 275

M1(tTMRCA, z), from the family of NB distributions. 276

Results 277

Model validation and computational complexity 278

We performed a simulation study to compare TimTam with the method from [49], 279

hereafter called the ODE approximation. The parameters used to generate a stratified 280

set of simulations are given in Table 1. The S1 Appendix provides a full description of 281
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the simulation and subsampling process used to generate these test data. Fig 2 shows 282

the value of the log-likelihood function evaluated using each method. Both methods 283

produce very similar log-likelihood values, with TimTam explaining 98% of the variation 284

in the ODE approximation values under a linear model. 285

Table 1. Parameters used for all simulated datasets.

Parameter Description Value
λ Birth rate 1.7
µ Death rate 0.9
ψ Sequenced sampling rate 0.05
ω Unsequenced sampling rate 0.25
ρ Scheduled sequenced sampling probability 0.5 at t = 6
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Fig 2. Likelihood comparison. Our TimTam approximation of the likelihood is in
good agreement with the existing ODE approximation [49]. Each point shows the values
of the log-likelihood computed using our approximation and the ODE approximation.
The solid line shows a least squares fit which has an R2 of 0.98, the grey dashed line
indicates parity, y = x.

To explore the computational complexity of TimTam, we measured how long it took 286

to evaluate the log-likelihood for each of the simulated datasets. Fig 3 shows that with 287

TimTam, the mean evaluation time grows approximately linearly with the size of the 288

dataset, ∝ n1.03, where the 95% confidence interval (CI) on the exponent is (1.02, 1.04). 289

In contrast, for the ODE approximation, the evaluation time grows approximately 290

quadratically, ∝ n2.38, (95% CI = 2.26, 2.50). Since the ODE approximation requires 291

specification of a truncation parameter, we obtained values for this parameter by 292

increasing its value until doing so further resulted in a change to the log-likelihood of 293

< 0.1%. The resulting truncation parameters are shown in Fig S2 in S1 Appendix. Full 294
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details of how the data were simulated, how the benchmarks were evaluated, and how 295

the truncation parameter was selected are given in the Supplementary Materials. 296

In addition to the improvement in computational complexity, average evaluation 297

times are orders of magnitude smaller for TimTam, which takes less than a millisecond 298

in comparison to several seconds for the ODE approximation for larger datasets. 299

However, we caution against over-interpreting the absolute computation times, since we 300

used Haskell to implement TimTam, whereas the implementation of the ODE 301

approximation, the same implementation used by [49], is a combination of C and 302

Python. The faster computation time may depend on the programming language used 303

as well as the algorithm. Nonetheless, the computational complexities of the respective 304

algorithms means that the TimTam approach will outperform the ODE approximation 305

for large datasets, regardless of the implementation. 306
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Fig 3. Log-likelihood evaluation time comparison. The time required to
evaluate our approximation, TimTam, scales better with the dataset size than the
existing ODE approximation. The scatter plots indicates the average number of seconds
required to evaluate the log-likelihood function for each dataset size. The left panel
contains the results using our approximation, which has times growing approximately
linearly with the dataset size. The right panel contains the results using the ODE
approximation, which has times growing approximately quadratically with the dataset
size. Solid lines show least squares fits. Note that the y-axes are on different scales.
The overall scaling factor (but not the exponent of the fitted model) may be
implementation dependent.
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Parameter identifiability and aggregation scheme 307

Having validated TimTam against the ODE approximation, we now showcase our 308

approach as an estimation scheme that merges all the data types considered in this 309

manuscript. We also explore the effect of aggregating unscheduled samples into 310

scheduled sampling events, looking at the accuracy and bias of the estimates when we 311

further obfuscate the data. 312

We first verified that, given a known death rate µ, the model parameters are 313

identifiable using a simulation that includes all four types of sampling events described 314

above. Fig S3–S9 of S1 Appendix show cross sections of the likelihood surface and 315

scatter plots of the posterior samples. We also show that the statistical power to 316

estimate model parameters increases with simulation length (and hence the size of the 317

dataset). Additional details of the simulation and estimation methods are given in S1 318

Appendix. 319

Next, we simulated a dataset using the rate parameters in Table 1 but with the 320

scheduled sampling probability set to zero, ie a simulation which only contains 321

unscheduled samples. The simulation was started with a single infectious individual and 322

stopped at t = 13.5. From the unscheduled observations a second dataset was derived, 323

this was done by aggregating the unscheduled observations into scheduled observations, 324

eg all the unscheduled sequences sampled during the interval (ta, tb] were combined into 325

a single scheduled sequenced sample at time tb (as illustrated in Fig 1D). This 326

aggregation reflects how cases may only be reported at particular temporal resolutions, 327

eg daily or weekly case counts. 328

The sequenced samples were aggregated into observations at t = 2.5, 3.5, . . . , 13.5 329

and unsequenced samples were aggregated at t = 2.4, 3.4, . . . , 13.4. In simulating these 330

data, only simulations that did not go extinct during the simulation period and had 331

1000–10000 events were used (as a way to avoid excessive run times and ensure that 332

there was a sufficient amount of transmission). Moreover, any simulations where the 333

simulated population decreased to only a single individual at any time after the first 334

infection were discarded, as this could result in the reconstructed tree having a 335

significantly younger TMRCA than the transmission tree. 336

Fig 4A and B shows the sequenced and unsequenced samples in the simulated 337
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Fig 4. Data aggregation example. The effect of aggregation on the dataset and
estimates of prevalence. (A) The LTT of the tree reconstructed from the unscheduled
sequenced observations. (B) The density of unscheduled unsequenced observations, ie a
point process of observations. (C) The LTT of the tree reconstructed from the
sequenced observations after aggregation into scheduled sampling events. (D) The
number of unsequenced observations aggregated into regular scheduled observations, ie
a time series of cases reported at regular intervals. (E) The total prevalence of infection
throughout the simulation is represented by the black line, the points and error bars
indicate estimates (and 95% credible intervals) of the prevalence at the present, colour
coded by the dataset used (green, unscheduled data; lilac, aggregated data). Fig 5
shows the marginal posterior distributions using each dataset.

dataset. Fig 4C and D shows the same dataset after aggregation. Fig 4E shows the 338

prevalence through time in the simulation and the corresponding estimates at t = 13.5 339

using the simulated and aggregated datasets, respectively. Fig 5 shows the marginal 340

posterior distributions of λ, and either ψ and ω, or ρ and ν depending on the dataset 341

used. 342

When estimating model parameters the death rate µ was fixed to the true value used 343

while simulating the data, since not fixing one of the parameters makes the likelihood 344

unidentifiable and estimates of µ may be obtained from additional data sources [4, 29]. 345

The posterior samples where generated via MCMC. Standard diagnostics were used to 346

test the convergence and mixing of the MCMC, (further details of the MCMC 347

diagnostics and visualisations of the joint distribution of the posterior samples are given 348

in S1 Appendix.) 349

While prevalence estimates from both the original unscheduled and aggregated 350

datasets are overlapping and contain the truth, aggregation leads to underestimating 351

the birth rate. This bias is likely due to the aggregation scheme used (see S1 Appendix 352
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Fig 5. Posterior distributions. Given the death rate, µ, the posterior distributions
for both datasets shown in Fig 4 have well-defined maxima. The charts show the
marginal posterior distributions of parameters using either the unscheduled samples
(top row, green) or the scheduled samples post aggregation (bottom row, lilac). Filled
areas indicate 95% credible intervals. Vertical dashed lines indicate true parameter
values where they exist (Table 1). There are no vertical lines for the scheduled
observation probabilities because they are not well defined for this simulation.

for further commentary). Moreover, the sequenced sampling rate is underestimated 353

when using the unscheduled dataset. We conjecture that this is due to there being 354

roughly five times fewer sequenced than unsequenced samples. Although the true values 355

for the sampling probabilities estimated from the aggregated dataset are not known, the 356

ratio between the two parameters is similar to the ratio between the unscheduled 357

sampling rates. 358

Repeated simulation to test credible interval coverage 359

Fig 6 (top panel) shows the 95% credible interval (CI) and point estimate (posterior 360

median) of the basic reproduction number, R0 = λ/(µ+ ψ + ω), for each of 100 361

simulation replicates. The simulation parameters used are the same as those used to 362

simulate the data shown in Fig 4. The estimates are sorted according to the estimated 363
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R0 value. Of the 100 replicates, 87 have a CI containing the true R0. The Appendix 364

contains some commentary on the level of coverage that is expected. 365

Fig 6 (bottom panel) shows the 95% CI and point estimate (posterior median) of the 366

relative bias in the estimate of the prevalence in each replicate (ie the proportion by 367

which the estimate differs from the true prevalence in that particular replicate; for an 368

estimate θ̂ of θ, this is (θ̂ − θ)/θ). The relative bias is used rather than the bias because 369

the true prevalence varies substantially across replicates making it difficult to compare 370

them. In this figure the replicates in the top and bottom panels are in the same order. 371

Of the 100 replicates, 64 have a CI containing the true prevalence at the end of the 372

simulation (and hence cross 0). 373

Analogous estimates were performed for the aggregated data (generated using the 374

process described above). It appears that the aggregation introduces a systematic bias 375

towards underestimation of the birth rate. The estimates of the prevalence at the 376

present are similarly unbiased for the aggregated data, although the CI coverage is 377

lower. Full results are presented in S1 Appendix. 378

Discussion 379

We have described an analytic approximation, called TimTam, for the likelihood of a 380

birth-death-sampling model which can also describe scheduled data ie cohort sampling 381

or reporting at predetermined times. TimTam can analyse both sequenced and 382

unsequenced samples, ie the observations can represent sequences that are either 383

included in the reconstructed tree, or observed infections that are not sequenced 384

(occurrence data). Our approach generalises previous birth-death estimation 385

frameworks [47,49,51] by accommodating and exploiting more data types than 386

previously considered and makes it feasible to analyse very large datasets. 387

Our work is a step towards more flexible time series-based approaches to 388

phylodynamics, in which multiple sequences are processed concurrently as elements of a 389

time series. This extends the more common point-process based paradigm, in which 390

samples are considered individually. TimTam also provides an estimate of the 391

distribution of the prevalence of infection, allowing both the estimation of summary 392

statistics, such as R0, and the total number of cases. Comparison with existing 393
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algorithms on small-to-moderate sized datasets suggests it faithfully represents the true 394

likelihood function. 395

At present, we cannot provide rigorous bounds on the error introduced by this 396

approximation (although work is underway on this). Based on our simulation study, the 397

credible intervals under this likelihood (with an improper uniform prior) slightly 398

underestimate the level of uncertainty in the estimates of the basic reproduction number 399

and the prevalence of infection. Although, as discussed, this is not surprising given 400

these are credible intervals rather than confidence intervals. 401

Based on work from [50], we conjecture that if the probability of extinction becomes 402

large, the zero inflation in the geometric distributions describing the number of 403

descending lineages might become an issue. Since our focus is on large datasets 404

describing established epidemics, we expect that this situation will rarely arise in 405

practice. Additionally, as the death rate increases, the power of birth-death models as 406

an inference tool is naturally limited by a lack of data [35, 36]. If this method is applied 407

to small outbreaks or, when the reproduction number is low, sensitivity analyses will be 408

necessary to check the fidelity of the negative binomial approximation. 409

Our work echoes the frameworks of [51] and [49], but trades some generality for 410

simplicity and tractability. Specifically, [51] presented a particle filtering method that 411

can be applied more generally, while [49] derived a complete posterior predictive 412

distribution of prevalence over time, which allows the study of historical transmission. 413

Another limitation of our approach, which is common to many models, is to neglect 414

sampled ancestors, ie individuals who have been observed but remain in the infectious 415

population [47,49,54]. While the former can describe a greater variety of birth-death 416

processes and the latter can be used to estimate additional properties of the process, the 417

scalability of both frameworks are limited by the computational burden. 418

Our approximation provides a computationally efficient method for handling diverse 419

data types (such as data aggregated to a daily or weekly resolution) that is scalable to 420

large datasets. We also introduce an aggregation scheme that radically reduces the 421

computational burden with only a modest expense to the accuracy. The improvement in 422

performance stems from the resulting likelihood computation scaling by the number of 423

aggregated intervals, proportional to epidemic length, rather than the epidemic size. In 424

many real epidemic scenarios data are only reported at a particular temporal resolution 425
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and in such scenarios this aggregation reflects the best-case for inference. As the 426

availability of phylogenetic data (derived from sequences or contact-tracing) increases 427

and the size of these data grows, such approximation schemes will become increasingly 428

valuable. 429

Supporting information 430

S1 Appendix. Additional details of the approximation scheme and 431

computational methodology. This document provides additional details regarding 432

the derivation of the approximation scheme and provides additional detail on the 433

simulation and benchmarking computations. 434
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Fig 6. Simulation study results. The bias in the estimators of the basic
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value used in the simulation, 1.42, which is indicated by the horizontal dashed line. The
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credible intervals. The corresponding intervals using the aggregated data are shown in
Figures S8 and S9. The solid horizontal lines indicate the mean of the point estimates.
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