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Abstract 

Background: As knowledge of mechanisms that drive the development of cancer grows, there 

has been corresponding growth in therapies specific to a mechanism. While these therapies show 

improvements in patient outcomes, they can be expensive and are effective only for a subset of 

patients. These treatments drive interest in research focused on the assignment of cancer 

therapies based on aberrations in individual genes or biomarkers that assess the broader 

mutational landscape, including microsatellite instability (MSI) and tumor mutational burden 

(TMB).  

Methods: Here we describe the TruSight™ Oncology 500 (TSO500; Research Use Only) 

bioinformatics workflow. This tumor-only approach leverages the next-generation sequencing-

based assay TSO500 to enable high fidelity determination of DNA variants across 523 cancer-

relevant genes, as well as MSI status and TMB in formalin-fixed paraffin-embedded (FFPE) 

samples.  

Results: The TSO500 bioinformatic workflow integrates unique molecular identifier (UMI)-

based error correction and a dual approach variant filtering strategy that combines statistical 

modeling of error rates and database annotations to achieve detection of variants with allele 

frequency approaching 5% with 99.9998% per base specificity and 99% sensitivity in FFPE 

samples representing a variety of tumor types. TMB determined using the tumor-only workflow 

of TSO500 correlated well with tumor-normal (N =170, adjusted R2=0.9945) and whole-exome 

sequencing (N=108, adjusted R2=0.933). Similarly, MSI status determined by TSO500 showed 

agreement (N=106, 98% agreement) with a MSI-PCR assay.  

Conclusion: TSO500 is an accurate tumor-only workflow that enables researchers to 

systematically characterize tumors and identify the next generation of clinical biomarkers. 
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Background 

It is well established that cancer is a diverse group of diseases resulting from genetic changes 

that facilitate aberrant and uncontrolled cellular proliferation. Indeed, as the number of known 

cancer-related genes and understanding of their mode of action grows, there has been a 

progressive shift towards assigning therapies based on the gene variants present in the tumor of a 

patient. The growing understanding of the role of genetics in cancer has been enabled by 

advancements in next-generation sequencing (NGS) technologies that have made the assessment 

of tumor-related gene alterations easier and more economically feasible. As the number of gene-

based therapies and the evidence supporting their increased efficacy grows, there is rising 

demand for solutions that enable the development of accurate biomarkers that can identify 

patients most likely to benefit from these therapies in a personalized manner. Biomarkers range 

from variants in individual genes (eg. BRAF V600E, EGFR) (1-4) as well as others that take into 

account the broader mutational landscape of a tumor. 

Detecting genetic variants in tumors can be difficult due to technical artifacts associated with 

FFPE samples, which are routinely used in translational research settings. The FFPE process can 

introduce DNA damage such as deamination (5). Additionally, the amount of tumor content may 

be a small fraction of the total FFPE sample, and so variants of interest may occur at low 

frequencies. The detection of somatic variants is further complicated by the high frequency of 

germline variants (hundreds of mutations per megabase) relative to somatic variants (tens of 

mutations per megabase) and technical artifacts (over one thousand per megabase) (5-8). While 

germline variants can be identified by sequencing matched tumor/normal samples, this 

considerably increases the cost of using NGS for tumor profiling, which remains an important 

consideration for translational researchers (9). 

Microsatellite instability (MSI) status determined using immunohistochemistry (IHC) and 

polymerase chain reaction (PCR), was the first tissue site-agnostic biomarker approved by the 

United States Food and Drug Administration for use in selecting patients for immunotherapy. 

(10,11). Microsatellites are small regions, tens to hundreds of bases in length, of short repeating 

DNA motifs (1-9 nucleotides). Microsatellite instability is an increase or decrease in the number 

of these repeats resulting from a mutation in one of the mismatch repair genes - MLH1, MSH2, 
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MSH6 and PMS2 (12,13). Le et al (14,15) were the first to report that mismatch repair-deficient 

colorectal cancer patients, identified by MSI status, responded better to checkpoint inhibitors. 

Immunohistochemistry and PCR are established technologies for assessing MSI status (16,17). 

PCR approaches typically measures the length of five loci, which were first recommended by the 

Bethesda panel, in the tumor as well as matched normal tissue (16). IHC assays measure the 

protein level of the mismatch repair genes. Emerging NGS methods for determining MSI status 

assess many more microsatellite loci than PCR, which improves sensitivity and does not require  

a matched normal sample (18). 

The prevalence of MSI varies between cancers and there are some cancer types that are mostly 

microsatellite stable, indicating a need for additional biomarkers to complement MSI status (19). 

Tumor mutational burden (TMB), which reflects the number of tumor mutations per megabase 

(Mb) of DNA, has been proposed as an additional biomarker. Studies have shown a correlation 

between higher TMB and the effectiveness of checkpoint inhibitor immunotherapies.(20-22) The 

current gold standard for determining TMB is whole exome sequencing (WES), but uptake is 

limited by the cost and long turn-around-time (23). Thus, there is significant interest in the use of 

targeted panels to determine TMB. There are a number of key factors that influence TMB 

calculation: panel size and composition, read depth and coverage, assay limit of detection (LoD), 

and the accuracy of the variant calls (24). Studies have shown that panels over 1 Mb are 

generally suitable for TMB determination (24,25). With smaller panels, the confidence intervals 

are too large at lower TMB values (0-30 mutations/Mb) to allow clear distinction between TMB 

low and TMB high samples. At present there is no established consensus around thresholds for 

TMB-based therapy selection. Further, the process by which TMB is calculated is not 

standardized and the bioinformatics behind different commercial assays are a veritable black 

box. 

Here, we describe the bioinformatics workflow of TruSight™ Oncology 500 (TSO500), a pan-

cancer NGS assay covering 523 cancer-relevant genes (1.94 Mb) that enables determination of 

DNA and RNA somatic variants as well as the immuno-oncology relevant biomarkers, MSI and 

TMB, from a FFPE tumor sample only. The TSO500 bioinformatic workflow leverages unique 

molecular identifier-based error correction and a statistical model of error rates to suppress 

technical noise arising from sequencing and FFPE artifacts. To exclude germline variants, the 
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TSO500 workflow uses a database in combination with information about proximal variants. 

These combined strategies allow the TSO500 workflow to achieve high specificity and 

sensitivity for detecting variants with low allele frequencies in FFPE samples. Exclusion of 

technical noise and germline variants also enables TSO500 to determine MSI status and TMB 

scores that are highly concordant with gold standard approaches. 

Methods  

Sequencing 

FFPE samples from a total of 170 patients, and included a range of tumor types: colon, gastric, 

lung, melanoma, uterine, and endometrial. DNA was extracted using the QiAMP DNA FFPE 

Tissue Kit (QIAGEN). Manufacturer recommendations were followed for quantitative and 

qualitative evaluation of DNA quality. Nucleic acids were quantified using a Qubit (Invitrogen, 

Carlsbad, CA). DNA quality was assessed by a Nanodrop spectrophotometer, with an OD 

260/280 value between 1.7 and 2.2 considered acceptable. All samples had at least 40 ng/uL of 

input DNA. 

Library preparation was performed using the hybrid capture-based TruSight Oncology 500 

Library Preparation Kit (Illumina, San Diego, CA) following the manufacturer’s protocol. DNA 

was fragmented to 90 to 250 bp, with a target peak of around 130 bp. Samples then underwent 

end repair and A-tailing. Next, adapters containing UMIs were ligated to the ends of the DNA 

fragments. After a purification step, the DNA fragments were amplified using primers to add 

index sequences for sample multiplexing (required for cluster generation). For TSO500 samples, 

two hybridization/capture steps were performed, and only one hybridization and capture step was 

performed for WES samples. First, either a pool of oligos specific to the 523 genes targeted by 

TSO500 (TSO500 samples) or probes from the IDT xGen Exome panel (WES samples) were 

hybridized to the prepared DNA libraries overnight. Next, streptavidin magnetic beads (SMBs) 

were used to capture probes hybridized to the targeted regions. The hybridization and capture 

steps were repeated using the enriched DNA libraries to ensure high specificity for the captured 

regions. Primers were used to amplify the enriched libraries before purification using sample 
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purification beads. The enriched libraries were quantified and each library was normalized to 

ensure a uniform representation in the pooled libraries.  

Finally, the libraries were pooled, denatured, and diluted to the appropriate loading 

concentration. TSO500 libraries were sequenced on a Illumina NextSeq™ 550Dx with a read 

length of 2x101 bp. Up to 8 TSO500 libraries were sequenced per run. WES libraries were 

sequenced on an Illumina NovaSeq™ 6000 using 2x101 bp reads using the NovaSeq Xp 

workflow. Six WES libraries were sequenced per flow cell lane for a total of 24 samples per run 

(S4 flow cells). 

WES alignment and variant calling 

Reads were first mapped to the hg19 genome using the Burrows-Wheeler Aligner (26,27). Next, 

duplicate reads were marked on the basis of the soft-clip adjusted position and orientation of 

each read. For a set of duplicate reads, the read with the highest total base quality score was 

selected as the representative read. Using paired tumor and normal samples, somatic and 

germline variants were called using Strelka2 with the “--exome” option enabled and default 

values for all other parameters (28). Both germline and somatic variants were then annotated 

using Nirvana (29). 

TSO500 alignment and variant calling 

A diagram of the TSO500 bioinformatics pipeline is provided in Figure 1; quality control 

metrics are shown in Supplemental Table 2. Data analysis begins with an initial DNA 

alignment to the hg19 genome using the Burrows-Wheeler Aligner. Next using non-random 

unique molecular identifiers (NRUMIs), duplicate reads are collapsed to reduce PCR and 

sequencing errors. In the meantime, read collapsing increases the base quality of real low 

frequency variations, leading to high sensitivity to call low frequency mutations. The NRUMIs 

used in TSO500 were designed with a pair-wise edit distance of at least 3, which allows error 

correction of the UMI itself with up to 2 mismatches/indels. Due to A-tailing during library 

preparation, there would be a lack of nucleotide heterogeneity at the attachment point if a single 

length UMI was used, so the method uses variable length UMIs (6 and 7-mers) to increase 

nucleotide heterogeneity: the 7th base is T for all 6-mers, and for the 7-mers the 7th base is never 
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T. NRUMIs are designed to have a 3bp edit distance between any pair, and so any 1bp error 

within a NRUMI sequence can be corrected. Families of duplicate reads are identified on the 

basis of both their aligned position and having matched NRUMIs, which are added to both ends 

of DNA molecules during sequencing library preparation. Duplicate read families are then 

collapsed into a single consensus sequence. Collapsed sequences supported by reads from both 

the forward and reverse strand are denoted as duplex sequences, whereas sequences supported by 

reads from just one strand are denoted as simplex sequences. 

NRUMI collapsed sequences are then indel realigned and stitched together into a consensus 

fragment using Gemini (30). Stitching further improves per base accuracy and quality and allows 

for a more accurate calculation of coverage in the overlapping region between read pairs. Reads 

ending near detected indels are realigned to remove alignment artifacts. Somatic variant calling 

is then performed using Pisces (31) to identify candidate variants. Variants that do not overlap a 

region targeted by the TSO500 assay are removed. Post-processing of the small variant calls 

removes variants that have error rates below quality thresholds (described in the following 

section). The final set of variants is then annotated using Nirvana (29).  

Technical noise suppression 

To achieve high fidelity in variant calls, a base-change specific variant filtering algorithm is 

applied to remove recurrent artifacts and FFPE deamination artifacts. For each variant of interest, 

background noise at the same site is estimated from ~60 normal FFPE samples profiled by 

TSO500 assay. Using a binomial distribution to model the background noise level, we then test 

the significance of each observed mutant allele depth given the total depth and convert the p-

value to a variant quality score (AQ) as -10*log10 (p-value). In addition, the error rate of each 

nucleotide change is estimated for each support category – duplex sequences (sequences 

supported by both the forward and reverse strand), simplex sequences originating from forward 

strand, and simplex sequences originating from reverse strand - in each sample by using all the 

positions with an allele frequency less than 5%. Supplemental Figure 1 shows that the error rate 

can vary considerably depending on support category and nucleotide change. The error rate is 

calculated as the total mutant reads divided by total depth. For variants of interest, a likelihood 

ratio score (LQ) is calculated as follows: 
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Likelihood ratio (LQ) = -10*log10 (
 ���������� 	�
���
�� 
������ �� �� ����� � ��, ����� ����� 

���������� 	�
���
�� 
������ �� � �������� � ��,����
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For variants with a Catalogue of Somatic Mutations in Cancer (COSMIC) (32) count > 50, the 

LQ and AQ thresholds are 20 and the remaining sites are 60. 

Germline variant filtering 

To calculate TMB, germline variants are removed through a strategy that leverages information 

from public databases combined with the coverage and allele frequency of variants in the same 

region. The database filter uses information about observed variation from multiple population 

groups to filter common germline variants. Variants that have an observed allele count of N 

(where the pipeline default is 10) or more in either the 1000 genome, gnomAD exome, or 

gnomAD genome database, are filtered out (Supplemental Figure 2) (33,34).  

Database strategies alone are not sufficient for filtering out private germline mutations in each 

individual. For variants remaining after database filtering, we apply an additional filter, which 

uses the allele frequency of proximal known germline variants to determine whether a variant is 

likely a germline variant. For a given variant, we identify variants on the same chromosome with 

an allele frequency within the greater of 2 standard deviations (assuming a binomial distribution 

using coverage and allele frequency of the given variant) and 0.05. If there are more than 5 

variants total and more than 95% of them are found in the germline database, then the variant of 

interest is considered to be likely germline. Additionally, variants with an allele frequency ≥ 90% 

are labeled as likely germline. In Supplemental Figure 2, we show the proximal variants 

(circled variants) that are within allele frequency 0.05 (black bars) for a germline variant not 

filtered using database allele counts. This is a simple yet effective approach that accounts for 

both unfiltered variants in expected germline frequency ranges and germline variants with allele 

frequency shifts due to copy number variant (CNV) events. One caveat of proximity filter is that 

it may filter out real somatic mutations when the tumor purity is extremely high (>=80%), 

leading to under-estimation of tumor mutational burden (TMB). We also note that germline 

filtering is for the purpose of TMB estimation. The classification of germline versus somatic is 

not perfect, and it is not meant for identification of somatic mutations per se.  
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Tumor mutational burden  

TMB metrics are calculated following small variant calling. TMB is the ratio of the number of 

eligible variants (mutations) to eligible DNA regions (Mb). Eligible variants (numerator) include 

only coding variants with a frequency of ≥ 5% and coverage ≥ 50 reads. Single-nucleotide 

variants (SNVs) and indels are included, but multi-nucleotide variants (MNVs) and variants with 

a COSMIC count of ≥ 50 are excluded. Variants in blacklisted regions with poor mappability are 

also excluded. For the denominator, all eligible coding regions (with coverage ≥ 50x) are 

included, except for the blacklist regions. The TSO500 bioinformatics workflow outputs both the 

TMB score and details of the variants that are included in the TMB calculation. 

Microsatellite instability status.  

TSO500 determines microsatellite instability status from stitched reads from a tumor sample 

only. Unstable microsatellite sites are detected by assessing the shift in the length of a 

microsatellite site for a tumor sample against a set of normal baseline samples. First, the baseline 

Jensen-Shannon distance, �, is calculated for each pair of baseline samples i, � yielding ��,� . 

Next, Jensen-Shannon distance is calculated between the tumor sample � and each baseline 

sample, yielding ��,�. These two distributions are then compared using a one-sided t-test under 

the null hypothesis ��,� � ��,� . Sites with � < 0.01 and ��,� ���,� � 0.01 are reported as 

unstable. We require that each MSI site assessed have at least 60 full-spanning reads. The 

proportion of unstable MSI sites to total assessed MSI sites is reported as a sample-level 

microsatellite score, MSI score = 
    ���
�� �� �����
��  !" �����     

#���� ��������  !" �����
. We require at least 40 sites to be 

assessed to determine a MSI score. 

To ensure that microsatellite instability can be assessed in a wide range of tumor types, the 

TSO500 assay initially targeted 175 noncoding homopolymer regions. We observed that certain 

homopolymer regions tended to test as unstable more frequently for samples with a particular 

ethnic background. Using all sites, we observe that African samples tended to have considerably 

higher MSI scores in comparison to samples from other ethnic backgrounds (Supplemental 

Figure 4, n=101 European, n=23 East Asian, n=10 African, and m=6 Hispanic). After exclusion 

of sites that showed an ethnicity bias, we observe more comparable MSI scores for samples with 
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different ethnic backgrounds. To ensure robust MSI status calculation, we also exclude sites with 

low sequencing coverage. Using these two criteria for site selection, we assess a total of 130 

noncoding homopolymer regions to determine MSI status.  

Results 

Technical sequencing noise suppression 

High accuracy biomarker calculation is dependent on high-accurate sequencing, alignment and 

variant calling. The TSO500 assay integrates UMIs for error correction, allowing for suppression 

of PCR duplicates and sequencing errors, while preserving DNA molecules supporting low 

frequency variants. Figure 2 presents consolidated error rates before and after UMI read 

collapsing for 170 normal FFPE samples. We observe a systematic reduction in error rates across 

all samples that is independent of overall sample error rate. The mean error rate for all bases in 

the panel was 0.074% before condensing and 0.032% after condensing. UMI based error 

correction performance improved with greater family depth (Supplemental Figure 3). Mean 

family depth was 4.788 across all samples. 

UMI based read collapsing suppresses sequencing error, but there are additional sources of false 

positive calls that are quality-dependent and/or caused by DNA damage. For example, 

deamination (C:G→T:A) and oxidation (C:G→A:T) events were observed with varying rates 

depending on the strand and whether a read was simplex or duplex (Supplemental Figure 1). 

Therefore, we use normal FFPE samples to estimate the background noise at each base and 

model the confidence of each variant call. We also calculate the error rate of each nucleotide 

change for each sample to estimate a sample-specific error profile (see methods). Using the 

sample-specific error profile, we calculate a sample-specific variant calling threshold, allowing 

us to achieve comparable variant calling performance between samples of varying quality. By 

comparing the likelihood that a variant occurs at a given position against the likelihood that an 

error has occurred at a given position, we can further eliminate low quality, false positive variant 

calls. Figure 3 gives the distribution of total false positive variant calls for 170 normal FFPE 

samples across the entire 1.94 Mb TSO500 panel; overall, we achieve specificity > 99.9998% in 

these samples.  
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To estimate our limit of detection and sensitivity for small variant calling, we performed a series 

of dilution experiments using 10 FFPE tissue samples and 4 commercial reference standards. 

Variant allele frequencies (VAFs) for 35 variants were determined in undiluted samples using 

digital droplet PCR and ranged from 21-78%. These samples were then diluted so that VAFs 

ranged as low as 1-2% and that the majority of variants had VAF � 6%. Summary statistics for 

our variant calling performance in these diluted samples are shown in Table 1. For variants with 

VAF of 5
2.5% we achieve sensitivity of 99%. 

Germline variant filtering 

As TSO500 is a tumor only workflow, our variant calling algorithms cannot exclude germline 

variants by using information from a matched normal sample. Instead, identification of germline 

variants is accomplished by using information from public databases of germline variants (33,34) 

and a second line proximity filter. By excluding variants that appear more than 10 times in public 

databases, we were able to identify, on average, 99.73% of the coding region variants as 

germline variants in each sample; germline variants were verified by assaying the matched 

normal samples using with TSO500. (33,34). While database filtering is effective, a median of 4 

germline variants, not represented in databases, remained unfiltered in our set of 170 tumor 

samples. And so, we applied an additional filter that uses the database information of proximal 

variants (see methods). After applying the proximity filter, the number of remaining germline 

variants in each sample, germline residuals, was further reduced to a median of 1 per sample 

(Figure 4). We calculated and compared TMB scores for each sample using the tumor sample 

only and using both the tumor and normal sample. The high correlation of the tumor-only TMB 

values with the matched tumor-normal values (adjusted R2 = 0.9945) further demonstrates the 

effectiveness of our germline filters and highlights that our tumor only workflow can accurately 

estimate TMB (Figure 5A).  

Tumor mutational burden using tumor sample only 

Given the formulation of TMB, high quality alignment and variant calling with TSO500 should 

enable robust TMB calculation. The net effect of UMI based read collapsing and technical noise 

and germline variant filtering is a reduction in false positive variants in a typical FFPE sample 
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from approximately 1500/Mb to < 5/Mb. To assess whether this reduction in false positives 

translated into reliable TMB values concordant with WES sequencing, we re-processed 108 out 

of 170 of our samples with whole exome sequencing (matched tumor-normal samples) and 

calculated the nonsynonymous TMB, which is the typically reported TMB value for WES data 

(35-37). We then compared the WES tumor-normal TMB values with TSO500 tumor-only TMB 

values (by default TSO500 uses both coding SNVs and Indels regardless of functional impact, 

total TMB), observing a high correlation between the two sets of TMB values (adjusted 

R2=0.933, Figure 5B). We observe that TSO500 TMB values tend to be elevated relative to 

WES TMB (intercept=3.201), which is likely attributable to the use of total TMB instead of only 

nonsynonymous variants for WES. Similarly, the elevated slope of the best fit line (1.36) is 

attributable to the same reason.  

We next assessed the reproducibility of TSO500 tumor-only TMB scores. Four FFPE samples 

and four commercially available control samples were selected to be assayed across a variety of 

conditions. Using each of these eight FFPE samples, three operators generated libraries using 

three lots of reagents, three sets of instruments with each combination of reagents in duplicate, 

totaling to 36 technical replicates per sample. Across all eight samples, we observed highly 

similar values across all operators and conditions (Supplemental Figure 6); the mean coefficient 

of variation across all samples was 0.0567. 

Microsatellite instability status using tumor sample only 

The TSO500 bioinformatics workflow leverages UMI error-corrected stitched reads to determine 

MSI status from a tumor sample only. To ensure that TSO500 can determine MSI status in a 

wide range of tumor sites, a total of 130 noncoding homopolymer regions are assessed for 

microsatellite instability. We also specifically exclude sites demonstrating an ethnicity bias 

(Supplemental Figure 4). To enable a tumor-only determination of MSI status, TSO500 uses an 

information theory-based approach that compares the distribution of site differences between the 

tumor sample and a panel of normal samples with the distribution of differences between 

samples within the panel of normal (see methods). From our initial set of 170 FFPE samples, we 

assayed 106 samples for MSI status using an MSI-PCR assay commercially available from 

Promega that assess five mononucleotide sites (Figure 6). Using a MSI score cutoff to separate 
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MSI-high from MSI-stable samples, the TSO500 MSI score showed 98% overall agreement with 

MSI-PCR (Supplemental Table 3).  

To examine the reproducibility of determining MSI status using the tumor only workflow of 

TSO500, we performed a total of 36 technical replicate experiments for eight samples (four 

FFPE samples and four commercially available controls). Each sample was processed by three 

operators who used three lots of reagents and three sets of instruments to perform each 

experiment twice. We observed robust MSI scores across all operators and conditions 

(Supplemental Figure 7) and the mean standard deviation across all samples was 0.0196. 

Discussion 

The treatment of cancer is moving towards the assignment of treatment based on the genetic 

attributes of an individual patient’s tumor. Given the wide landscape of cancerous genetic 

aberrations and treatments specifically targeting a specific mechanism, there is a pressing need 

for cost effective methods to systematically characterize a tumor. Here we present the 

bioinformatics solutions of TSO500, a cost-effective tumor only pan-cancer NGS assay, which 

enables the identification of a range of DNA variant types (including SNVs, MNVs, indels, and 

complex indels), as well as the determination of MSI and TMB. We describe the bioinformatic 

algorithms underlying our error correction, variant calling, and determination of biomarkers 

using a tumor sample only. In addition to showing that tumor only analysis with TSO500 enables 

accurate tumor variant calls, we also demonstrate that biomarker metrics reported by TSO500 are 

highly concordant with gold standard methods and are highly reproducible. Our bioinformatics 

solutions are available as Linux containers (Docker and Singularity images, 

support.illumina.com/sequencing/sequencing_kits/trusight-oncology-500/questions.html), which 

enables on-premise software deployment when security is a high priority or when bioinformatics 

expertise is not readily available (38).  

The tumor-only workflow of TSO500 is designed to be effective for research applications today, 

as well as for the development of future applications. TSO500 enables research into emerging 

biomarkers such as MSI and TMB status. TMB has been demonstrated to be useful for 

determining the success of checkpoint inhibitor immunotherapies in NSCLC patients (20-22). 
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Similarly, there is evidence that MSI status may identify CRC patients that respond better to  

checkpoint inhibitor immunotherapies (14,15,39). Despite the promise of these biomarkers, we 

note that the National Comprehensive Cancer Network (NCCN) guidelines for using these 

biomarkers are still emerging, partly because methods for determining these biomarkers are still 

emerging (40). Here, we fully describe the algorithms underlying our TMB and MSI calculations 

to enable further research and development of these biomarkers. Furthermore, data from the 

TSO500 workflow represents a systematic interrogation of the mutational landscape of a tumor 

and can be leveraged to develop future biomarkers. We are in the process of developing an in 

vitro diagnostic (IVD) based on TSO500 content. This IVD is anticipated to have the same 

technical capabilities described here and will enable clinical application of this technology. 

We envision several additional applications using TSO500. Several variant types not described 

in detail here – including RNA variants, copy number variation, and splice variants - can also be 

detected using TSO500. These additional variant types may contribute to future biomarkers as 

research progresses (41-44). We are also developing a circulating tumor DNA (ctDNA) version 

of TSO500 because there is increasing evidence that supports the use of liquid biopsies, and 

specifically the analysis of ctDNA, to diagnose and monitor the treatment of cancer patients (45-

50). Next-generation sequencing enables characterization of each patient’s tumor to a level not 

previously achievable, and we expect that these technologies will accelerate progress towards the 

implementation of precision medicine in oncology. 

Conclusion 

TSO500 is an accurate tumor-only workflow that enables researchers to systematically 

characterize tumors and identify the next generation of clinical biomarkers. We envision the 

broader adoption of comprehensive genomic profiling panels like TSO500 will further help 

advance precision medicine. 
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Table 1. Summary statistics for limit of detection for small DNA variants. Abbreviations: MNV 
= multi-nucleotide variant, SNV = single-nucleotide variant, VAF = variant allele frequency. 

Expected VAF* Variant Type 
Called Samples / 
Total Samples 

Sensitivity (%) 

10.0% ± 2.5% 

SNV 18/18 100.0 

Insertion 4/4 100.0 

Deletion 4/4 100.0 

Complex Indel 10/10 100.0 

All 36/36 100.0 

5.0% ± 2.5% 

SNV 433/434 99.8 

MNV   4/4 100.0 

Insertion 25/26 96.2 

Deletion 104/108 96.3 

Complex Indel 10/10 100.0 

All 576/582 99.0 
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Figure 1. TSO500 bioinformatic workflow for variant calling and biomarker calculation . 

Abbreviations: Indel = insertion/deletion, MSI = microsatellite instability, TMB = tumor 

mutational burden, UMI = unique molecular identifier.  
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Figure 2. Reduction in error rates using unique molecular identifiers. Sequencing error rates for 

170 normal FFPE samples before and after condensing reads using unique molecular identifiers.  
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Figure 3. Distribution of the number of putative false positive variant calls in 170 normal FFPE 

tissue samples. The vertical axis gives the number of samples. 
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Figure 4. Reduction in putative germline variants using the proximity filter for 170 tumor FFPE 

tissue samples. Germline variants were determined by comparing to a matched normal FFPE 

tissue sample. The horizontal axis gives the number germline variants remaining either after 

database filtering only or after database and proximity filtering. The vertical axis gives the 

number of samples. 
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Figure 5. Comparison of TSO500 tumor-only TMB values to tumor-normal TMB values. 

A.  TMB values using the TSO500 workflow are shown for 170 Tumor-Normal pairs. Tumor-

only TMB is strongly correlated with Tumor-Normal TMB in formalin-fixed, paraffin-embedded 

tissue samples (adjusted r2 = 0.9945). B. TMB values are shown for 108 Tumor-Normal pairs. 

Tumor-only TSO500 TMB is strongly correlated with WES TMB in formalin-fixed, paraffin-

embedded tissue samples (adjusted r2 = 0.933). TSO500 TMB is calculated using both SNVs and 

Indels. WES TMB is calculated using nonsynonymous variants only. Abbreviations: TMB = 

tumor mutational burden, WES = whole exome sequencing.  
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Figure 6. Comparison of tumor-normal MSI-PCR and tumor-only TSO500 MSI-score. MSI 

status determined by Promega MSI-PCR using matched tumor and normal samples is shown on 

the horizontal axis for 106 FFPE samples from a variety of tumor types (colon, gastric, lung, 

melanoma, uterine, endometrium). The vertical axis gives the TSO500 tumor-only MSI score. 

The dashed line indicates the MSI score cutoff for determining MSI-high samples. 
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Supplemental Table 1. TSO500 assay content (523 genes). 
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Supplemental Table 2. TSO500 quality control metrics. 

Category Metrics Cutoff 

Sequencing 
Metrics 

Percent Q30 read1 ≥ 80% 

Percent Q30 read2 ≥ 80% 

Percent PF reads ≥ 80% 

Sample Metrics 

Median Insert Size ≥ 70 

Median Exon Coverage     ≥ 150x 

Percent Exon 50x    ≥ 90% 

Usable MSI Sites ≥ 40 

Contamination Contamination Score ≤ 3106 or re-
arrangement p-value < 0.05 

Abbreviation: MSI = microsatellite instability. 

 

 

 

 

 

 

Supplemental Table 3. Details of MSI samples. 
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Supplemental Figure 1. Error rates from the simplex forward, simplex reverse, and duplex 

strands with and without stitching. Deamination errors (G→A), which are prevalent in formalin-

fixed, paraffin-embedded tissue and oxidation errors resulting from with sonication (C→A or 

G→T errors) are greatly reduced in the duplex, stitched panel.  
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Supplemental Figure 2. Germline variant filtering. Variants that are observed 10 times or more in 

public germline variant databases are filtered. Additional variants are categorized as germline 

variants using the proximity filter, which uses the database information of variants with a similar 

allele frequency (circled variants). Black bars indicate allele frequency range of the proximity 

filter, which is the maximum of 0.05 or 2 standard deviations giving a binomial distribution. 
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Supplemental Figure 3. Sequencing error rate by family size. Read family size is indicated on the 

horizontal axis. The vertical axis gives the mean sequencing error rate for reads with a given 

family size. Black bars indicate the 95% confidence interval. 
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Supplemental Figure 4. MSI scores for normal FFPE samples stratified by ethnicity. The 

horizontal axis gives the ethnicity of 140 normal FFPE samples assayed using TSO500. The 

vertical axis gives the MSI score calculated by the TSO500 bioinformatics workflow. The 

dashed line indicates the MSI score cutoff for determining MSI-high samples. 
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Supplemental Figure 5. Comparison of TSO500 tumor-only TMB values to tumor-normal TMB 

values (zoomed in to TMB < 50). 
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Supplemental Figure 6. Reproducibility of TSO500 tumor-only TMB scores. Tumor-only TMB 

scores for 36 technical replicates of FFPE lung (6116, 6132), FFPE colon (5882, 5658),  and 

commercial control (HD803, Oncospan, HD753, Seracare) samples are shown. 
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Supplemental Figure 7. Reproducibility of TSO500 tumor-only MSI scores. Tumor-only MSI 

scores for 36 technical replicates of FFPE lung (6116, 6132), FFPE colon (5882, 5658),  and 

commercial control (HD803, Oncospan, HD753, Seracare) samples are shown. The dashed line 

indicates the MSI score cutoff for determining MSI-high samples. 
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