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Back to the future: Implications of genetic complexity for hybrid
breeding strategies

Frank Technow∗, Dean Podlich† and Mark Cooper‡

Abstract Commercial hybrid breeding operations can be described as decentralized networks of smaller, more or less
isolated breeding programs. There is further a tendency for the disproportionate use of successful inbred lines for
generating the next generation of recombinants, which has led to a series of significant bottlenecks, particularly in the
history of the North American and European maize germplasm. Both the decentralization and the disproportionate
inbred use reduce effective population size and constrain the accessible genetic space. Under these conditions, long
term response to selection is not expected to be optimal under the classical infinitesimal model of quantitative genetics.
In this study we therefore aim to propose an alternative rational for the success of large breeding operations in the
context of genetic complexity arising from the structure and properties of interactive genetic networks. For this we
use simulations based on the NK model of genetic architecture. We indeed found that constraining genetic space and
reducing effective population size, through program decentralization and disproportionate inbred use, is required to
expose additive genetic variation and thus facilitate heritable genetic gains. These results introduce new insights into
why the historically grown structure of hybrid breeding programs was successful in improving the yield potential of
hybrid crops over the last century. We also hope that a renewed appreciation for “why things worked” in the past
can guide the adoption of novel technologies and the design of future breeding strategies for navigating biological
complexity.

Introduction1

Pioneered by Shull (1908), hybrid breeding is cred-2

ited as one of the most significant factors for the3

tremendous productivity increases of major field4

(Duvick, 1999) and horticultural (Silva Dias, 2010)5

crops that enabled food production to keep pace6

with population growth. Hybrid breeding programs7

originally were centred around maximum exploita-8

tion of heterosis, a phenomenon that remains largely9

unexplained even after a century of research (East,10

1936; Lippman and Zamir, 2007). This later evolved11

into the modern concept of hybrid breeding, char-12

acterized by its distinctive structuring of germplasm13

into heterotic groups and patterns (Melchinger and14

Gumber, 1998). Beyond heterotic groups, the struc-15

ture of commercial hybrid breeding, particularly16

in major crops like maize, is characterized by the17

largely isolated and unique sub-heterotic patterns of18

the major companies (White et al., 2020) as well as a19

high degree of decentralization into smaller, more20

or less disconnected sub-programs within those21

(Cooper et al., 2014). Plant breeders further have22

a tendency for relying on only a small set of elite23

inbred lines for producing the next generation of24

recombinants (Rasmusson and Phillips, 1997), lead-25
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ing to a series of significant bottleneck events in the 26

history of, for example, the North American maize 27

germplasm (White et al., 2020). These characteris- 28

tics drastically reduced the effective population size 29

within breeding programs and are not predicted to 30

be promising strategies under the additive, infinites- 31

imal model of quantitative genetics (Gaynor et al., 32

2017). Nevertheless, consistent long-term genetic 33

gain has been demonstrated (Duvick et al., 2004). 34

To better describe and quantify the observed ge- 35

netic variation among hybrids, the concept of gen- 36

eral and specific combining ability was developed 37

early on (Sprague and Tatum, 1942). The former, 38

commonly abbreviated as GCA, is a property of 39

the additive effects of contributing genes and de- 40

scribes the average performance of all hybrids de- 41

rived from an inbred. The latter, commonly ab- 42

breviated as SCA, is a non-additive residual term 43

that describes the deviation of the performance of a 44

particular hybrid from the expectation based on the 45

parental GCA values. 46

Running efficient hybrid breeding programs re- 47

quires a preponderance of additive genetic variation 48

to maximize response to selection in the next gener- 49

ation of inbred lines (Falconer and Mackay, 1996) 50

as well as the predictability of hybrid performance 51

from the GCA of inbred lines (Reif et al., 2007). A 52

preponderance of GCA variation also allows identi- 53

fication of inbreds that can serve as parents of sev- 54

eral high performing hybrids. This greatly simpli- 55

fies production of commercial seed, which is a major 56
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challenge for many crops (Technow, 2019). There-57

fore, hybrid breeding programs have traditionally58

relied on maximizing and exploiting GCA variation59

(Falconer and Mackay, 1996; Melchinger, 1999).60

The historically grown paradigms around hy-61

brid breeding designs and strategies are now be-62

ing challenged by innovative concepts (e.g., Gaynor63

et al., 2017; Wallace et al., 2018; Hickey et al., 2019;64

Voss-Fels et al., 2019; Seye et al., 2020) devised in65

the wake of technological advances such as whole66

genome prediction (Meuwissen et al., 2001), high-67

throughput phenotyping (Araus and Cairns, 2014)68

and genotyping (Poland and Rife, 2012), as well as69

gene editing (Jaganathan et al., 2018). While some of70

these concepts are highly speculative and might not71

live up to expectations (Bernardo, 2016), it is clear72

that the next decades will change plant breeding.73

However, before implementing drastic changes to74

breeding programs we require a theoretical and sim-75

ulation framework to explore and understand the76

structures and strategies that have contributed to the77

success of long term genetic gain and germplasm78

improvement. From this historical basis we can eval-79

uate novel proposals and draw lessons for design of80

future breeding strategies.81

Empirical reports show a preponderance of addi-82

tive variation in many wild, domesticated and lab-83

oratory species (Falconer and Mackay, 1996; Lynch84

and Walsh, 1998; Hill et al., 2008). This agrees well85

with published studies showing a preponderance86

of additive GCA over non-additive SCA variation87

in hybrid breeding programs (Technow et al., 2014;88

Larièpe et al., 2017). At the same time, however,89

advances in plant physiology and molecular and90

systems biology have stimulated a renewed appre-91

ciation of the intricate interactions at the molecu-92

lar, metabolical and physiological level that underlie93

complex traits (Hammer et al., 2006; Carlborg and94

Haley, 2004; Phillips, 2008; Wilkins et al., 2016; Saha95

et al., 2011; Jiang et al., 2017). Of particular rele-96

vance for hybrid breeding are recent studies indicat-97

ing that heterosis is an emergent property of com-98

plex metabolic networks (Fiévet et al., 2010, 2018;99

Vacher and Small, 2019).100

The paradox between the complexity of the un-101

derlying biology and the simplicity of the expressed102

variation can of course be resolved by distinguishing103

between biological and statistical effects and realiz-104

ing that the former cannot be inferred from the lat-105

ter (Wade, 2002; Mackay, 2014; Huang and Mackay,106

2016). Statistical effects of genes, as well as their107

aggregates such as GCA and SCA and their vari-108

ances depend on the genetic background of the pop- 109

ulation in which they are evaluated, particularly on 110

allele frequencies and linkage disequilibrium (LD) 111

patterns (Falconer and Mackay, 1996). For example, 112

it was shown that, regardless of the underlying ge- 113

netic architecture, genetic variances in random mat- 114

ing populations are expected to be predominantly 115

additive when genes are at extreme frequencies and 116

linkage disequilibrium is high (Hill et al., 2008). 117

Thus, ratios of additive to non-additive variation 118

are not intrinsic properties of biological systems but 119

at least partly a function of allele frequencies and 120

LD patterns and thus dependent on breeding strate- 121

gies. Because of the importance of additive varia- 122

tion for efficient operation of breeding programs, a 123

framework to evaluate and study breeding strate- 124

gies should allow for the possibility of additivity 125

arising from high degrees of biological complexity 126

at the genetic level. 127

In this study we will use simulations based on the 128

NK model of genetic complexity (Kauffman, 1993) 129

to explore two themes representing key, historically 130

grown, characteristics of hybrid breeding: firstly its 131

decentralization into smaller, more or less indepen- 132

dent sub-programs (“decentrality theme”) and sec- 133

ondly the disproportional use of superior inbred 134

lines for producing the next generation of recom- 135

binants (“inbred usage theme”). Our goal thereby is 136

not to make specific recommendations for optimal 137

structuring of programs, but rather to gain an ap- 138

preciation for the properties of these structures in 139

the context of different degrees of genetic complex- 140

ity. 141

Material and Methods 142

Model of genetic complexity 143

The NK model, introduced by Kauffman (1993) will 144

form the basis of the simulations. The NK model al- 145

lows generation of a tunable series of models of trait 146

genetic architecture with increasing dimensionality 147

and complexity by varying the number of genes 148

N (dimensionality) and the degree of interaction 149

among them (K, complexity). 150

The genetic landscape metaphor was introduced 151

and developed by Wright (1932) to aid conceptu- 152

alizing genetic complexity in high dimensions. As 153

a metaphor it should not be taken literally but can 154

help to gain an intuition for the complexity and 155

ruggedness associated with increasing values of K 156
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Mount Fuji (K = 1)

The Alps (intermediate K)

The Dunes (high K)

Figure 1 Schematic visualization of genetic landscapes cor-
responding to different values of complexity parameter K.

(Kauffman, 1993) as well as making the rather ab-157

stract concepts discussed henceforth more tangible.158

At K = 1 (special case of additive gene action), the159

genetic landscape can be imagined as that of Mount160

Fuji, i.e., a single, clearly distinguished peak with161

a steady and monotonous incline to the top (Figure162

1). At intermediate K levels, the landscape is char-163

acterized by multiple peaks clustered together in a164

certain region of genetic space. This might be visu-165

alized as akin to the European Alps, i.e., a moun-166

tainous region within an otherwise flat landscape.167

Finally, at high value of K, the landscape resembles168

a sea of dunes, i.e., a range of peaks of similar height169

and shape distributed more or less evenly in space.170

We implemented the NK model according to171

the generalized approach described by Altenberg172

(1994), but adapted the model to accommodate173

diploid genomes. Here, the complex trait is de-174

scribed as a normalized sum of a set of “fitness175

components”. The value of each fitness compo-176

nent is computed as a function of K interacting177

genes drawn at random from all N genes. Follow-178

ing Altenberg (1994), the specific fitness values were179

calculated with random functions derived from the180

ran4 pseudo-random number generator (Press et al.,181

1992) and are distributed uniformly between 0 and182

1. For this study, the number of fitness components183

and the number of genes were both set to 500. Genes184

were biallelic and the simulated organism diploid.185

The complexity parameter K was varied from 1 to 15186

in steps of 1 (i.e. creating genetic landscapes ranging187

in complexity from Mount Fuji to The Dunes; Fig-188

ure 1). With the exception of K = 1, this parameter189

was used as the rate parameter in a Poisson distri- 190

bution from which the number of interacting genes 191

was drawn independently for each fitness compo- 192

nent. The sampled values were then truncated to fall 193

within a range of 1 and 15. The identities of the in- 194

teracting genes were drawn at random from the total 195

set. Thus genes typically influenced multiple fitness 196

components (i.e., act pleiotropically). For K = 1, 197

each of the 500 genes was assigned to exactly one 198

fitness component and the values of heterozygous 199

allele configurations constrained to be midway be- 200

tween the homozygous configurations. Thus, K = 1 201

represents the special case of additive gene action. 202

Using order statistics, the expected value of the max- 203

imum of two samples from a Uniform distribution 204

between 0 and 1 is 2/3. Thus, the expected maxi- 205

mum attainable fitness for the K = 1 special case is 206

2/3. 207

The complexity of the generated NK models 208

was quantified following the “one-mutant neigh- 209

bour” hill-climbing algorithm described by Kauff- 210

man (1993), but adapted to diploid organisms. A 211

randomly generated genotype was used as the start- 212

ing value. From there, all possible genotypes were 213

generated that differ from the initial genotype by 214

one allele at one of the 500 loci. Thus, a homozy- 215

gous locus was changed to the heterozygous state 216

while a heterozygous locus was changed to both al- 217

ternate homozygotes. Then, the fitness values of all 218

one-allele neighbours were evaluated according to 219

the defined NK model and an improved genotype 220

chosen at random from all fitter one-allele neigh- 221

bours. This process was repeated until no fitter one- 222

mutant neighbour could be found, meaning that the 223

search reached a local or global optimum. For each 224

level of K, 100 NK models were generated indepen- 225

dently and a minimum of 65 searches, each start- 226

ing at a random initial genotype, were conducted 227

for each. The statistics recorded were the average 228

number of steps until a local optimum was reached, 229

the average Hamming genotypic distance, i.e., the 230

normalized number of differing genome positions 231

(Pinheiro et al., 2005), among optima and the corre- 232

lation between the fitness values of the optima and 233

the Hamming distance to the highest optimum iden- 234

tified (Kauffman, 1993). 235

The average Hamming distance between the lo- 236

cal peaks increased from just below 0.5 at K = 2 to 237

2/3 at around K of 6 or 7 and remained constant at 238

this value from there on (Figure 2A). Note that with 239

three different genotypes at each locus, 2/3 is the 240

expected value of the Hamming distance between 241
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Figure 2 Relationship between the NK model complexity parameter K and (A) the average genetic Hamming distance
between local peaks, (B) the average correlation between the fitness values of local peaks and their genetic Hamming
distance to the highest peak and (C) the average number of steps to a local peak. Panels (A) and (B) omit results for
K = 1, for which only a single peak exists. The dotted lines in these panels indicate values of 2/3 and 0.0, respectively.

randomly generated genotypes. Similarly, the corre-242

lation between the fitness values of the local peaks243

and their Hamming distance to the highest identi-244

fied peak increased from -0.25 at K = 2 to zero245

at K = 9 (Figure 2B). Here, a negative correlation246

means that local peaks with higher fitness tend to247

be found near each other and clustered around the248

highest peak. Further, a zero correlation indicates249

that there is no clustering of the peaks and proxim-250

ity to the highest peak. Therefore, local peaks are251

randomly distributed throughout the genetic land-252

scape. Thus, somewhere between K = 6 and K = 9,253

the landscape shifts from one in which local peaks254

tend to cluster together, to one where local peaks of255

arbitrary height can exist anywhere in genetic space.256

The average number of steps until a local peak was257

reached decreased with K from 500 at K = 1 to just258

167 at K = 15 (Figure 2C). Note that 500 is the expec-259

tation at K = 1, the special case of additive gene ac-260

tion, when starting from randomly generated geno-261

types, because 1/3 of the 500 loci are already at262

their highest possible value, 1/3 are one step re-263

moved (the heterozygous genotypes) and 1/3 are264

two steps removed (the lower homozygotes). Thus,265

the complexity and ruggedness of the genetic land-266

scapes increase further after they become uncorre-267

lated around K of 6 to 9.268

The simulated genome comprised 10 diploid269

chromosomes of 1 Morgan length each. Each of270

the chromosomes received a random subset of 50 of271

the 500 genes, which were distributed evenly across272

the chromosome. Recombination was simulated ac-273

cording to the Haldane mapping function with the274

R package “hypred” (Technow, 2013), in the ver-275

sion available from the supplement of Technow and276

Gerke (2017).277

Simulation of hybrid breeding process 278

The simulation process is visualized in Figure 3. The 279

starting point of the simulation was a base popula- 280

tion of inbred lines of size 1,000. This population 281

was simulated stochastically as described by Mon- 282

tana (2005) to result in an expected LD between two 283

loci t Morgan apart equal to r2 = 0.5 · 2−t/0.1 and 284

with minor allele frequencies distributed uniformly 285

between 0.35 and 0.50. The lines from the base pop- 286

ulation were then separated at random into two het- 287

erotic groups (arbitrarily labelled ’1’ and ’2’) and 288

further into sub-populations within those. The size 289

of those sub-populations depended on the scenario. 290

One sub-population from one heterotic group was 291

then paired with one sub-population from the other 292

group to form sub-heterotic patterns. These popula- 293

tion pairs will henceforth be referred to as “breeding 294

programs”. Hybrids were produced strictly across 295

heterotic groups, by crossing lines from one sub- 296

population of a program with lines from the other. 297

Breeding crosses, i.e., crosses to generate a new 298

generation of recombinant lines were done within 299

and among sub-populations, depending on the sce- 300

nario but strictly within heterotic groups. The sim- 301

ulation of the breeding process described above is 302

an approximation of the structure and evolution of 303

long term hybrid breeding akin to what we have 304

observed in practice; i.e. starting from an initial 305

germplasm base, separation into distinct heterotic 306

groups and future separation into sub-populations. 307

The GCA of the lines was evaluated with an in- 308

complete mating design (Melchinger et al., 1987; 309

Seye et al., 2020) by performing 10 crosses per 310

line with random partners from the opposite sub- 311

population of the same program. The performance 312

of the resulting hybrids, as determined according to 313
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Figure 3 Schematic visualization of simulated hybrid breeding
process.

the defined NK model, was then averaged. Finally, a314

normally distributed noise variable with zero mean315

and variance equal to one third of the variance of316

the GCA values of that sub-population was added317

to those averages to represent experimental and en-318

vironmental noise. The so obtained values were319

used as observed GCA values. Those GCA esti-320

mates were then used to predict the performance321

of all possible inter-group hybrids of that program.322

The top hybrids, how many exactly depended on323

the scenario, were then selected and their true per-324

formance determined according to the NK model.325

The average of this select group of hybrids, which326

represents a set of advanced experimental hybrids,327

was used to quantify the overall performance of the328

program in the current cycle. The maximum true329

performance of the selected hybrids from all pro-330

grams was defined as the peak performance of the331

whole breeding operation in the current cycle and332

used as a metric of genetic gain. This metric reflects 333

that commercial breeding programs release only a 334

handful of hybrid products each cycle. 335

Breeding crosses among inbred lines for initiating 336

the next recombination cycle were chosen by assign- 337

ing each inbred line a usage probability, which was a 338

product between an individual and population level 339

relative contribution value. To determine the former, 340

the lines within each sub-population were ranked 341

according to their observed GCA values. Only the 342

top lines, how many depended on the scenario, were 343

selected as potential parents, the remainder given 344

an individual contribution value of zero. The rela- 345

tive contributions of the selected lines from a given 346

sub-population were drawn from a Dirichlet distri- 347

bution. The concentration parameters of this distri- 348

bution were used to modulate the relationship be- 349

tween selection rank and relative contribution. Fur- 350

ther details about this will be given later when de- 351

scribing the setting for the “inbred usage theme”. 352

The population level contribution values describe 353

the overall contribution of lines from one sub- 354

population to the breeding crosses of another. They 355

are thus defined anew for each target population 356

and hence the contribution value of population ’A’ 357

to the crosses for population ’B’ might be different 358

than that to the crosses of population ’C’. The pro- 359

cess will be explained using the example visualized 360

in Figure 3. Here there are three programs (labelled 361

’A’, ’B’ and ’C’, with subscript 1 or 2 indicating the 362

heterotic group). 363

The programs are ranked from highest to lowest 364

performing according to the average performance 365

of the selected set of experimental hybrids, as de- 366

scribed above. Germplasm, in the form of lines used 367

as crossing partners, is exchanged only from higher 368

performing to lower performing programs. Specif- 369

ically, the amount of crosses with lines from other 370

programs increased from zero for the best perform- 371

ing program (A) to a proportion of Pmax for the low- 372

est performing program (C), with intermediate pro- 373

grams staggered equidistantly between. In the ex- 374

ample, Pmax = 50%. Thus, program A will perform 375

no crosses with lines from other programs, program 376

B will use lines from other programs in 25% of its 377

new crosses and program C in 50% of its crosses. 378

How much of that overall proportion was derived 379

from each of the other programs was proportional 380

to the relative performance differences. In the ex- 381

ample, the difference between program C and A is 382

twice as large as that between C and B, thus, lines 383

from program A were used in twice as many crosses 384
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than lines from program B (33% from A and 17%385

from B for at total of 50%). This process thus reflects386

that highly successful programs tend to exploit their387

own genetics while less successful programs have388

more of an incentive to explore superior genetics389

from other programs.390

The relative individual contributions were then391

multiplied with the relative population contribu-392

tions to arrive at a final relative contribution value393

for each line to the crosses of a given popula-394

tion. The actual breeding crosses were then de-395

termined by sampling the lines with probabilities396

proportional to their contribution values. This was397

done with replacement, meaning that the same cross398

could have been made multiple times, but excluding399

crosses that would result in selfings. One recombi-400

nant line was derived from each crossing through401

seven generations of single seed descent selfing, fol-402

lowed by a final doubled haploid step (Dwivedi403

et al., 2015) to result in fully homozygous inbred404

lines. This new generation of recombinants fully405

replaced the previous generations, i.e., a line was406

considered as a crossing partner in only one gener-407

ation. The so obtained new recombinants then form408

the next breeding cycle. The simulations were con-409

ducted for 30 cycles in total and repeated indepen-410

dently at least 500 times for each scenario studied.411

All computations were conducted in the R environ-412

ment for statistical computing (R Core Team, 2018).413

Recorded metrics414

In addition to the already described true perfor-415

mance of the best identified hybrid, which was used416

as a measure of peak performance in a given cycle, sev-417

eral other measures were recorded to describe and418

understand the dynamics of the system.419

The proportion of GCA to total genetic variance420

(%GCA) describes the amount of exploitable addi-421

tive genetic variation currently available. It was es-422

timated using the hybrids generated for evaluating423

the GCA of the inbred lines. For this, the follow-424

ing mixed model was fitted: hij = µ + gi + gj + eij,425

where hij was the true performance of the hybrids,426

µ the overal mean, gi and gj were the GCA effects427

of the parents from the two heterotic groups and428

eij a residual term. Because the true genetic perfor-429

mances of the hybrids were used, eij corresponds to430

the SCA component. The model was fitted using431

the R package “lme4” (Bates et al., 2015) and %GCA432

then calculated as
(

Vgi + Vgj

)
/
(

Vgi + Vgj + Veij

)
,433

where Vgi etc. were the estimated variance compo- 434

nents. In scenarios with multiple programs, %GCA 435

was estimated separately for each and then averaged 436

to arrive at a single estimate for each cycle. 437

The modified Rogers’ distances (Reif et al., 2005) 438

between the heterotic groups within each program 439

were used as measures of heterotic group diver- 440

gence. The distances were calculated for all pro- 441

grams and averaged to arrive at representative value 442

for that cycle. 443

To describe the distribution of allele frequencies 444

within each sub-population and hence the amount 445

of available allelic diversity we calculated the pro- 446

portion of loci with a minor allele frequency of less 447

than 5%. This probability measures the thickness of 448

the extreme tail of the allele frequency distribution 449

and thus reflects the degree with which it follows a 450

’U-shape’ (Hill et al., 2008). This metric was evalu- 451

ated for all sub-populations in each cycle and then 452

averaged. 453

As a more high-level diversity metric we consid- 454

ered the effective population size (Ne) of each sub- 455

population. Ne was calculated according to the 456

method described by Corbin et al. (2012) for estimat- 457

ing constant effective population size. The so ob- 458

tained values were averaged across sub-populations. 459

Hybrid breeding ’themes’ 460

All previously described parameters, such as pa- 461

rameters related to the NK model and genetic archi- 462

tecture, parameters related to testcross evaluation, 463

etc, were kept constant across the themes investi- 464

gated. 465

In the decentrality theme we explored conse- 466

quences of separating hybrid breeding programs 467

into smaller, more or less isolated, units. We defined 468

three distinct strategies for ’searching’ (Podlich and 469

Cooper, 1999) genetic space (Figure 4): a single large 470

program (centralized search) to multiple smaller, fully 471

isolated programs (isolated search). Between these 472

two extremes we considered a strategy with mul- 473

tiple smaller programs that exchange germplasm in 474

the form of breeding crosses (distributed search). 475

The centralized search was characterized by a sin- 476

gle program consisting of one sub-population per 477

heterotic group. The size of each was 500, for a total 478

of 1,000 lines generated in each cycle. The number 479

of lines selected to contribute to the next generation 480

was 125 per sub-population. The relative individ- 481

ual contributions of these lines decreased propor- 482

tionally with their performance ranks. The number 483
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Figure 4 Schematic visualization of the three general search strategies explored in the decentrality theme.

of selected experimental hybrids was 125. The iso-484

lated search strategy comprised five programs, each485

with one sub-population per heterotic group. The486

sub-population size was 100 of which 25 were se-487

lected. Also here, the relative individual contribu-488

tions of the lines were proportional to their perfor-489

mance ranks. The number of experimental hybrids490

selected per program was 25.491
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Figure 5 Distributions of relative individual contributions of
selected inbred lines considered in the inbred usage theme.

In the distributed search we considered three lev-492

els of Pmax: 25%, 50% and 75%. The number of pro-493

grams as well as lines and hybrids created and se-494

lected for each followed those of the isolated search.495

Note, thus, that the total number of lines and hy-496

brids were the same across all scenarios as was the497

selection intensity.498

In the inbred usage theme we explored the con-499

sequences of different degrees of imbalance in the500

relative contributions of the selected inbred lines501

to the next generation. The different scenarios ex- 502

plored correspond to the distributed search strat- 503

egy with Pmax = 50%. Only the relative usage of 504

inbred lines was varied. As described above, the 505

observed relative contributions were drawn from a 506

Dirichlet distribution with concentration parameter 507

chosen in a way to result in a certain average re- 508

lationship between relative contribution and perfor- 509

mance rank. Three scenarios were considered (Fig- 510

ure 5). In the balanced usage scenario, all selected 511

inbreds contributed equally on average, in the pro- 512

portional scenario, the relative contribution declined 513

proportional with the performance rank of the lines. 514

In the disproportional scenario, contributions halved 515

with every 5 ranks, meaning that the highest per- 516

forming line will contribute twice as much to the 517

next generation as the 5th ranked line. The increas- 518

ing imbalance in contributions can be quantified as 519

1/b′b (with b being the vector of relative contribu- 520

tions), which is an estimate of the effective num- 521

ber of contributing lines (Boichard et al., 1997). For 522

the balanced scenario, this was 25 and thus equal 523

to the actual number of selected lines within each 524

sub-population. It decreased to 19.1 and 13.6 for the 525

proportional and disproportional scenarios, respec- 526

tively. 527

Results 528

Decentrality theme 529

Which strategy achieved the highest peak perfor- 530

mance depended on the value of the complexity pa- 531

rameter K, with the centralized strategy being su- 532

perior at low K < 5, the distributed strategy at in- 533

termediate K and the isolated strategy at high val- 534

ues of K above eight (Figure 6A). The differences 535

between the strategies tended to increase with in- 536

creasing K. The centralized and distributed search 537
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Figure 6 Relationship between the NK model complexity pa-
rameter K (average number of interacting genes) and peak
genetic performance in the last cycle for the strategies ex-
plored in the decentrality theme: (A) comparing the isolated,
distributed and centralized strategies and (B) the different
values of Pmax within the distributed strategy. The curve of
the distributed strategy in (A) is an average across the three
Pmax scenarios within it.

strategies came very close to reaching the theoreti-538

cal maximum peak performance at the special case539

of additivity (K = 1), but the isolated strategy re-540

mained considerably below that. Within the dis-541

tributed strategy, the highest Pmax value of 75%542

was superior at K values below eight and the lowest543

Pmax of 25% at high K (Figure 6B). The case of Pmax544

= 50% had peak performance in between the two ex-545

tremes, but more similar to Pmax = 75%. All Pmax546

scenarios achieved virtually identical peak perfor-547

mance at K = 1.548

For brevity, trajectories across cycles are shown549

only for K values of 1, 6 and 15, representing the550

additive, multi-peaked but clustered and fully un-551

correlated landscapes, respectively (Figure 1). Re-552

sults for all values of K are available as supplemen-553

tal information (File S1). At K = 1, the centralized554

search strategy had the highest peak performance in555

all cycles, closely followed by the three versions of556

the distributed search (Figures 8A, B, C). The peak557

performance of the isolated search strategy was con- 558

siderably lower than that of the other strategies as 559

it increased at a lower rate and seemed to reach 560

a plateau at around cycle 20. At K = 6, the iso- 561

lated search strategy achieved the highest peak per- 562

formances in the earlier cycles but was overtaken 563

by the distributed search strategies later. Those had 564

very similar peak performances until the last few cy- 565

cles when the version with Pmax of 25% fell behind. 566

The centralized search had the lowest peak perfor- 567

mances throughout, with the differences to the other 568

strategies being particularly large between the inter- 569

mediate cycles 15–20. Finally, at K = 15, only the 570

isolated search had a sizable increase in peak per- 571

formance cycle over cycle. The distributed search 572

strategies showed an increase only in the last few 573

cycles and the centralized strategy did not increase 574

peak performance at all. 575

As expected %GCA was equal to one for all sce- 576

narios at K = 1 (Figures 8D, E, F). At K = 6, %GCA 577

started at just below 10% and increased from there 578

with each cycle. The rate of increase was greatest 579

for the isolated strategy which reached almost 100% 580

in the final cycles. The centralized search strategy 581

had the slowest increase and was still below 50% 582

in the final cycle. The distributed search strategies 583

were intermediate between these two extremes. The 584

increase was steepest for Pmax = 25% case, which 585

translated to it having a markedly higher %GCA 586

than the Pmax = 50% case and Pmax = 75% case 587

during intermediate cycles 15–20. However, all three 588

converged to a similar value of around 80% in the fi- 589

nal cycle. At K = 15, %GCA started at zero and only 590

the isolated strategy saw a marked increase in early 591

cycles. The distributed search strategies saw an in- 592

crease in %GCA noticeably above zero only in the 593

final cycles and the centralized strategy remained at 594

zero throughout. 595

The percent of loci with MAF < 0.05 increased 596

over cycles for all strategies and complexity levels 597

(Figures 8G, H, I). In all cases, the increase over cy- 598

cles was strongest for the isolated search strategy, 599

where it reached close to 100% in the final cycles 600

and weakest in the centralized search strategy. The 601

curves for the three Pmax levels of the distributed 602

search strategy were similar to each other and inter- 603

mediate compared to the two other strategies. The 604

differences between the strategies increased with K 605

because the increase in the proportion of loci at ex- 606

treme frequencies slowed for the distributed and 607

centralized strategies with increasing K. At the 608

highest levels of complexity, only between 30% and 609
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40% of loci showed a MAF < 0.05 in the different610

distributed strategies and less than 20% in the cen-611

tralized strategy.612

The modified Rogers Distance between heterotic613

groups increased over cycles for all strategies (Fig-614

ures 8J, K, L). For all levels of complexity, this dis-615

tance was highest for the isolated strategy and low-616

est for the centralized strategy, with the three ver-617

sions of the distributed search having similar values618

that were intermediate to the two extremes (Figure619

7).620

The Ne differences among the strategies remained621

largely constant across cycles and levels of K. For622

the sake of brevity results will only be reported for623

cycle 15 and K = 7. The estimated Ne for each-624

sub-population for the isolated search strategy was625

20.0, for the three versions of the distributed search626

it was 23.7 (Pmax = 25%), 31.3 (Pmax = 50%) and627

35.4 (Pmax = 75%), respectively, and for the central-628

ized search strategy 98.3.629

Inbred usage theme630

For brevity sake, only results for K of 1, 6 and 15631

are shown (results for all values of K are provided632

in supplemental file S2). Again, which inbred us-633

age scenario achieved the highest peak performance634

depended on the complexity level K (Figure 9). At635

the additive case of K = 1, all strategies achieved636

very similar peak performances close to the theoret-637

ical maximum of 2/3. Until K = 8, the highest peak638

performances were reached with proportional usage639

of selected inbred lines. For K > 8, disproportional640

use of inbred lines resulted in the highest peak per-641

formances. Balanced use generally resulted in the 642

lowest peak performance, except for K < 4, where 643

this strategy was slightly ahead of the dispropor- 644

tional usage strategy. The differences between the 645

strategies tended to increase with K. 646

The cycle over cycle increase in peak performance 647

was initially higher the more disproportional the use 648

of the inbreds (Figures 10A, B, C). However, except 649

for the highest level of complexity, this did not re- 650

sult in the highest maximum performance for this 651

scenario, because the increase started to level off in 652

the last five to ten cycles. Scenarios with propor- 653

tional and balanced use of inbreds therefore had the 654

highest peak performance at K = 1, though the dif- 655

ferences were small. At the intermediate level of 656

K = 6, the disproportional use scenario was over- 657

taken by the proportional use scenario in the last cy- 658

cles. The differences between these two were small, 659

however. Finally, at K = 15, only the disproportional 660

use scenario achieved a sizable increase in peak per- 661

formance. 662

At K = 1, %GCA stayed constant at one for all 663

scenarios, as expected. At K = 6, %GCA increased 664

most strongly for disproportional use, followed by 665

proportional and balanced use (Figures 10D, E, F). 666

Reaching above 90% for the former, and above 80% 667

and 50% for the latter two, respectively. At K = 15, 668

%GCA remained near zero for the balanced and 669

proportional use scenarios throughout. For the dis- 670

proportional use scenario, it remained at zero as 671

well until cycle ten and increased from there to al- 672

most 60%. 673

For all strategies and values of K, the percent of 674

loci with a MAF < 0.05 increased from its initial 675

value of zero (Figures 10G, H, I). The increase over 676

cycles was strongest for disproportional inbred use, 677

for which it reached close to 100% at K of 1 and 678

6. The proportional usage strategy had the sec- 679

ond strongest increase and the balanced strategy 680

the weakest. As was the case in the decentrality 681

theme, the differences between the strategies tended 682

to increase with K. At the highest level of K = 15, 683

the proportional and balanced strategies stayed be- 684

low 40%, whereas the disproportional usage strat- 685

egy reached close to 80%. 686

The modified Rogers distance between heterotic 687

groups increased over cycles in all scenarios (Figures 688

10J, K, L). Throughout it was highest for dispropor- 689

tional use, followed by proportional and balanced 690

use. Overall, the distance was greatest for the inter- 691

mediate complexity level of K = 6. 692

Ne, again reported only for cycle 15 at K = 7, was 693
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Figure 9 Relationship between the NK model complexity pa-
rameter K and peak genetic performance in the last cycle for
the strategies explored in the the inbred usage theme.

23.2, 31.3 and 44.6, for the disproportional, propor-694

tional and balanced usage scenarios, respectively.695

Discussion696

The objective of this study was to explore properties697

of the historically grown structure of commercial698

hybrid breeding programs, particularly in maize,699

and aid the understanding of why these structures700

successfully generated significant amounts of ge-701

netic gain in the past and thereby impact global food702

security. The infinitesimal framework (Barton et al.,703

2017), in which traits are described as the sum of704

a large number of genes all having additive, con-705

text independent effects of similar magnitude, is our706

starting point. However, we seek extensions to ac-707

count for the empirical observations that a) there are708

results observed from operating a long-term breed-709

ing effort that are not consistent with or not easily710

explained within the infinitesimal model framework711

(Rasmusson and Phillips, 1997) and b) reflect the712

reality of a highly complex trait biology (Hammer713

et al., 2006). Therefore, we are motivated to consider714

the influence of complexity of trait genetic architec-715

ture on breeding strategies from the perspective of716

a long-term commercial breeding program (Duvick717

et al., 2004; Cooper et al., 2014).718

Emergence of additivity719

As a representation of genetic complexity we chose720

the NK model framework developed by Kauffman721

(1993), which allows exploration of the full contin- 722

uum from complete additivity to deep and almost 723

intractable genetic complexity. For reference, the 724

NK models used in this study, corresponded to the 725

Mount Fuji landscape at K = 1 (Figure 1) and to 726

the ’Alps’ landscape from K = 2 to K of 7 or 8. 727

After this the genetic models transitioned from the 728

multi-peaked but correlated ’Alps’ landscape to the 729

uncorrelated landscape represented by the ’Dunes’ 730

metaphor (Figures 1 and 2). 731

In complex genetic landscapes, additive genetic 732

variance, the sine qua non of genetic gain, is not a 733

constant factor of trait biology (i.e., deducible from 734

the molecular properties of genes) but rather emerg- 735

ing from the interplay of biology and natural or 736

artificial properties of population structure (Wade, 737

2002; Cooper et al., 2005). In particular, additiv- 738

ity emerges in response to a constraining of the di- 739

mensionality of genetic space, or, in other words, 740

by limiting genetic diversity. In practice, such con- 741

straints in dimensionality are achieved through fixa- 742

tion or near fixation of genes (Wade, 2002; Hill et al., 743

2008). This process is illustrated in Figure 11 for 744

a simple epistatic network consisting of two genes. 745

Thus, as genetic complexity increases, the breeder 746

needs practical ways to reduce this complexity to a 747

manageable level that allows genetic progress. This 748

study explored two particular practical approaches 749

that have been adopted within commercial hybrid 750

breeding, particularly in maize. With the availability 751

of genomics and novel thinking about genetic com- 752

plexity, we can now study the genetic implications 753

of these practical approaches, many of which were 754

devised and adopted prior to the availability of a 755

theoretical and empirical framework to study their 756

effects. 757

Two processes in particular accelerate such con- 758

strainment, namely the creation of population bot- 759

tlenecks and the subdivision of larger populations 760

into more or less independent ’demes’ (Katz and 761

Young, 1975; Goodnight, 1995). Equivalent pro- 762

cesses in the context of plant breeding programs are 763

the degree of connectivity between breeding pro- 764

grams and the relative use of superior inbred lines 765

in breeding crosses for producing the next genera- 766

tion, both ’themes’ were explored in this study. 767

Decentrality theme 768

Classical quantitative genetics infinitesimal theory 769

was used to design and optimize commercial hy- 770

brid breeding strategies, in combination with em- 771
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Figure 10 Evolution of metrics over cycles in the inbred usage theme for scenarios with K of 1 (left column), 6 (middle)
and 15 (right).
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(A) (B)

Figure 11 Illustration of a two-locus epistatic network in
which neither the A nor the B locus exhibit any additive
variation when all alleles are common (A) but collapses to a
perfectly additive system in which the substitution effect of
the A locus explains 100% of the variation when the B2 allele
becomes rare (B). Note that the substitution effect of the A
locus would be reversed in sign when the B1 allele became
rare instead. Colours green, yellow and red represent high,
intermediate and low phenotypic values, respectively.

pirical experience of what worked and what did not772

(Hallauer et al., 2010). Yet, even though the infinites-773

imal model implies optimality of a single, homoge-774

nous population, there were discussions about the775

relative merits of large centralized vs. decentralized776

breeding programs early on (Baker and Curnow,777

1969). Later on, Podlich and Cooper (1999) explored778

this problem on the basis of Sewall Wright’s shifting779

balance theory, (Wright, 1931, 1977; Wade and Good-780

night, 1998). The shifting balance theory describes781

an evolutionary process in which genetic drift re-782

sulting from population subdivision enables ran-783

dom movements across genetic space (i.e., against784

selection gradients) and also converts epistatic to785

additive genetic variation through constraining ge-786

netic space as described above. This then en-787

ables local adaptation in complex genetic landscapes788

which is followed by differential migration from789

higher to lower performing sub-populations and790

thus ’spreading’ of superior gene complexes across791

the whole meta population.792

While this theory remains controversial as a793

model of natural evolution (Coyne et al., 1997), there794

are remarkable similarities between meta popula-795

tions in the context of the shifting balance theory796

and the population structure of large commercial797

breeding operations. The latter also do not oper- 798

ate as a centralized unit but rather as a decentral- 799

ized network of smaller programs with the most 800

successful germplasm being shared across (Cooper 801

et al., 2014). The same seems to be the case at the 802

industry level, with the major commercial breed- 803

ing operations being based on unique and distinct 804

germplasm backgrounds, with only occasional ex- 805

change of elite material, e.g., through ex-PVP lines 806

(Mikel and Dudley, 2006; White et al., 2020). As a 807

result of this decentralization, plant breeding pro- 808

grams are also characterized by having low effec- 809

tive population sizes (Cowling, 2013), which makes 810

them more susceptible to genetic drift. 811

Here, we expanded on the work of Baker and 812

Curnow (1969) and Podlich and Cooper (1999) by 813

exploring breeding population structures with dif- 814

fering degrees of decentrality (Figure 4), ranging 815

from a large centralized program with high Ne to a 816

isolated set of smaller programs with low Ne, with a 817

series of scenarios with decentralized but connected 818

programs with Ne values in between these two ex- 819

tremes. We indeed found that strategies resulting 820

in low within program Ne through increased decen- 821

tralization and isolation became increasingly supe- 822

rior in terms of peak hybrid performance, as ge- 823

netic complexity K increased, while a centralized 824

strategy with high Ne was superior in less complex 825

landscapes. These results thus confirm the find- 826

ings of Podlich and Cooper (1999) that a decentral- 827

ized search strategy is superior in complex genetic 828

landscapes. Increasing isolation and decentraliza- 829

tion and the associated Ne reduction led to quicker 830

increases over cycles and higher overall values of 831

of %GCA (Figure 8). At the highest levels of com- 832

plexity, only complete isolation generated amounts 833

of GCA variation sufficient for making genetic im- 834

provements cycle over cycle. The better ability to ex- 835

pose additivity in the form of GCA variation of the 836

more isolated and decentralized strategies was ex- 837

pected as per the discussion at the beginning of this 838

section outlining the relationship between amounts 839

of additive variation and constrainment of genetic 840

space. This explains the clear advantages in terms 841

of genetic peak performance of the isolated strategy 842

at the highest levels of K. 843

The corollary of the constrainment of genetic 844

space of course is a more rapid decline in genetic di- 845

versity and susceptibility to genetic drift, which ulti- 846

mately limits the selection potential of the programs. 847

Indeed, for values of K below eight, which marked 848

the switch from an uncorrelated to multi-peaked but 849
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correlated genetic landscape (Figure 2), decentral-850

ized programs with increasing rates of germplasm851

exchange became superior. Accordingly, having a852

large centralized program became the optimal strat-853

egy at lower values of K. Here, the genetic landscape854

was simple enough to not require severe constrain-855

ment of genetic space to expose sufficient amounts856

of GCA variation. The genetic drift experienced by857

small, isolated programs then unnecessarily led to858

the fixation of unfavourable alleles. This was most859

apparent at K = 1 where all variation is additive860

by definition and a decentralized strategy is not ex-861

pected to have any advantage (Rathie and Nicholas,862

1980). Here the isolated strategy led to fixation of863

almost all loci from cycle twenty onward and to a864

stalling of genetic gain significantly below the theo-865

retically achievable maximum (Figure 8).866

The establishment of genetically divergent het-867

erotic groups has always been a central tenant of868

hybrid breeding (Melchinger and Gumber, 1998).869

Originally, optimal exploitation of heterosis was870

the main driver of their establishment (East, 1936).871

Later, however, maximization of GCA vs. SCA vari-872

ation was identified as an import secondary fea-873

ture of heterotic groups (Melchinger and Gumber,874

1998). While this is well established for domi-875

nant gene action (Reif et al., 2007; Fischer et al.,876

2009), there are also indications for the conservation877

of favourable epistatic patterns that are disrupted878

when lines from different heterotic groups are re-879

combined (Bernardo, 2001). Often, heterotic groups880

are established from populations that evolved in iso-881

lation for a long time. One of the best examples for882

this is the Dent by Flint heterotic pattern in maize883

which is prevalent in Central Europe and is com-884

prised of populations that evolved in separation for885

centuries (Rebourg et al., 2003). Heterotic groups are886

thus a different and additional form of constrain-887

ment of genetic space through historically grown888

genetic isolation. In our simulations, the differ-889

ent heterotic groups were originated from the same890

base population, yet we still observed a significant891

degree of genetic differentiation evolve over cycles892

(Figure 8), as expected in recurrent, reciprocal selec-893

tion regimes (Labate et al., 1999; Longin et al., 2013).894

A portion of this differentiation can be attributed to895

genetic drift (Gerke et al., 2015), as evidenced by the896

non-zero genetic distance at K = 1, where all ef-897

fects are additive and increasing genetic differentia-898

tion between heterotic groups would have no effect899

on the proportion of GCA variance. However, the900

genetic differentiation was considerably higher for901

K > 1 (Figure 7), indicating that there indeed was a 902

selection advantage to increased heterotic group di- 903

vergence in complex genetic landscapes. This was 904

particularly clear for the isolated scenario, where 905

heterotic patterns could form uninterrupted within 906

programs. For the centralized and decentralized 907

strategies, the differentiation was maximal at lower 908

values of K, because %GCA, and hence the effec- 909

tiveness of recurrent, reciprocal selection, declined 910

afterwards. 911

Inbred usage theme 912

The history of North American and European maize 913

germplasm can be described as a succession of key 914

inbreds that were heavily used in breeding crosses 915

and had a distinct and lasting impact on germplasm 916

(Mikel and Dudley, 2006; Technow et al., 2014; White 917

et al., 2020). Those inbreds owe their success either 918

to the outstanding general combining ability rela- 919

tive to their peers at the time, such as was case for 920

the important North American line B73 (Mikel and 921

Dudley, 2006) or their unique adaptation to specific 922

climatic conditions, such as the European Flint lines 923

F2 and F7 (Messmer et al., 1992; Böhm et al., 2014). 924

The highly disproportionate importance of success- 925

ful inbreds led to a significant reduction in ge- 926

netic diversity (Rasmusson and Phillips, 1997; White 927

et al., 2020), particularly relative to the source pop- 928

ulations from which they were derived (Böhm et al., 929

2017). However, this constrainment also might be 930

responsible for the emergence of additive genetic 931

variation from complex gene action through the so 932

called founder or bottleneck effect (Goodnight, 1988; 933

Cheverud and Routman, 1996; Naciri-Graven and 934

Goudet, 2003; van Heerwaarden et al., 2008). We in- 935

deed observed that %GCA increased faster over cy- 936

cles and reached higher values overall the more un- 937

even the use of selected parents in breeding crosses 938

(Figure 10), with the exception of K = 1, where all 939

variance is additive by definition. At the highest de- 940

grees of landscape complexity only disproportion- 941

ate use of inbreds, resulting in very low Ne, suc- 942

ceeded in generating amounts of %GCA sufficient 943

for genetic improvements. Like in the decentrality 944

theme, the higher values of %GCA of the dispro- 945

portional use strategy translated into superior peak 946

performances only at the values K > 8, i.e., after the 947

landscape transitioned from multi-peaked but corre- 948

lated to uncorrelated. Before that, balanced and par- 949

ticularly proportional use, both having higher Ne, 950

achieved superior peak performances. 951
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Maintenance of diversity952

In our simulations, the constrainment of genetic953

space and reduction of Ne through decentralization954

and isolation or disproportionate use of inbred lines,955

while necessary for exposing additive genetic vari-956

ation, led to a rapid fixation of alleles and a slow-957

ing of genetic gain in later cycles. This was partly958

a consequence of genetic drift caused by the low959

Ne (Cowling, 2013). However, the reduction of Ne960

was also caused in part by the effects of selection,961

particularly once the majority of the genetic vari-962

ation was additive. This has not generally hap-963

pened in commercial breeding programs, where ge-964

netic gain continues apace (Rasmusson and Phillips,965

1997; Fischer et al., 2008; Duvick et al., 2004; Pfeif-966

fer et al., 2019). Several factors that maintain diver-967

sity in practical programs were not included in the968

simulation model. For example, the simulation im-969

plicitly assumed that the environment and manage-970

ment conditions remained constant across all cycles,971

whereas both change more or less rapidly in real-972

ity. Changing selection environments imply chang-973

ing selection targets and trajectories (Messina et al.,974

2011; Hammer et al., 2009), which reduce the pres-975

sure on particular alleles or allele complexes and976

thus slow or prevent fixation. Long-term selection977

experiments have shown that selection response can978

be maintained even in isolated and narrow popu-979

lations (Dudley and Lambert, 2010; Durand et al.,980

2010, 2015). Several hypotheses were proposed for981

these surprising results, including epistasis (Carl-982

borg et al., 2006), de novo genetic mutations, partic-983

ularly when magnified through effects on epistatic984

complexes (Rasmusson and Phillips, 1997; Durand985

et al., 2010), creation of heritable epigenetic varia-986

tion (Hauben et al., 2009), activity of transposable987

elements (Dubin et al., 2018), as well as the presence988

of ’cryptic genetic variation’ through phenomena989

such as canalization (Gibson and Dworkin, 2004).990

Of these, only epistasis was present in our simu-991

lations. While highly speculative, these biological992

phenomena might explain the presence of abun-993

dant genetic variation and continued genetic gain in994

largely isolated and genetically narrow commercial995

plant breeding programs.996

Applications of the NK for plant breeding997

The NK model, originally developed by the theoret-998

ical biologist Stuart Kauffman to study evolution in999

complex genetic landscapes, has found applications1000

for modelling complex systems in disparate fields 1001

such as business administration (Csaszar, 2018), or- 1002

ganizational learning theory (Lazer and Friedman, 1003

2007), infrastructure design (Grove and Baumann, 1004

2012) and physics (Qu et al., 2002). Following the 1005

example of (Podlich and Cooper, 1999), we here 1006

used the NK model to represent genetic complex- 1007

ity navigated by commercial hybrid breeding oper- 1008

ations to study the effect of the degree of isolation 1009

between programs as well as the degree of imbal- 1010

ance in inbred usage, both key aspects of breeding 1011

strategies. We propose that this model can serve 1012

as an ideal starting point to study other aspects of 1013

hybrid breeding strategies. For example, Cooper 1014

and Podlich (2002) proposed an extension to the NK 1015

model that adds an environmental dimension and 1016

thus allows modelling concepts related to genotype 1017

by environment interaction (Cooper and DeLacy, 1018

1994), yield stability (Piepho, 1998; Tollenaar and 1019

Lee, 2002), product placement (Messina et al., 2018) 1020

and the target population of environments (Com- 1021

stock, 1977). These so called E(NK) models repre- 1022

sent different environments or management prac- 1023

tices through a series of more or less similar ge- 1024

netic landscapes. This of course adds consider- 1025

able complexity to the already complex static land- 1026

scapes studied here and poses interesting dilemmas. 1027

For example, rapidly exposing additive variation, 1028

e.g., through isolation, might be even more impor- 1029

tant than in static landscapes because local optima 1030

have to be exploited quickly before they disappear 1031

once the environment shifts, for example through 1032

changes in management such as the historical in- 1033

creases in plant population for commercial maize 1034

production (Hammer et al., 2009). However, retain- 1035

ing allelic diversity, which hampers the exposing of 1036

additivity, is required to enable renewed adaptation 1037

to the changed environmental conditions. 1038

A high degree of genetic complexity also implies 1039

a high degree of context dependency of genetic ef- 1040

fects. Observe, for example, that the additive sub- 1041

stitution effect of the ’A’ locus in Figure 11 changes 1042

sign when the B1 allele instead of the B2 allele be- 1043

comes rare. This has consequences on the per- 1044

sistence of accuracy of estimated QTL effects and 1045

genomic prediction models and can be addressed 1046

through iteratively updating training populations 1047

for genetic model parameterization (Podlich et al., 1048

2004; Wolc et al., 2016; Forneris et al., 2017). The 1049

NK model framework can help address questions 1050

about the frequency with which this has to hap- 1051

pen and whether data from previous generations 1052
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can be used. Recently, approaches were proposed1053

that attempt to capture those context dependencies1054

through biological models representing the interde-1055

pendencies underlying the traits of interest (Tech-1056

now et al., 2015). Such models are only approx-1057

imations of the true biological complexity. How-1058

ever, Cooper et al. (2005), using the NK framework,1059

have shown that even incomplete knowledge of bi-1060

ological networks can improve predictability of ge-1061

netic effects and genetic gain. The context depen-1062

dency of genetic effects, i.e., the effects being nei-1063

ther universally positive or negative (Wade, 2002),1064

also has implications on innovative proposals for1065

using CRISPR-Cas9 gene editing (Jaganathan et al.,1066

2018; Gao et al., 2020) to either target recombina-1067

tion to create superior hypothetical linkage groups1068

(Brandariz and Bernardo, 2019) or even the large1069

scale “editing away” of deleterious mutations (Wal-1070

lace et al., 2018). Finally, this framework might help1071

devise strategies for the efficient introduction of ex-1072

otic or ancient germplasm (Yu et al., 2016; Böhm1073

et al., 2017), which evolved not just in a very differ-1074

ent environmental, but also a different genetic con-1075

text from the current elite breeding germplasm.1076

Back to the future1077

The structure of commercial plant breeding pro-1078

grams, particularly in major crops like maize, is1079

characterized by a large degree of decentralization1080

with exchange of successful germplasm within com-1081

panies (Cooper et al., 2014), while isolation is the1082

norm among companies (Mikel and Dudley, 2006).1083

Plant breeders further have a tendency for relying1084

on only a small set of elite inbred lines for produc-1085

ing the next generation (Rasmusson and Phillips,1086

1997), leading to a series of significant bottleneck1087

events (White et al., 2020). All of these features1088

lead to a drastically reduced effective population1089

size and are not predicted to be promising strategies1090

under the additive, infinitesimal model of quantita-1091

tive genetics. Yet commercial hybrid breeding has1092

delivered incredible amounts of genetic gain over1093

the last century, and has thus contributed to food1094

security and resource conservation (Duvick, 1999).1095

Here we postulated that the described structure of1096

plant breeding programs, with its constrainment of1097

genetic space, is in fact necessary for enabling the1098

exploration and exploitation of genetic variation in1099

complex genetic landscapes and that the success of1100

a breeding program is not only determined by its1101

germplasm per se, but by the structures that allow1102

it to evolve. The breeding program structures de- 1103

scribed here grew historically and we do not claim 1104

that it was set up with this intention. However, by 1105

doing “what worked”, breeders in preceding gener- 1106

ations might have nonetheless been able to take ad- 1107

vantage of the process described and postulated in 1108

this study. Understanding why these historic struc- 1109

tures “worked” will be critical for designing breed- 1110

ing programs that can tackle the challenges of the 1111

century ahead. 1112
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