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Abstract Filopodia are actin-built finger-like dynamic structures that pro-
trude from the cell cortex. These structures can sense the environment and play
key roles in migration and cell-cell interactions. The growth-retraction cycle of
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filopodia is a complex process exquisitely regulated by intra- and extra-cellular
cues, whose nature remains elusive. Filopodia present wide variation in length,
lifetime and growth rate. Here, we investigate the features of filopodia pat-
terns in fixed prostate cancer cells by confocal microscopy. Analysis of almost
a thousand filopodia suggests the presence of two different populations: one
characterized by a narrow distribution of lengths and the other with a much
more variable pattern with very long filopodia. We explore a stochastic model
of filopodia growth which takes into account diffusion and reactions involving
actin and the regulatory proteins formin and capping, and retrograde flow. In-
terestingly, we found an inverse dependence between the filopodial length and
the retrograde velocity. This result led us to propose that variations in the
retrograde velocity could explain the experimental lengths observed for these
tumor cells. In this sense, one population involves a wider range of retrograde
velocities than the other population, and also includes low values of this ve-
locity. It has been hypothesized that cells would be able to regulate retrograde
flow as a mechanism to control filopodia length. Thus, we propound that the
experimental filopodia pattern is the result of differential retrograde velocities
originated from heterogeneous signaling due to cell-substrate interactions or
prior cell-cell contacts.

Keywords filopodia growth · stochastic model · actin · regulatory proteins ·
fluorescence microscopy · prostate cancer cells

1 Introduction

Filopodia are filamentous cell projections that protrude from the plasma mem-
brane by the polymerization of actin filaments. Filopodia are well conserved
structures, present in diverse cell systems and known to play a key role in cell
migration, sensing and cell-cell communication [1,2]. Typically, a filopodium
contains a bundle of around 10-30 actin filaments [3] and grows at a speed of
0.01- 0.2 µm/s [4], reaching lengths of a few micrometers [5–7]. As a conse-
quence of the complex processes involved in filopodia dynamics there are wide
variations in filopodial lifetimes, ranging from a few seconds to several minutes
[8].

The mechanisms of filopodia initiation are still not clear. It has been pro-
posed that filopodia would emerge as a consequence of the reorganization of
the lamellipodial actin network upon the convergent elongation of privileged
filaments, which would bind a complex of molecules to their barbed ends allow-
ing them to continue elongating together [9]. On the contrary, other authors
[4,10] found that filopodia are able to form in the absence of lamellipodia
suggesting different functionality between both actin structures.

Once initiated, the bundle of actin filaments elongates by the polymeriza-
tion of actin monomers at the filaments barbed ends and retracts as a con-
sequence of both, depolymerization and retrograde flow. Filopodia extension
and retraction is a dynamic process controlled by different proteins, including
capping protein and formin [11]. These regulators have opposite effects on the
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filopodia length: while formin accelerates actin assembly, capping protein pre-
vents its polymerization [12,13]. Both proteins bind actin barbed ends with
high affinity and slow dissociation, which initially led to the conclusion that
they were mutually exclusive [11,14]. However, it has been recently shown that
formin and capping proteins are able to simultaneously bind barbed ends and
coregulate filament assembly [11].

It has been suggested that retrograde flow in the cell cortex at the base of
the filopodium is the main retraction mechanism, which also generates retro-
grade forces on the substrate [15]. Retrograde flow originates from the com-
bination of two processes: the actin treadmilling due to the depolymerization
at the rear part of the filopodium and the action of myosin motors [16,17].
For example, it has been found that filopodium elongated more that 80% af-
ter inhibition of myosin II in neuronal growth cones [18]. Depolymerization of
actin at the tip can also contribute to the retrograde flow in melanoma cells
and fibroblasts in a process regulated by cofilin and fascin [19].

The magnitude of the retrograde flow depends on the cell type and species;
values in the range 5-260 nm/s have been reported (see references in Table 1 in
[3]). Furthermore, its value might also depend on the state of development of
the filopodia [20], on probes acting as guidance cues to their growth stabilizing
or destabilizing filopodia [21–24] and/or on the substrate stiffness [25].

The complexity of the mechanisms underlying the initiation, maintenance,
and retraction of filopodia has inspired theoretical and computational ap-
proaches for a better understanding of the biological system. Regarding filopo-
dia growth, several authors have addressed this issue, using deterministic ana-
lytical models [7,26–28] and stochastic simulations [29–32]. In a groundbreak-
ing publication, Mogilner and Rubinstein [26] propose a deterministic one-
dimensional reaction-diffusion model for G-actin dynamics within filopodia.
Some characteristic scales of filopodia emerge from the model, such as the
typical filopodia length (of the order of few microns) and that more than
10 bundled filaments are required to avoid buckling. Other authors propose
mean-field models that also account for the effect of myosin motors [7,28] and
capping proteins [27]. On the other hand, Papoian’s group has made a signif-
icant contribution to the stochastic modeling of filopodial growth [29–31,33].
In this way, Lan et al. [29] developed a one dimensional model for a bundle
of filaments within a filopodium. They consider the polymerization and de-
polymerization of actin at the barbed end, as well as an effective retrograde
velocity for each filament individually. The model allows to observe an equi-
librium state with fluctuations around the stationary length. Zhuravlev and
Papoian [30] brings complexity to this model, by adding the regulatory effect
of capping proteins and formins. Interestingly, considering actin-binding pro-
teins amplifies molecular noise and eventually leads to large growth-retraction
oscillations in the filopodial lengths.

In this paper, we study the pattern distribution of filopodial lengths by
means of a stochastic model based in the work of Zhuravlev and Papoian [30],
though considering recent results showing that formin and capping proteins
coregulate the actin assembly [11]. It has been hypothesized that cells can
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control different processes such as migration or the establishment of cell-cell
contacts by regulating the retrograde flow and, as a consequence, the length
and stability of filopodia [21,23,25]. Thus, we explore in silico the effect of
varying the magnitude of the retrograde flow on the mean filopodial length
and, more importantly, on its dispersion. We compare the results of the nu-
merical simulations with the filopodial lengths obtained from the inspection
of filopodia in fixed cultured prostate cancer cells. Our results suggest that
the experimental data would consist of at least two populations of filopodia
characterized by different retrograde velocities. The biological significance of
our results is also discussed.

2 Results

2.1 Stochastic model of filopodia growth

We study filopodia growth dynamics by considering a stochastic reaction-
diffusion model. The model used here is similar to the proposed by Zhuravlev
and Papoian [30]. A growing filopodium generates a region that is an extension
of the cytoplasm where actin, formin and capping molecules can react and dif-
fuse (see Fig. 1a). By using a molecular approach [31] the chemical reactions
at the filament barbed end are explicitly considered. The depolymerization at
the filament pointed end as well as the action of the myosin motors are consid-
ered as an effective process that regulates filopodia retraction. The diffusion
of the distinct molecules into the cytoplasmic extension is taken into account
explicitly.

Following the model proposed by Zhuravlev and Papoian [30], the filopodia
structure is built with actin molecules as building blocks: G-actin polymerizes
into F-actin at the filament barbed end. Actin depolymerization of the filament
barbed end is also possible. These processes occur with rates kacton and kactoff ,
respectively. Formin and capping proteins can also bind at the filament barbed
end, noticeably affecting G-actin polymerization. In this way, while capping
of the filaments blocks actin polymerization, formin enhances substantially
filament assembly [12,13]. Therefore, if kact−formon is the actin polymerization
rate when a formin molecule is already bound to the filament, we consider
that kact−formon ∼ 5kacton [39]. In our model we also considered recent results
showing that formin and capping proteins can coregulate filament assembly
by simultaneous binding to the barbed end [11]. This aspect was not taken
into account by Zhuravlev and Papoian [30], who assumed that formin and
capping were mutually exclusive. However, Shekhar and coauthors [11] found
that the on- and off-rates of formin (capping) are affected by the presence of
the capping (formin) protein [11]. We allow for these results by defining new

values for the binding and unbinding rates kform−capon and kform−capoff for the
binding of formin when a capping molecule is already bound to the filament,
and kcap−formon and kcap−formoff for the corresponding capping case.
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Fig. 1 (a) Schematic representation of the model for filopodial growth. (b) Filaments within
a filopodium length and filaments with non-null length (inset) as a function of time for
vr = 30 nm/s. The filopodium length corresponds to the largest filament (blue line). As an
example, for 600 s (dashed line) there are two short filaments, one with intermediate length,
and several ones with maximum length (schematically illustrated in (a)). The orange line
highlights the dynamics of a single filament, showing that it can disappear and grow again
from the cytoplasm. (c) Filament length and binding/unbinding of formin and capping
molecules (black, green and red, respectively), as a function of time for vr = 10 nm/s.
Formin increases the growing filament velocity (∼ 5 s) whereas capping blocks filament
polymerization, and the length decreases due to the retrograde flow. In the time interval
between 65 and 97 s both formin and capping are bound. Inset: enlargement of short time
region.

G-actin, formin and capping molecules cytosolic concentrations are consid-
ered to be constant, with bulk values [A]cyt, [F ]cyt and [C]cyt, respectively [30,
26]. These molecules are able to diffuse into the cytoplasmic extension with ef-
fective diffusion coefficients Dact, Dform and Dcap [26,34–37]. This is another
difference in relation to the work of Zhuravlev and Papoian [30], which does
not take into account the diffusion of formin and capping molecules. Formin
diffusion rate was considered with the same value as actin since both have
similar molecular weight. Finally, the depolymerization of actin at the pointed
end coupled with the action of myosins are taken into account as an effective
process that regulates filopodia retraction. In this way, we assume a constant
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Table 1 Parameters used in the model simulations.

Values References

Diffusion rates
Actin Dact = 5µm2s−1 [26,34,35]
Formin Dform = 5µm2s−1 -
Capping Dcap = 5µm2s−1 [36,37]

Actin
Polymerization free barbed end kacton = 11.6µM−1s−1 [30,38]

Polymerization formin-anticapped barbed end kact−form
on = 53µM−1s−1 [30,39]

Depolymerization kactoff = 1.4s−1 [30,38]

Formin

On-rate free barbed end kformon = 29.1µM−1s−1 [11]

On-rate capping barbed end kform−cap
on = 1.6µM−1s−1 [11]

Off-rate free barbed end kformoff = 8.1× 10−5s−1 [11]

Off-rate capping barbed end kform−cap
off = 5.6× 10−3s−1 [11]

Capping molecule
On-rate free barbed end kcapon = 12.8µM−1s−1 [11]

On-rate formin barbed end kcap−form
on = 0.145µM−1s−1 [11]

Off-rate free barbed end kcapoff = 2.0× 10−4s−1 [11]

Off-rate formin barbed end kcap−form
off = 3.3× 10−3s−1 [11]

Cytosolic concentrations
Actin [A]cyt = 10µM [30,26]
Capping protein [C]cyt = 50nM [30]
Formin [F ]cyt = 80nM [30]

Retrograde flow speed vr ∈ [5, 100] nm/s [3]
Polymerization unit δ = 2.7 nm [26,30,40]
Maximum number of filaments Nmax = 16 [30]

retrograde velocity whose action is to continually shorten the filaments, as
made previously [29–31].

Despite that an actin filament is composed of two protofilaments [41], we
model each filament as a rodlike structure without contemplating its internal
double stranded helical organization, as it was also considered in previous
works [26,29–31,33,40]. The successive binding of actin molecules makes the
filament length increase by a polymerization unit, as schematically shown in
Fig. 1a. Also, we consider that a bundle of filaments constitutes a filopodia,
with a maximum number of 16. The filopodia length is equal to the largest
filament length (Figs.1a and b). We use a stochastic molecular approach to
simulate reactions and diffusion in our model [31], as discussed in Section 4.1.
The parameters used in the model are given in Table 1.

A representative filament temporal evolution is shown in Fig. 1c. The
growth velocity of the filament is notably increased by the binding of a formin,
as can be seen in the inset of Fig. 1c. On the other hand, when a capping
molecule binds to the filament, polymerization stops and the filament retracts
linearly as a consequence of the retrograde velocity.
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Fig. 1b shows an example of the dynamic of the filaments within a filopodium.
The number of filaments with non-null length is shown in the inset. According
to the model, the filopodia growth rate is high for short times, but as time
goes on, the velocity decreases exponentially. This result is in agreement with
the deterministic model proposed by Mogilner and Rubinstein [26]. In fact,
for longer times a balance between the actin polymerization and the retro-
grade velocity leads to a stationary length. This result is in accordance with
the fact that the number of non-null filaments tends to an average value (in-
set of Fig. 1b). As can be seen in Fig. 1b, if one filament disappears by the
continuous binding of a capping molecule it is able to grow again from the
cytoplasm. Notably, the stochastic binding/unbinding of formin and capping
molecules results in high variability in filopodial length (also observed in [30]),
as compared to models where only actin polymerization/depolymerization is
taken into account [29,31].

The filopodial length is obviously affected by the model parameters. An ele-
gant mean field expression for the steady-state filopodium length was obtained
for models where only actin polymerization/depolymerization is considered
[29,33]. These authors found that the stationary length increases linearly with
both the diffusion coefficient of actin and the actin cytosolic concentration.
Their results also showed that the steady-state filopodium length presents a
nonlinear increase with the binding rate of actin and a nonlinear decrease with
both the retrograde velocity and the number of filaments. Finally, the station-
ary filopodium length is not significantly influenced by actin depolymerization.

Here we are interested in studying the effect of varying the model pa-
rameters that may be involved in the regulation of filopodia growth. We
assume that biochemical processes intrinsic to the cell, such as polymeriza-
tion/depolymerization rates, diffusion coefficients, cytosolic concentrations,
and the number of filaments in a filopodium, will not be highly variable among
cells with a common identity. The sensitive nonlinear behavior of the station-
ary filopodium length with the retrograde velocity observed for simpler models
suggests that retrograde flow can work as a control mechanism of filopodia
growth and retraction [29]. Therefore, we will explore the effect of varying the
retrograde velocity throughout the simulations.

2.1.1 Influence of retrograde velocity in filopodia length

In order to explore the effect of the retrograde flow on the filopodial lengths,
we run simulations varying the retrograde velocity (vr) while keeping the rest
of the parameter values unchanged (Table 1). Fig. 2a displays the results for
3 different values of vr in the range between 10 and 100 nm/s. For each value
of vr, Fig. 2a presents several individual simulations, as well as the filopodial
length averaged over these curves (for a definition see Eq. 3 in section 4.2).
Our simulations go up to t = 1000 s, since the average filopodia lifetime is
reported to be in the order of a few minutes [5,42,43], even though some
filopodia are longer-lived [42–44]. Interestingly, the time course of individual
filopodia lengths shows large fluctuations, and different simulations for the
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Fig. 2 (a) Filopodial length (dashed lines) for different retrograde velocities vr, as indicated.
For each value of vr the solid line represents the filopodial length averaged over the 5 runs,
〈L(t)〉, and the thickness of the line depicts the standard error. (b) Mean filopodial length
L as a function of vr. The error bars represent the standard deviation. Further information
about simulation data can be found in Section 4.2.

same parameter values are also very variable. The reason for such behaviour
lies on the stochastic nature of the binding/unbinding of actin and regulatory
proteins, taken into account by the model. We verified that larger values of vr
resulted in shorter lengths. It can also be observed that for low values of vr,
the filopodial length presents a larger transient towards the stationary length.
Also, the filopodium growth rate (estimated from the average speed at each
simulation time step in the short time region, see Fig. 2a) is of the order of
100 nm/s, comparable with the reported values [4].

Many experiments deal with images of fixed cells [5,6,45,46], which display
the distribution of filopodia at arbitrary moments in their lifetimes. To take
this type of data into account, we will consider the full-time behaviour of
filopodial length given by the model, instead of only the stationary value, as
it was previously done in other theoretical works [29]. Therefore, we compute
the average of the filopodial lengths over both time and different realizations
as an estimate of the mean filopodia length (Eq. 4 in Section 4.2). Fig. 2b
shows that the mean filopodial length exhibits a nonlinear inverse dependence
on the retrograde velocity. Then, larger values of vr result in shorter filopodia.
Furthermore, it can be seen that the mean filopodial length is much more
sensitive to variations of vr for low values of retrograde velocity than for higher
ones. The large dispersion in the mean filopodial length observed in Fig. 2b
for low values of vr is associated with the existence of a long transient to reach
the equilibrium length (see Fig. 2a).

2.2 Filopodia in PC3 cells

In order to explore filopodia patterns, we studied cultured prostate cancer
cells (PC3 cells). After being fixated and stained for actin with rhodamine-
phalloidin, cells were imaged by confocal microscopy [45]. While this condition
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Table 2 Image analysis statistics.

Symbol Meaning Value

Nim No. of analyzed images 48
Ncells No. of cells explored 226
Nfilo No. of measured filopodial lengths 994
p̂ Estimated percentage of sampled filopodia 56%

has the advantage of allowing inspection of all the cells in the field with little
noise, it has the drawback that the dynamical behavior of filopodia cannot be
explored. However, these images are representative of the distribution of cells
and filopodia in an arbitrary moment of their cycle. The images were analyzed
with custom made routines. A detailed description of the image analysis can
be found in Section 4.4.

We show PC3 cultured cells imaged using phase contrast optics in Fig. 3a.
The micrograph in Fig. 3b corresponds to the fluorescence channel and in Fig.
3c we exhibit an overlay of both images. Since filopodia are easily distinguished
in the fluorescence images, we found it more convenient to use these images
for our analysis.

We focused on individual filopodia and not on filopodia located at cell-
cell junctions or that form bridge-like structures, such as those described in
[47]. Thus, we identified membrane regions where filopodia represented clearly
delimited structures, while cell-cell protrusions and extremely dense regions
were excluded for the analysis, similarly to [43]. Furthermore, filopodia with
low signal to noise ratio (low intensity with respect to the background) and/or
intermittent intensity levels that might correspond to protrusions that enter
and go out the image plane were considered unfit to be measured. Fig. 3d
shows an example where the discarded areas were delimited by red rectangles
and the trackable regions were circumscribed by green shapes.

We sampled filopodia from the trackable zones, generally one or two regions
per cell were explored. We identified individual filopodia from the fluorescence
images and manually delineated them (Fig. 3e) to acquire intensity profiles
(Fig. 3f). We input the collected intensity profiles into a custom made program
which determines the filopodial tip and base locations for each profile and
computes the filopodial length by substracking them. Thereby, we measured
the length of approximately a thousand filopodia.

To compute the proportion of filopodia sampled in the explored regions,
we measured the contour length of 45 sampled areas and multiplied it by the
filopodial linear density obtained by Paez et al. [45] from the same images. We
estimated that half the filopodia population within the inspected areas were
roughly sampled. We summarized the image analysis statistics in Table 2.
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Fig. 3 Prostate cancer PC3 cells. (a) Phase contrast microscopy image. (b) Fluorescence
microscopy image of the same viewfield (staining with rhodamine-phalloidin). (c) Merge of
the fluorescence and phase contrast confocal images shown in a and b. (d) Representative
fluorescence image of PC3 cells. The regions of interest where filopodia are considered track-
able are delimited by green shapes. The red rectangles surround regions where filopodia are
considered unfit to be measured. In this case, the upper-right red rectangle encloses a contact
region and the lower-left shape too, the latter also includes overlapping protrusions with in-
termittent intensity signal. (e) Lines indicate the filopodia that could be tracked (Scale bars:
10 µm). (f) Intensity smoothed profiles acquired from the lines traced in (e); the colours of
the profiles correspond to the filopodia in (e). The filopodial tip locations are determined af-
ter selecting a threshold that considers background intensity (black dashed horizontal line).
The triangles and circles represent the base and tip positions respectively. The protrusion
length is obtained by subtracting tip and base positions along the profile. Filopodial length
of the protrusions covered by the blue, red and green lines in e are represented by lines with
arrowheads of the respective colour. The smoothed profiles are horizontally shifted so that
the filopodial base is at the origin.

2.3 Analysis of filopodial lengths in cultured PC3 cells suggest two cell
populations

We analyzed more than a thousand filopodia profiles from which we recovered
994 filopodial lengths in the range 0.5 to 15 µm. The average filopodial length
for cultured PC3 cells was ∼ 4 µm, which is similar to the lengths of filopodia
in human lung adenocarcinoma cells [25], rat fibroblasts [6] and neurites [5].
Fig. 4a displays the obtained distribution; a quantitative description of the
distribution in terms of it central moments is found in Table 3. The distribution
is biased towards small length values and is long-tailed to the right as both
the skewness and excess kurtosis apart from zero. Similar distributions for
filopodial lengths were reported in [5,6].
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Table 3 PC3 filopodial length statistics.

Filopodia Nfilo Mean [µm] std Skewness Excess kurtosis

all 994 4.1 1.9 1.7 3.9
>6 561 4.1 2.0 1.7 3.9
group 1 319 3.4 1.1 0.6 0.6
group 2 242 5.1 2.6 1.1 1.0

We then wondered if this wide distribution of filopodial lengths results from
local variability or it stems from a variability between different cells. In order
to explore this, we analyzed the lengths of neighbor filopodia located within
the same cell. To this end, we gathered the data coming from cells where
we were able to successfully track 6 or more filopodia profiles (Nfilo=561
from Ncells=58) to allow meaningful analysis. The resulting data (inset in
Fig. 4a was representative of the total data set as reflected by the distribution
statistical description shown in Table 3.

As an estimate of the dispersion of the filopodial lengths within single cells,
we computed the standard deviation (SD) for each of the 58 cells (not shown)
and found that their distribution deviates from normal according to a Shapiro-
Wilk hypothesis test (p − value < 5.10−5) [48]. Thus, we classified the cells
into two groups depending whether the SD of the lengths was less (Group 1)
or greater (Group 2) than SD=1.3 µm. This threshold value roughly corre-
sponds to the median of the SDs distribution. The new distributions obtained
for Group 1 (Nfilo=319) and Group 2 (Nfilo=242) are displayed in Fig. 4b,
where we have also plotted the corresponding kernel density estimation. A
quantitative description of the distributions in terms of their central moments
can be found in Table 3. A two-sample Kolmogorov-Smirnov test showed that
the two groups were significantly different (p− value < 10−14) supporting the
presence of at least two different population of data. While one group of cells
(Group 2) displays a wide distribution of lengths with very long filopodia, the
other group (Group 1) shows a narrow and less biased distribution, with the
absence of long processes.

To assess whether our previous observation was correct, we went back to
the images to determine if the filopodia tracked in cells coming from Group
1 were representative of the ensemble of filopodia in the corresponding group.
In other words, we seek the presence of long filopodia within this group that
would have not been considered during the tracking procedure. To this end,
a line separating a distance d = 8 µm from the cell perimeter was drawn and
the number of filopodia exceeding this limit was inspected. Also, we estimated
the length of long curled filopodia within this 8µm-sized zone. This value
of the length cutoff represented an upper bound for the Group 1 lengths,
and thus filopodia longer than this value should represent outliers. This study
revealed that only three of the considered cells displayed a least one filopodium
longer than this threshold and, consequently they were discarded from further
analysis.
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Fig. 4 (a) Distribution of filopodial length in cultured PC3 cells. Inset: Comparison with
the distribution of filopodial lengths sampled from cells where 6 or more filopodia could
be tracked (light gray). (b) Histograms of the filopodial lengths corresponding to Group 1
(light gray) and Group 2 (dark gray) (see main text). (c) Distribution of single cell data
corresponding to Group 1 (red brackets) and Group 2 (blue brackets). Boxplots are presented
as mean, SEM and SD, according to [49]. Asterisks indicate significant differences between
the two groups according to a two-sample Kolmogorov-Smirnov test. The lines over the
histograms represent re-normalized kernel density estimates.

Fig. 4c displays the distribution of filopodial lengths within the remaining
55 individual cells, where we have intentionally sorted cells depending on the
group they belong to. An inspection of this figure also evidences the differences
between the two populations of filopodia previously remarked.

2.4 Interpretation of the experimental data using the stochastic model

When comparing the experimental data for PC3 cells with the results of the
stochastic model, it led us to formulate two questions. Can the stochastic
model reproduce the experimental results for PC3 cells? What can we learn
from that?

To answer to these questions, we first estimated the probability density
functions of the filopodium lengths obtained from the stochastic model by
performing a kernel density estimation. Some examples are shown in Fig. 5a,
for five different values of vr. We called E1 and E2 the experimental probability
density functions for Groups 1 and 2, respectively, which are obtained from
a kernel density estimation of the experimental data (see Fig. 4b). Then we
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propose to reconstruct E1 and E2 as a linear combination of the simulated
distributions Sj , where the sub-index j stands for the j−th retrograde velocity
value:

E1 =
m∑
j=1

C1
j Sj , (1)

E2 =
m∑
j=1

C2
j Sj , (2)

C1
j and C2

j are the weight of the contribution of each theoretical distribution for
Groups 1 and 2, respectively. We regard the same m = 11 values of retrograde
velocity covering the range between 5 and 100 nm/s for both Eqns. 1 and 2.

We have shown in Table 3 that the Groups 1 and 2 skewness and excess
kurtosis apart from zero. Therefore, we use the first four moments of E1, E2

and Sj to calculate the coefficients C1
j and C2

j , as discussed in Section 4.5.
The coefficients obtained from Eqns.1 and 2 are displayed in Fig. 5b. Figs. 5c
and d exhibit the reconstruction of E1 and E2 using these coefficients, which
shows the good agreement between the model and the experimental data.

Note that contributions of vr in the range 10 to 100 nm/s are necessary to
reconstruct Group 2 distribution, while Group 1 distribution can be recovered
with vr values between 50 and 90 nm/s (by only considering contributions
with weights greater than 2%). This result is related with the dispersion of
the length values, which is greater in the case of Group 2 (see Table 3). Also,
there is a predominance of low and medium values of vr for Group 2, that is,
vr = 20 and 50 nm/s (C3

2+C6
2 > 80%). For Group 1, the emphasis is in medium

and high values, that is, vr = 50 and 90 nm/s (C6
1 +C10

1 > 98%). Since lower
values of vr are associated with higher values of filopodial length, the result
above responds to the fact that Group 2 presents a long-tailed distribution
biased to high length values.

Therefore, the main lesson from the comparison between the experimental
data for PC3 cells and the stochastic model is that the reconstruction of Group
2 data involves a wide range of values of vr, and that the main contributions
come from low vr values.

3 Discussions

Filopodia play key roles in several cellular processes such as sensing and mi-
gration [1]; they are also involved in cell-cell interactions [2,45,50,51]. Conse-
quently, filopodia have a very rich phenomenology, with lengths, growth and
retraction rates, and lifetimes, highly variable. The mechanisms underlying
formation, maintenance and dynamics of filopodia are complex and not yet
fully understood. To shed some light on the growth dynamics of filopodia, we
proposed a cross-talk between a theoretical stochastic model and experiments
in PC3 cells.
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Fig. 5 Comparison between experimental and simulation data using 4 moments of the
distributions. (a) Probability density functions of the theoretical filopodium lengths for
different values of retrograde velocity as indicated in the legend, obtained from kernel density
estimations. (b) Coefficients of Eqns. 1 and 2 for Groups 1 and 2 (red and blue, respectively).
For Group 1 the coefficients C1

j whose contribution is greater than 2% are related to vr = 50

and 90 nm/s (C3
1 < 0.002, it is smaller than the line thickness). For Group 2 the non-null

coefficients C2
j are associated to vr = 10, 20, 30, 50 and 100 nm/s. (c) and (d) Experimental

distributions E1 and E2 (red and blue lines, respectively), and the reconstructed simulation
data by considering the coefficients shown in panel (b), for Groups 1 (c) and 2 (d).

We studied filopodia patterns in non-confluent PC3 cell cultures using
confocal microscopy. Cells were fixed and inmunolabelled with rhodamine-
phalloidin, allowing the visualization of actin structures. In some cases filopo-
dia take the form of cell-cell bridges [3,47,51] implicated in the transport and
interchange of molecules or vesicles. These structures are very stable and it
has been suggested that they are reminiscent structures that remained after
the retraction of the lamelipodia of two adjacent cells that were previously
in contact [47]. We did not consider these kind of filopodial structures in this
work. Rather, we focused on cell regions where single filopodia could be uni-
vocally tracked. We measured the lengths of these filopodia from the images
using custom made tracking routines and determined their distribution.

Our analysis of the experimental results suggested the presence of two pop-
ulations of cell regions according to the dispersion of their filopodial lengths,
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which we called Group 1 and Group 2. While Group 1 cells had filopodia
with a narrow distribution of lengths, Group 2 showed a much more variable
pattern.

These results were interpreted in terms of a stochastic model of filopodia
growth that considers explicitly the main chemical reactions at the filament
barbed end: polymerization and depolymerization of actin, as well as bind-
ing and unbinding of the regulatory proteins capping and formin. Also, the
processes that result in the centripetal movement of actin filaments are rep-
resented in the model by an effective retrograde velocity. We inspected the
effect of varying the retrograde velocity on the filopodial length and we found
an inverse nonlinear dependence between them.

Considering these results, we proposed that the experimental lengths ob-
tained for PC3 cells could be approximated to a linear combination of the in
silico results for different values of retrograde velocities. In order to assess the
reconstructed distribution, we compared its first 4 moments with the corre-
sponding experimental ones. We found a good agreement between the model
and the experimental data. We concluded that the reconstruction of Group 2
data demanded a wider range of values of vr than Group 1 reconstruction, for
which also low values of vr were absent.

Based on these results, we proposed that Group 2 data came from cell
regions where heterogeneous signaling induced further variability in the retro-
grade flow velocity or filopodia stability [21,23–25] resulting in long filopodia
and a wide length distribution. These cues could stem from the previous inter-
actions with cells that were close before [52], or differential substrate adherence
[53–55]. We did not consider explicitly these signaling processes and their ef-
fects in our model. Nevertheless, we included their effective behavior in the
value of the retrograde flow velocity.

Although we cannot rule out other sources of variability in the lengths of
filopodia, we believe that regulation of the retrograde flow represents an inter-
esting mechanism by which cells can control other processes such as migration
and/or invasion in the case of cancer cells.

4 MATERIALS AND METHODS

4.1 Numerical Simulations

We implemented an off-lattice one dimensional stochastic model of filopodial
growth. We model growth dynamics of already initiated protrusions. A simu-
lated filopodium consists of several actin filaments, in our model the maximum
number of filaments contained by a filopodial bundle is 16. The filaments dou-
ble helical conformation is simplified as single one dimensional structures. Each
filament is an assembly of sub-units of size δ and is considered to be indepen-
dent of the other filaments within the protrusion. As the computational model
is one-dimensional we do not consider filaments radial distribution.
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To simulate reactions and diffusion we apply a stochastic molecular ap-
proach. Results obtained with this method are expected to be equivalent to the
ones found with the Gillespie algorithm, as shown by Erban at al. for a simpler
model [31]. The model implemented here is similar to the proposed by Zhu-
ravlev and Papoian [30]. It takes into account the following main components:
(1) diffusion of molecules from the cell body into the filopodium compart-
ment, (2) polymerization and depolymerization, (3) actin-binding regulatory
proteins and (4) retrograde flow.

Let us consider a filopodium at time t composed of N(t) actin filaments
of length hi(t), i = 1, 2, ..., N(t). We define the filopodial length H(t) =
max(hi) and consider the membrane position to be located L/2 = 25 nm
above the longest filament M(t) = H(t) + L/2. A simulation time-step can
be summarized as follows: (i) actin, formin and capping molecules can diffuse
from the cytosol to the filopodia; (ii) all G-actin molecules whose position are
between [hi(t)−L/2, hi(t) +L/2] have a non-zero probability of polymerizing
at the ith filament, with on-rate values according to the presence of a formin
and/or a capping molecule at the barbed end. For each actin polymerized, the
filament length is increased by δ; (iii) each of the actin molecules at the barbed
end can depolymerize; (iv) all the formin/capping molecules whose position
are between [hi(t)−L/2, hi(t) +L/2] can bind into the barbed end of the ith
filament (in the case that a formin/capping protein is not yet bound). Just
one formin/capping can bind to the filament; (v) If there is a formin/capping
bound to the filament, it can unbind; (vi) the filament length is reduced by the
retrograde flow with a constant velocity vr. Steps (ii)-(vi) are performed for
each of the N(t) filaments. The filopodial length is updated taking the value
of the longest filament.

The simulation time-step was chosen so that all the probabilities are sig-
nificantly smaller than 1 to guarantee stochasticity (δt = 10−6s) and the
algorithm was implemented in C programming language.

Diffusion
The diffusive molecules contemplated by our model are G-actin, capping

protein and formin. The three types of biomolecules are present in the cyto-
plasm with different cytosolic concentrations (see Table 1), they follow Brown-
ian motion dynamics and enter into the filopodial tube stochastically. G-actin,
formin and capping protein diffusion into and within the filopodium is imple-
mented in the same way Erban et al. did for G-actin [31] as we describe below.

G-actin is introduced into the filopodial structure with probability 2Nact

L

√
Dactδt
π ,

where Nact = 5.3 is the number of G-actin molecules within the volume V
of a cylinder of height L = 50nm and diameter d = 150nm and is calcu-
lated by multiplying the bulk concentration [A]cyt by V . The initial position
of a molecule introduced into the filopodium is sampled from the probability

density function f(x) =
√

π
4Dactδt

erfc
(

x√
4Dactδt

)
[31]. Formin and capping

protein diffusive jumps into the filopodium are implemented likewise with the
corresponding parameters (see Table 1), in these cases Nform = 0.042 and
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N cap = 0.026. Flegg et al. [56] provide a detailed description of the imple-
mentation of diffusive jumps from a bulk domain (cytosol) into a molecular
domain (filopodium).

All the molecules trajectories are explicitly computed. At time t, within
the filopodium there are nact(t) G-actin molecules at positions xactj (t), j =
1, 2, ..., nact(t), ncap(t) capping proteins located at xcapk (t), k = 1, 2, ..., ncap(t)

and nform(t) formin molecules placed at xforml (t), l = 1, 2, ..., nform(t). The
position of each particle can take values in a continuous range between the
filopodial base and the membrane position [0,M(t)].

All the molecules positions evolve as random walk particles, hence an
mth molecule located in xm(t) at time t moves to the position xi (t+ δt) =
xm(t) + δxm, where the spacial step δxm = RMS · εm, RMS is the root mean

square displacement in 1D
(√

2Dδt
)

and εm is a standard normal distributed

random number. Reflective boundary conditions were imposed at the mem-
brane, if xm(t) + δm > M(t) then xm(t+ δt) = M(t)− (xm(t) + δxm −M(t))
and open boundary conditions were set at the filopodial base, if xm(t+δt) < 0
then the particle is removed from the system and the number of that type of
molecules within the filopodial structure is reduced by one.

(De) Polymerization

At time t a filopodium consists of N(t) filaments of length hi(t), i =
1, 2, ..., N(t). Each one of the filaments evolves with its own independent dy-
namics. Since we perform stochastic molecular simulations [31], for all the fila-
ments we consider that each individual G-actin molecule located at a distance
smaller than L/2 from the filament tip [29] can polymerize into its barbed
end. In order to determine the assembling probability of each actin monomer,
we must consider the rate of G-actin polymerization, kacton , in units of

[
s−1
]

instead of
[
µM−1s−1

]
as usually reported (see Table 1). Therefore we take

the volume of a cylinder of height L and diameter d and we get the parameter
in the desired units Kact

on = 21.9s−1 per molecule of G-actin. Accordingly, the
assembling probability for each G-actin molecule within a time interval (δt) is
Kact
on · δt. The case where there is a formin and/or a capping molecule bound

to the filament will be discussed next.

Because we model the microfilaments as single one-dimensional objects,
while they actually are double helices, the filaments increase its lengths by
half the size of an actin monomer (δ) when polymerization occurs. Next, we
remove the polymerized G-actin protein from the pool of free molecules. More-
over, within a time interval (δt) each filament has a depolymerizing probability
of kactoff · δt, as kactoff is the dissociation rate of an actin monomer at the barbed
end. If a depolymerization event happens the filament length is reduced by
δ and a new G-actin monomer is introduced at the position of the filament
length before depolymerizing hi(t).

Actin-binding regulatory proteins
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Two types of actin-binding proteins are contemplated by the model: formin
and capping proteins. In the same way that polymerization was implemented,
for each actin filament all the formin and capping molecules located at a
distance less than L/2 can attach to the filament with the appropriate proba-
bility. In order to calculate these probabilities, the units of the on-rates were
transformed from

[
µM−1s−1

]
to
[
s−1
]
, as it was done with the polymeriza-

tion rate kacton . Thereby we obtain Kact−form
on = 100s−1, Kform

on = 54.9s−1,
Kform−cap
on = 3.02s−1, Kcap

on = 24.2s−1 and Kcap−form
on = 0.27s−1.

Formin (un)binds to the free filaments barbed ends with probabilityKform
on ·

δt (kformoff · δt). When a filament is anticapped with formin the polymerization

probability is Kact−form
on · δt whilst depolymerization remains unaltered. On

the other hand, capping proteins can bind to each one of the filaments free
barbed ends with probability Kcap

on ·δt completely blocking polymerization and
depolymerization. Uncapping of capped barbed ends takes place with proba-
bility kcapoff ·δt. A capping protein can bind to a formin-bound barbed end with

probability Kcap−form
on ·δt and unbind with probability kcap−formoff ·δt as well as

formin can (un)bind to a capped barbed end with probability Kform−cap
on · δt(

kform−capoff · δt
)

. In analogy with the G-actin dynamics implementation, when

a formin or a capper binds to a filament barbed end the protein is removed
from its respective pool and the number of the corresponding type of molecule
is reduced by one. In addition, when unbinding occurs the new unbound pro-
tein is introduced into the system of free molecules in the same way that we
did for G-actin when a depolymerization event took place.

Retrograde flow
Microfilaments pointed end depolymerization together with the action of

myosin leads to the phenomenon of retrograde flow, a centripetal movement of
actin filaments. Our model assumes all the filaments that conform a filopodial
bundle move backwards with the same constant retrograde velocity vr. At
every time-step δt each filament of length hi(t) is shortened by vr ·δt therefore
hi(t+ δt)→ hi(t)− vr · δt.

4.2 Statistical analysis

The filopodial length averaged over an ensemble of n simulation runs at time
t is defined as:

〈L(t)〉 =
1

n

n∑
i=1

Li(t), (3)

where Li(t) is the length of the realization i at time t. Obviously, the n re-
alizations refer to the same parameters values. Further, the mean filopodial
length is defined as the time average of 〈L(t)〉 over T values:

L =
1

T

T∑
t=1

〈L(t)〉. (4)
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Since we choose a sampling time of 1s, T is the maximum time considered (in
seconds).

In order to calculate L (shown in Fig. 2b) we consider n different runs of
T = 1000s, with a time step of 1s. For vr between 20 nm/s and 100 nm/s
we use n = 5, whereas for vr = 5 and vr = 10 we take n = 18 and 17,
respectively. Better statistics are necessary to represent low vr data because
of large fluctuations in the transient period. The same simulation data were
used to calculate the probability density functions Sj (Step 2 of Section 4.5).

In cases where binning was required, the size of the bins was determined by
Freedman–Diaconi’s rule. Boxplots are presented as mean, SEM and SD, ac-
cording to [49]. For the filopodial lengths analysis, distributions were compared
with a two-sample Kolmogorov–Smirnov test. A kernel density estimation was
applied to the data in order to obtain probability density estimate curves.

4.3 Cell culture, samples preparation for imaging and confocal microscopy

PC3 cells were obtained from the American Type Culture Collection (Manas-
sas, VA, USA) and were routinely cultured in RPMI 1640 (Invitrogen, Grand
Island, NY, USA) supplemented with 10% fetal bovine serum (FBS), peni-
cillin 100 U/mL, streptomycin 100 g/mL and amphotericin 0.5 g/mL. The
rhodamine–phalloidin was purchased from Life Technologies (Thermo Fisher
Scientific Inc., Eugene, OR, USA). Immunofluorescence experiments and quan-
titative microscopy: PC3 cells were fixed with 8% paraformaldehyde (PFA) (20
min, room temperature) and stained with rhodamine–phalloidin (1 h, room
temperature) [45]. Confocal images were acquired by confocal microscopy
(FV1000, Olympus, Tokyo, Japan) using an UPlanSApo 60x oil immersion
objective (NA 1/41.35; Olympus), a diode laser of 543 nm as the excitation
source and fluorescence was collected in the range of 555–655 nm.

4.4 Filopodia localization and tracking

Image processing was done with ImageJ and data analysis was carried out with
R. The workflow to determine filopodial length involved manual tracking of
filopodia and the latter automatic determination of its length. Image contrast
and brightness were adjusted for better identification of filopodia. Protrusions
that did not accomplish certain minimal requirements were not measured as
stated before.

We acquired intensity profiles of lines traced above the filopodia using
the ImageJ line profile tool in segmented mode, line width was established
considering image resolution so that each filopodium was completely covered
by the line (7 pixels for 1 image, 8 pixels for 8 images and 10 pixels for the
remaining 39).

The program computes the average intensity along the line. The line start-
ing point was set inside the cell body and the ending point was placed beyond
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Table 4 Moments of the experimental distributions, E1 and E2.

1st 2nd 3rd 4th

Group 1 µ11 = 3.4 µ12 = 13.0 µ13 = 54.5 µ14 = 250
Group 2 µ21 = 5.1 µ22 = 33.0 µ23 = 260 µ24 = 2375

the visible tip as shown in Fig.3e. We also acquired background intensity pro-
files for every image. Each filopodium and cell was assigned an ID number,
and for every cell we also kept information if it had contacts or not with sur-
rounding cells. All the objects were saved within the images so that every
filopodium can be tracked back.

The recovered intensity profiles showed a rapid rising until reaching a max-
imum around the filopodia base and the subsequent gradual decrease until
reaching the filopodia extreme where the signal becomes indistinguishable
from the statistical background noise (Fig.3f). Then, each intensity profile
was smoothed with the R smooth function, a median filter to reduce the noise
signal. We set the pixel with the highest intensity as base of the filopodia. We
performed statistical analysis on the background intensity profiles for every
image, determining the mean background signal and its standard deviation.
The tip of the structure was determined by setting a threshold as the mean
plus 3 standard deviations of the background signal. We obtained filopodial
length subtracting the tip to the base position.

We aimed to estimate the sampled filopodia percentage from the total
population within the explored regions. For that, we measured the contour
length of 45 sampled areas (≈ 1194 µm) and multiplied it by the filopodial
linear density (≈ 0.5 µm−1) [45]. This led to ≈ 597 expected filopodia in
contrast to 337 ones within the covered perimeter. Therefore, we estimated
to have measured the length of about ≈ 56% of the protrusions within the
explored areas.

4.5 Reconstruction of the experimental filopodium length distributions

As we stated in Section 2.4, the probability density function of the filopodium
length for Groups 1 and 2 obtained from experimental data can be recon-
structed by a linear combination of the simulated distributions obtained for
different values of retrograde velocity vr. In order to determine the weight of
each simulation distribution in the reconstruction of the experimental data,
the procedures are detailed below.

Step 1: We use the kernel density estimation to generate two distribu-
tions, E1 and E2, for the experimental filopodium lengths for Groups 1 and 2,
respectively.

Step 2: We use the kernel density estimation to generate m length dis-
tributions from the simulation data, each one corresponding to a different
value of vr. Let us call these distributions as Sj , with j = 1, . . . ,m. For the
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simulations we consider the following m = 11 values of retrograde velocity,
vr = 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 nm/s. Information about the simu-
lation data considered to construct the functions Sj are detailed in Section
4.2.

Step3: To reconstruct the experimental distributions E1 and E2, we should
determine the weights C1

j and C2
j of each simulation distribution Sj , for Groups

1 and 2, respectively. That is: E1 =
∑m
j=1 C

1
j Sj and E2 =

∑m
j=1 C

2
j Sj (Eqns. 1

and 2, respectively).
Step 4: The moments of order i, µi, with i = 1, . . . , 4 are calculated for

the experimental distributions E1 and E2 (see Table 4). Therefore, we can

define
−→
M1 =

(
µ1
1, µ

1
2, µ

1
3, µ

1
4

)
and

−→
M2 =

(
µ2
1, µ

2
2, µ

2
3, µ

2
4

)
, for Groups 1 and 2,

respectively.
Step 5: We compute the moments of order i, µi, with i = 1, . . . , 4, for each

of the Sj simulated data performed for different retrograde velocities values:
−−→
MSj

=
(
µ
Sj

1 , µ
Sj

2 , µ
Sj

3 , µ
Sj

4

)
, with j = 1, . . . ,m.

Step6: We consider the following linear regression for each of the moments
of Group 1:

µ1
1 = C1

1µ
S1
1 + C1

2µ
S2
1 + · · ·+ C1

mµ
Sm
1 ,

µ1
2 = C1

1µ
S1
2 + C1

2µ
S2
2 + · · ·+ C1

mµ
Sm
2 ,

µ1
3 = C1

1µ
S1
3 + C1

2µ
S2
3 + · · ·+ C1

mµ
Sm
3 .

µ1
4 = C1

1µ
S1
4 + C1

2µ
S2
4 + · · ·+ C1

mµ
Sm
4 . (5)

Similar equations are found for Group 2.
Step 7: Let us normalize the moments of the experimental distributions

respect to the first moment as:

−−→
MR

1 =
(
µ1
1/µ

1
1, µ

1
2/
[
µ1
1

]2
, µ1

3/
[
µ1
1

]3
, µ1

4/
[
µ1
1

]4)
,

−−→
MR

2 =
(
µ2
1/µ

2
1, µ

2
2/
[
µ2
1

]2
, µ2

3/
[
µ2
1

]3
, µ2

4/
[
µ2
1

]4)
,

Therefore, Eqs. 5 for Group 1 and similar equations for Group 2 can be rewrite
(in a reduced way) as:

µ1
i /
[
µ1
1

]i
=

m∑
j=1

C1
j µ

Sj
i /

[
µ1
1

]i
, (6)

µ2
i /
[
µ2
1

]i
=

m∑
j=1

C2
j µ

Sj
i /

[
µ2
1

]i
, (7)

with i = 1, . . . , 4.
This normalization procedure is necessary in order to give similar impor-

tance to the different moments when the regression analysis is done. In other
way, high moments will be favored.
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Step8: We determine the coefficients
−→
C1 =

(
C1

1 , C
1
2 , C

1
3 , . . . , C

1
m

)
and

−→
C2 =

(
C2

1 , C
2
2 , C

2
3 , . . . , C

2
m

)
, associated with the constrains given by Eqs. 6

and 7, respectively. The system has no exact solution, therefore we use a L1

minimization [57] to obtain
−→
C1 and

−→
C2.

Step9: After the determination of C1
j and C2

j we normalize the coeffi-

cients
∑m
j=1 C

1
j = 1 and

∑m
j=1 C

2
j = 1 to ensure the normalization of the

reconstructed distributions.
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