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ABSTRACT 

Aberrant signaling through insulin (Ins) and insulin-like growth factor I (IGF1) receptors 
contributes to the risk and advancement of many cancer types by activating cell survival cascades. 
Mechanistic computational modeling of such pathways provides insights into each component’s 
role in the cell response. In previous computational models, the two receptors were treated as 
indistinguishable, missing the opportunity to delineate their distinct roles in cancer progression. 
Here, a dual receptor (IGF1R & InsR) computational model elucidated new experimental 
hypotheses on how differential early responses emerge. Complementary to our previous findings, 
the model suggested that the regulation of insulin receptor substrate (IRS) is critical in inducing 
differential MAPK and Akt activation. As predicted, perturbing ribosomal protein S6 kinase 
(RPS6K) kinase activity led to an increased Akt activation with insulin stimulation compared to 
IGF1 stimulation. Being able to discern differential downstream signaling, we can explore 
improved anti-IGF1R cancer therapies by eliminating emergence of compensation mechanisms, 
without disrupting InsR signaling. 
 
Implications: The study shows, both experimentally and through computational models, that 
IGF1 and insulin receptor signaling pathways respond differently to RPS6K inhibition.  

INTRODUCTION 

Insulin and type I insulin-like growth factor (IGF1) are closely related hormones that are critical 
to development and metabolism (1–4). Their receptors, InsR and IGF1R, are structurally and 
functionally similar, showing 60% overall amino acid sequence similarity and 84% identity at the 
kinase domain (5,6). The signaling pathways of both receptors have been linked to cancer, where 
both can activate proliferation and survival cascades. Increased insulin and IGF1 levels have been 
shown to correlate with increased risk of several cancer types (7–9). IGF1R content in breast 
cancer (BRCA) tumors is 14 times higher than in normal tissue, and inhibiting IGF1R has been 
shown to block tumor growth in cell lines and model organisms (10–15).  

While no recurrent cancer-specific mutations of IGF1R or its ligands have been described to 
date, studies have provided evidence for a link between this signaling pathway and the risk of 
developing cancer. IGF1R signaling leads to both proliferative and anti-apoptotic signaling by 
employing Ras/MAPK and PI3K/Akt cascades. Clinical trials of IGF1R targeting received some 
positive responses; however, compensation mechanisms emerge and decrease the efficacy of such 
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drugs (16–18). Insulin stimulates cell growth, differentiation, and promotes synthesis while 
inhibiting lysis of macromolecules (4). Insulin malfunctioning results in dysregulation of these 
processes and causes elevated glucose and lipid levels. Insulin resistance has been associated with 
both type II diabetes and obesity, where increased insulin levels is shown to correlate with 
increased risk of several cancer types (4,7,8,19).  

The insulin and IGF1 receptors are heterotetramers, or rather a dimer of heterodimers, with 
two α and two β subunits. Beta subunits contain the intracellular kinase domains. The α-subunits 
span the extracellular ligand binding domains. IGF1R and InsR can also form hybrid receptors, 
with one α-β pair from each. These hybrid receptors show differential affinity for the three ligands 
(20). Two recent studies suggested that the extracellular domains (ECD) of the apo-receptor forms 
exert a physical force to keep the intracellular kinase domains apart from each other, enough to 
prevent auto-phosphorylation (21,22). Ligand binding then induces a conformational change that 
lets the transmembrane and kinase domains to interact and auto-phosphorylate. The changes upon 
ligand binding are studied by Houde and Demarest in (23). Kiselyov et al. used modeling 
approaches to re-capture available ligand binding dynamics of insulin in (24). This study only 
considered the ligand-receptor binding events, ignoring the fact that downstream elements of the 
transduced signal also affect available receptors on the cell surface. 

An understanding of the differences between the highly similar InsR and IGF1R signaling is 
important for therapeutic development and clinical trial design. In a previous study (25), we 
constructed statistical models of insulin and IGF1 signaling from a large proteomics data set. Our 
models revealed, and experiments confirmed, cell-level differences in signaling through the two 
pathways. Specifically, acetyl-CoA carboxylase (ACC) or E-Cadherin knock-down increases 
MAPK or Akt phosphorylation, respectively, in IGF1 stimulated cells over Ins stimulated cells 
(25). Although subsequent work showed that loss of E-Cadherin increases sensitivity of breast 
cancer cells to IGF1R/InsR targeted therapy by hyperactivating the IGF1R signaling pathway (26), 
the precise mechanisms through which ACC and E-cadherin influence signaling remains hidden.  

Here we construct a mechanistic model of IGF1R/InsR signaling to identify downstream 
differences in signaling through the two receptors. Most existing models treated IGF1R and InsR 
signaling identically (27–30), while some, although they modeled them individually, did not focus 
on studying them (31). In contrast, our model retains each receptor’s unique identity and recovers 
differences in signaling through IGF1 and Ins. We show through systematic parameter scanning 
that perturbing ribosomal protein S6 kinase (RPS6K) activity should increase Akt activation with 
insulin stimulation compared to IGF1 stimulation, and we experimentally confirm this prediction. 
Our work demonstrates that modulating targets downstream of IGF1R and InsR may provide an 
alternative to specifically modulating IGF1R, potentially allowing targeted IGF1R therapies that 
do not disrupt insulin signaling and glucose metabolism. 

METHODS 

Initial dataset and computational model parameter estimation 
The initial dataset utilized here was defined in our previous work (25). In short, reverse phase 
protein array (RPPA) is a high-throughput technique for quantifying levels of total and 
phosphorylated proteins (32,33). The model parameters were estimated using RPPA expression 
levels of four phospho-proteins: pReceptor (both IGF1R and InsR), pAkt, pRPS6K, and pMAPK. 
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Data from three early time points (5, 10, and 30 min) were used to estimate the parameters and to 
calculate the fitting error. 

In this work, all ODEs corresponding to the state variables were obtained from BioNetGen 
(34), and the rest of the simulations and analyses were done in MATLAB (The MathWorks, Inc., 
version R2015a). The parameter estimation was done using Markov chain Monte Carlo (MCMC) 
sampling, at different temperatures to search the parameter space both locally and globally (35). 
High temperature chains scan the parameter space more globally, and the probability of accepting 
an unfavorable move depends on the temperature. The swaps among different chains help avoid 
getting stuck in local minima. The approach samples the Bayesian posterior distribution of each 
parameter, with uniform priors (36,37). The estimation procedure outputs parameter ensembles for 
each chain. The minimum fitting error parameter set was defined as the “best-fit” and was used 
for all subsequent analyses.  
In-silico ensemble of cells 
Using the value-ranges set for the initial protein count parameters, an ensemble of 10,000 
parameter sets were generated using Latin hypercube sampling. By only changing the values of 
total protein numbers and keeping estimated rate parameters constant, different cell conditions 
were captured (i.e. a virtual cell population). 
Parameter perturbation scanning 
Once the parameters were determined, simulations were run to analyze the response of the system. 
Each parameter was perturbed individually and for every different value of each parameter, one 
simulation was run. The predicted levels of pMAPK and pAkt in the perturbed system were 
compared to the levels in the un-perturbed model output, simulating experimental knock-down 
(up-regulation) of proteins or reaction rates. Based on the results of the simulations here, 
perturbations that resulted in differential responses under IGF1 and insulin stimulation conditions 
were selected for further experimental exploration. 
Cell culture and immunoblotting 
MCF7 (ATCC) cells were cultured in DMEM (ThermoFisher) with 10% FBS, plated on six well 
plates at 400000 cells/well density. The cells, rested overnight, were serum starved for 16-24 
hours. Then, the cells were treated with DMSO control or ribosomal protein S6 kinase inhibitor 
LY2584702 (500 nM, Selleckchem) for three hours. Next, the cells were stimulated with control, 
IGF1 (10 nM), or insulin (10 nM) for 10 and 30 min. The cells were harvested, and protein 
concentration was quantified by BCA. Samples were collected using RIPA buffer (50mM Tris pH 
7.4, 150mM NaCl, 1mM EDTA, 0.5% Nonidet P-40, 0.5% NaDeoxycholate, 0.1% SDS) with 1x 
HALT protease & phosphatase inhibitor cocktail (ThermoFisher). The immunoblotting was done 
using 12% acrylamide gels and PVDF membrane transfer (Millipore #IPFL00010, 0.45µm). 
Membranes were blocked in Odyssey PBS Blocking Buffer (LiCor), and incubated in primary 
antibodies overnight: Akt S473 (Cell Signaling #4060; 1:1000), total Akt (Cell Signaling #2920; 
1:1000), phospho-S6 S235/236 (Cell Signaling #4858, 1:1000), total S6 (Cell Signaling #2217, 
1:1000), and β-actin (Sigma #A5441; 1:5000). Membranes were incubated in LiCor secondary 
antibodies for 1 hour (anti-rabbit 800CW, LiCor #926-32211 or anti-mouse 680LT, LiCor #925-
68020; 1:10000) at room temperature. The imaging was done at LiCor Odyssey Infrared Imager, 
where blots were quantified using LiCoR Image Studio Lite v5.2 software. 
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T47D (ATCC) and ZR75-1 (ATCC) cells were cultured in RPMI-1640 (HyClone, GE) with 
10% FBS, 1% glutamine, and 1% Penicillin-Streptomycin, plated on six well plates at 500000 
cells/well density. The cells, rested overnight, were serum starved for 16-24 hours. Then, the cells 
were treated with DMSO control or ribosomal protein S6 kinase inhibitor LY2584702 (1 μM) 
overnight. Next, the cells were stimulated with control, IGF1 (10 nM), or insulin (10 nM) for 10 
and 30 min. The cells were harvested, and protein concentration was quantified by Bradford 
absorbance assay. Samples were collected using HEPES buffer (1% Triton X-100, 10% Glycerol, 
5mM MgCl2, 25mM NaF, 1mM EGTA, 10mM NaCl) with 1x HALT protease & phosphatase 
inhibitor cocktail (ThermoFisher). The immunoblotting was done using 12% acrylamide gels 
(ThermoFisher #XP00125BOX) and PVDF membrane transfer (ThermoFisher #LC2002, 0.2 µm). 
Membranes were blocked in 5% milk in 1X TBST solution (TBST: Tris Buffered Saline (Sigma 
# T6664) with 0.1% Tween20), and incubated in primary antibodies overnight: Akt S473 (Cell 
Signaling #4060; 1:1000), total Akt (Cell Signaling #2920; 1:1000), phospho-S6 S235/236 (Cell 
Signaling #4858, 1:1000), total S6 (Cell Signaling #2217, 1:1000), and β-actin (Sigma #A5441; 
1:5000). Membranes were incubated in HRP secondary antibodies for 45 min at room temperature 
(anti-rabbit, Jackson #111-035-003 or anti-mouse, Jackson #115-035-003; 1:8000). The imaging 
was done on a Philipps L4000 Imager using ECL substrates (BioRad #170-5060). The blots were 
quantified using LiCor Image Studio Lite v5.2 software.  

All three cell lines are parental cells obtained from ATCC and internally mycoplasma tested 
regularly or when suspected of any contamination. No such observation during this study. 

RESULTS 

Computational model 
We developed our model (Fig. 1A) from previous work in which only IGF1R signaling (27,28) or 
InsR signaling (29,30) was modeled. Ligand binding to IGF1 or insulin receptors promotes 

 
Figure 1. The computational mechanistic model representation. (A) The topology of dual IGF1R/InsR 
signaling network is illustrated. The model includes 16 proteins. Black arrows represent activation and red lines 
indicate inhibition of the corresponding active molecule. The graph is adapted from RuleBender software. (B) 
The initial molecule numbers of the species in the model. The parameter value ranges and the “best-fit” values 
are reported. mpc: molecules per cell. 
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receptor intracellular domains to auto-phosphorylate, leading to IRS and SOS binding and their 
activation (27–29,38,39). Phosphorylated IRS can also activate SOS in addition to PI3K 
(29,40,41). SOS activation leads to activation/phosphorylation of Ras, Raf, MEK, and MAPK 
(ERK) (10,27). PI3K activation causes PDK1, Akt, mTOR, and RPS6K activation. There are 
numerous negative feedback loops and crosstalk within the system (Fig. 1A) (28,42).  

The constructed model has 14 proteins and two ligands, and 66 parameters, of which 16 are 
the total protein counts (Fig. 1A and Table S1). The protein counts, and 34 of the rate parameters, 
are common between IGF1 and insulin models, where each model has eight specific parameters. 
See BNGL model in Supplemental Text 1, and corresponding state variables and ODEs in 
Supplemental Text 2. The mechanistic model in this work was constructed using rule-based 
modeling with BioNetGen and RuleBender software (34,43–45).  
The computational training performance of the model 
The experimental dataset used for model training contains proteomic (RPPA) data of 
phosphorylated and total protein levels, at six different discrete time points (0-48 hours). Actually, 
most of the activation (or phosphorylation) events in the downstream cascades occur within 
minutes post-treatment. By studying signaling in the earlier time points, we hope to unravel some 
early response differences of the breast cancer cells to single IGF1 or insulin stimulation. 

The parameter estimation was performed using Markov chain Monte Carlo (MCMC) sampling 
and parallel tempering (35). The procedure yields ensembles of parameter sets and corresponding 
posterior distributions (Figs. S1 and S2). The resulting parameter set (Table S1) of the network 
model was estimated and simulation results conveyed qualitative and quantitative agreement to 
experimental data for both IGF1R and InsR signaling (Fig. 2A). The dashed lines represent the 
performance of the best-fit parameter set model on training data. In addition to the best-fit models 
of IGF1 and insulin stimulation, the ODE models were simulated for an ensemble of parameter 
sets (area plots in Fig. 2A). This corresponds to screening a virtual population of cells, where each 
parameter set has different initial conditions set for the simulation. Within the specified range of 
parameters, the computational model recaptures experimental data, indicating a decent set of rate 
parameters have been estimated.  

Additionally, a sensitivity analysis of the model was carried out and details are described in 
Supplemental Text 3. The cascade-specific parameters affected the corresponding readout the 
most, and the parameters of receptor kinetics induced changes in receptor phosphorylation levels 
(Fig. S3-6). 

There are other mechanistic models in the literature (28,31,46), spanning different proteins and 
interactions (edges) among the protein species in our model. We specifically tested individually 
adding the interactions depicted in (28) into our model. Parameter scanning these model variants 
did not yield an improvement in data fitting and thus the candidate interactions are discarded from 
the final model topology.  
IGF1 dose response and PI3K inhibition in MCF7 cells 
We tested the model performance using two independent datasets: IGF1 dose response (Fig. 2B, 
Table S2) and PI3K/mTOR inhibition (Fig. 2C, Table S3). The simulation results for IGF1 dose 
response were obtained by only changing the level of IGF1 input into the system. The results were 
within the range of experimental error and showed qualitatively good agreement with the data. 
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Figure 2. The mechanistic model training and test performance on multiple omics datasets show qualitative 
and quantitative agreement. (A) The time course trajectories of IGF1 (blue) and insulin (red) stimulations. The 
ODE model was simulated 10000 times with an ensemble of parameter sets, with different total protein numbers. 
The initial amounts of proteins were sampled using Latin Hypercube Sampling. The plots show 5%-95% (light) 
and 15%-85% (dark) confidence intervals for IGF1 (blue) and insulin (red) models. The circles with error bars 
are the corresponding RPPA data points. The dashed black lines are the trajectories for “best-fit” parameter sets. 
(B) The computational model (orange bars) recapitulates experimental IGF1 dose response data (gray bars). The 
error bars represent the standard error of the mean from three independent biological replicates. The y-axis 
represents scaled protein numbers. (C) The computational model (blue bars) recapitulates PI3K inhibition data 
(gray bars). The columns of x-axis correspond to: IGF1: IGF1 (10 nM) stimulation, LY: first inhibitor only, BEZ: 
second inhibitor only, IGF1+LY: first inhibitor and IGF1 (10 nM), and IGF1+BEZ: second inhibitor with IGF1 
(10 nM) stimulation. The receptor and MAPK phosphorylation are not affected by PI3K or mTOR inhibition 
whereas Akt and S6 kinase phosphorylation are decreased. The inhibitions are simulated in the computational 
models as a 90% reduction in the corresponding rate constant(s). The error bars represent the standard error of the 
mean from three independent replicates. The y-axis represents scaled protein numbers. 
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A second tier of performance test was done using PI3K and mTOR inhibition data. One specific 
PI3K inhibitor, LY294002 (LY), and one dual inhibitor of PI3K and mTOR, BEZ235 (BEZ), were 
administered alone or in combination with IGF1 (10 nM) (Table S3). To simulate the activity of 
the PI3K inhibitor LY294002, the rate parameter controlling PI3K-mediated activation of PDK1 
was decreased by 90%. To simulate the activity of the PI3K/mTOR inhibitor BEZ235, this rate 
constant and the constant that controls S6K activation through mTOR were both decreased by 
90%. Without any ligand input, neither inhibitor affected any downstream signaling (Fig. 2C gray 
bars-experimental data, blue bars-simulations). Addition of IGF1 into the inhibitor-treated system 
produced decreased phosphorylation of Akt compared to treatment with IGF1 alone. Although 
ribosomal protein S6 kinase phosphorylation was diminished in both inhibitor experiments, the 
computational model predicted a non-zero activation for IGF1 stimulated cells with PI3K inhibitor 
LY. Even with 90% inhibition of PI3K, minimal mTOR activation occurred and led to 
phosphorylation of S6K. The experimental observation might be a result of the fact that the kinase 
inhibitors are dirtier than the simple perturbations simulated here (47). The model recapitulated 
full deregulation of S6K phosphorylation in the case of another inhibitor (BEZ) with multiple 
targets. Overall, the model showed 
qualitative agreement with the 
experimental results, and captured 
expected behavior of the perturbed 
systems, with minimal parameter 
perturbations.  
Simulation results reveal details of 
known IGF1-strong responses 
We next scanned parameter values 
to search for specific perturbations 
that capture the effects that we 
observed in our earlier knock-down 
experiments of ACC (acetyl-coA 
carboxylase) and E-Cadherin (25). 
The first analysis was carried out to 
determine clues for ACC action on 
MAPK phosphorylation. Previously, 
it was shown that the ACC knock-
down causes an increase in MAPK 
activation, with a larger change 
induced by IGF1 than by insulin. 
The parameter perturbation scan 
results showed that the upregulation 
of the rate of SOS activation by IRS 
protein (rate parameter k7) should be 
explored further to pinpoint the 
mechanism of action of ACC on 
MAPK (Fig. 3A top panel). It is of 

 
Figure 3. In silico perturbation of rate constants reveal 
differential effects on Akt and MAPK phosphorylation. The 
model output of pMAPK and pAkt levels are determined by setting 
and changing the value of each parameter individually, from zero to 
infinity. Each box above is for a parameter, and each column is for 
one time point response of 5, 10, and 30min. Left three columns are 
from IGF1 stimulation results and the right three columns are from 
insulin stimulated simulations. Rows represent the log10 of set 
parameter value. The colors represent the log2 fold change from the 
un-perturbed model output. Red and blue respectively indicate up 
and down regulation of the specified phosphorylation. The dotted 
arrow heads indicate the unperturbed model parameter values in 
log10. Rest of the parameter perturbation scanning results are 
shown in Fig. S7. (B) The respective edges from (A) are depicted 
together to emphasize that all perturbations leading to differential 
regulation are concentrated on IRS proteins. 
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note that the differential response was captured by “up-regulation” of a rate, rather than a knock-
down.  

Second, changing the value of each parameter individually and analyzing the resulting changes 
in Akt phosphorylation levels. We found that disrupting the negative feedback of Akt on the 
upstream adaptor protein IRS had the same effect on Akt activation as did E-Cadherin knock-
down. Turning off rate parameter kf208, corresponding to the feedback of Akt on IRS, caused 
differential up-regulation of Akt activation (Fig. 3A middle panel). A larger increase at 30min with 
IGF1 stimulation was verified experimentally, recapitulating our earlier observations in E-
Cadherin knocked-down cells (25). 
Mechanistic modeling predictions reveal novel insulin-strong responses 
Differential regulation of Akt and MAPK phosphorylation were further explored based on the 
results of parameter perturbation scanning. One of the predictions with a differential response from 
IGF1 and insulin is the knock-down of ribosomal protein S6 kinase. We predicted that upon 
inhibiting S6 kinase, the insulin stimulated cells would have increased Akt phosphorylation at 30 
min, and that the magnitude of the increase would be larger than that in the IGF1 stimulated cells 
(Fig. 3A bottom panel). The rate parameter “kf203” controls negative feedback from S6 kinase on 
IRS. All three computational predictions pointed out that regulation of IRS is critical for 
differential downstream regulation of IGF1 and insulin receptor cascades (Fig. 3B). 
Ribosomal protein S6 kinase (RPS6K) inhibition in luminal BRCA cells 
We experimentally validated the last prediction by chemically inhibiting ribosomal protein S6 
kinase in breast cancer cells, and then treating with IGF1 and insulin, as described in Methods The 
experiments were performed in MCF7, T47D and ZR75-1 cell lines, all of which are luminal and 
hormone receptor positive subtype. The decrease in ribosomal protein S6 phosphorylation (by 
RPS6K) levels was greatest in MCF7 cells (Fig. 4), but in all three cell lines, the level of Akt 
phosphorylation (S473) increased in insulin stimulated drug treated cells, compared to IGF1 
stimulated cells . This result follows the computational prediction of the mechanistic model.  

DISCUSSION 

In our earlier work, we showed that acetyl-CoA carboxylase knock-down increases MAPK 
phosphorylation while E-cadherin knock-down promotes higher Akt activation in IGF1 stimulated 
cells (25). These were novel findings that show how insulin and IGF1 downstream signaling 
cascades differ in cancer cells. In this work, we used a detailed mechanistic model to generate new 
experimental hypotheses on how ACC and E-Cadherin knock-downs result in distinct responses 
upon IGF1 and insulin administration. The results here suggest that the stronger response of 
MAPK to IGF1 than to insulin depends critically on SOS activation through IRS. For the E-
Cadherin knock-down data, the negative feedback from Akt to IRS is important to obtain the 
differential Akt activation. Mechanisms of action of both ACC and E-Cadherin are hypothesized 
to focus on the regulation of IRS, which is an adapter protein and one of the bottlenecks of 
signaling activation (48,49). Recent structural analysis of the two RTKs also suggests a differential 
binding of IRS proteins (39).  

In the current work, the feedback from ribosomal protein S6 kinase (p70S6K) on IRS is 
predicted to differentially affect Akt activation under IGF1 and insulin stimulated cells. The 
experimental validation of the in-silico prediction in three different cell lines shows that there 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.22.349647doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.22.349647


9 

 

indeed is a difference in the regulation of Akt activity in response to different stimuli, with a greater 
change induced by insulin rather than by IGF1. This result indicates a tighter regulation of IRS by 
RPS6K in insulin stimulated cells, such that revoking the negative feedback causes a larger up-
regulation of Akt phosphorylation in hormone receptor positive luminal breast cancer cells. In 
addition, relieving the negative feedback from S6K on IRS was previously shown to sensitize 
colorectal cancer cells to EGFR inhibition (28). Similarly, our collaborators studied IGF1R/InsR 
pathway sensitization in the absence of E-Cadherin (26). These results all convey the importance 
of regulation on IRS and how it activates downstream cascades in different cellular contexts. 

 
Figure 4. Ribosomal S6 kinase inhibition up-regulates Akt phosphorylation. The RPS6K was inhibited in 
MCF7, T47D, and ZR75-1 cells. The pS6 levels are used as the proxy for S6K inhibition efficiency. The total 
Akt and b-actin levels is used to normalize pAkt and pS6 levels, respectively. The perturbagen, ligand, and time 
point for each sample are listed below the blot images (rest of the replicates are shown in Fig. S8), and the blots 
are quantified. The values are reported as normalized to the corresponding no-inhibition control (ctrl). pAkt levels 
represent the response of the cells to the perturbation. All MCF7, T47D, and ZR75-1 cell lines showed higher up-
regulation of pAkt in insulin stimulated cells at 30 min. The results are compared using unpaired, one-tailed two-
sample t-test, and P<0.05 (*), P<0.01 (**), P<0.005 (***), nonsignificant (ns). Results shown are mean ± s.e.m. 
of four independent replicates. S6 phosphorylation quantifications at 10 and 30 min are shown in Fig. S9. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.22.349647doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.22.349647


10 

 

We studied how IGF1 and Ins activate their cognate receptors. The receptors actually have 
different isoforms, IGF1R / IGF2R and InsR-A / InsR-B (20). IGF1R binds to both IGF1 and IGF2 
(insulin-like growth factor 2). The latter ligand is mostly fetal and not studied in this work. IGF2R, 
the IGF1R homolog, has no kinase domain and considered to sequester IGF2 primarily (20). One 
isoform of insulin receptors, the InsR-A, is functional in fetal tissues and cancer cells, whereas 
InsR-B isoform is expressed in adults. InsR-A has similar affinity for IGF2 and insulin (6,11). 
There are even heterodimers of IGF1R/InsR (20), which can ideally bind any of the ligands. In 
this work, we only focused to reveal how IGF1 and Ins stimulations exert different responses in 
breast cancer cells and not focused on the isoform specificity. 

The study of system biology encompasses employment of tools and techniques to extract 
information from large datasets. Within the quantitative systems pharmacologic (QSP) framework 
undertaken here, the mechanistic computational model is supplied with experimental and 
observational data and is iteratively refined (50–52). The role of the models was then to simulate 
different stimulation conditions in silico and analyze the response with any possible off-target 
effects. In doing so, we can start stratifying patients to suitable personalized medicine treatments 
after recognizing and distinguishing that the IGF1R and InsR systems have different dynamics and 
novel signaling components. 
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