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Abstract

In this paper, we show that quantifying histone modifications by counting the number of high–
resolution peaks in each gene allows to build profiles of these epigenetic marks, associating them to a
phenotype. The significance of this approach is verified by applying graph–cut techniques for assessing the
differentiation between myeloid and lymphoid cells in haematopoiesis, i.e. the process through which all
the different types of blood cells originate starting from a unique cell type. The experiments are conducted
on a population of samples from 24 cell types involved in haematopoiesis. Six profiles are constructed for
each cell type, based on a different histone modification signal. Following the experimentally verified idea
that the peak number distribution per gene behaves similarly to gene expression, the profile computation
employs standard differential analysis tools to find genes whose epigenetic modifications are related to
a given phenotype. Next, six similarity networks of cell types are constructed, based on each histone
modification, and then combined into a unique one through similarity network fusion. Finally, the
similarity networks are transformed into dissimilarity graphs, to which two different cuts are applied
and compared to evaluate the classic differentiation between myeloid and lymphoid cells. The results
show that all histone modifications contribute almost equally to the myeloid/lymphoid differentiation,
and this is also confirmed by the analysis of the fused network. However, they also suggest that histone
modifications may not be the only mechanism for regulating the differentiation of hematopoietic cells.

1 Introduction

A histone modification is a covalent post–translational modification to histone proteins, which includes
methylation, phosphorylation, acetylation, ubiquitylation, and sumoylation. Histone modifications are epi-
genetic marks known to modify the structure of chromatin, with the effect of regulating gene expression
[1]. In particular, histone acetylation [5] is a dynamic process regulated by two family of enzymes, namely
histone acetyltransferases (HATs) and deacetylases (HDACs). HATs use coenzyme A (CoA) as cofactor to
catalyze the transfer of an acetyl group to the amine group of a lysine side chain. This reaction produces a
neutralization of the positively charged lysine, leading to a weakening of the interaction between histones and
DNA (which is negatively charged). HDAC has an opposite effect with respect to HAT, in that it reverses
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lysine acetylation, thus restoring its positive charge. Therefore, it has a stabilyzing action, which is consis-
tent with the fact that it is mainly involved in transcriptional repression. Methylation, instead, is a type of
modification occuring mainly on the side chains of lysines and arginines. It consists in the addition of one,
two or three methyl groups to the side chain of the interested aminoacid (mono–, di–, or tri–methylation).
The families of enzimes that are responsible for this modification are methylases and methyltransferases.
The peculiarity of methylation is that it does not alter the histone charge.

It is known that different types of histone modifications can have either an inhibitory or promoting effect
on gene transcription [22]. For instance, H3K27ac, and the mono and tri-–methylation of lysine 4 (H3K4me1
and H3K4me3) are often associated with promoters and enhancers, while tri-–methylation of lysine 27
(H3K27me3) and 36 (H3K36me3) are associated with transcriptional repression [8]. The role of H3K9me3
has yet to be understood. The variation among the potential interaction of marks and effectors suggests
that there is an overall competition for modifications to achieve the proper chromatin state [6]. Therefore,
it is relevant to study relations and interactions between different modifications in order to discover new
regulatory patterns.

In this work, histone modifications are analysed in order to verify a hypothesis on haematopoiesis.
Haematopoiesis is the differentiation process that begins from haematopoietic stem cells (HSCs) and leads
to all the blood cell types through a series of differentiation steps [7]. It is a process that begins well before
birth and continues throughout an individual’s life. In the embryo, the primitive haematopoiesis process
produces only red blood cells, capable of supplying oxygen to developing organs. At this stage, indeed, the
amniotic sac, which feeds the embryo until the placenta is fully developed, controls haematopoiesis. As the
embryo continues to grow, the haematopoiesis process moves to the liver, spleen and bone marrow and begins
to produce other types of blood cells. In infants and children, haematopoiesis of red blood cells and platelets
occurs in the bone marrow, but it can also continue in the spleen and liver. In adults, haematopoiesis of red
blood cells and platelets occurs mainly in the bone marrow. The lymphatic system, especially the spleen,
lymph nodes and thymus, produce a type of white blood cell called lymphocyte, while monocytes are released
mainly by the bone marrow. The body continually produces new red and white blood cells to replace old
ones. About 1% of the body’s blood cells need to be replaced every day, though the haematopoiesis rate
depends on the needs of the body. White blood cells have a shorter average–life, from a few hours to a few
days, while red blood cells can last up to about 120 days.

In the classic model of haematopoiesis, the different blood cell lines originate from a process that follows
a hierarchical pattern, in which the differentiation potential gradually decreases (see Figure 1). The starting
point is represented by multipotent cells, from which oligopotent cells originate, each able to differentiate
only in a few cell lines. Finally, unipotent cells are obtained, which can originate only one type of cell.
Until recently, a simple model based on a series of binary branches — where the first two branches account
for the myeloid and the lymphoid lineages — was broadly agreed, but with the advent of the single cell
sequencing this model has shown its limits, raising the need of more articulated models [4]. In particular,
in [14], the CD34+ multipotent haematopoietic cells and their progressive differentiation scheme have been
studied in the different phases of the development of the human individual, from the fetus to adulthood.
Such a differentiation scheme primarily gives rise to myeloid progenitors, which give rise to a significant part
of the blood cells, including erythrocytes, commonly called red blood cells, or megakaryocytes, responsible
for the platelet production. Indeed, if the liver of the fetus — where haematopoiesis takes place for a few
weeks during gestation — contains a large number of distinct oligopotent progenitors, including myeloid cells,
erythrocytes and megakaryocytes, in the bone marrow of the adult individual, the number of oligopotent
progenitor cells is very limited. In summary, this means that, with adulthood, there is a transition to a two–
level hierarchy, not foreseen in the current dominant model of haematopoiesis, developed since the 1960s,
with different types of blood cells forming quickly from stem cells and not at the end of the entire hierarchical
differentiation process. This discovery allowed to better understand a wide range of hematological diseases,
from anemia, i.e. a pathological reduction of hemoglobin in the blood, to leukemia, which causes the
uncontrolled proliferation of blood cells.

In this paper, we introduce a quantitative method for verifying the plausibility of the differentiation be-
tween myeloid and lymphoid lineages, which characterizes the first hierarchical subdivision in the haematopoi-
etic tree. First of all, networks of cells characterized by similar histone modification profiles are constructed.
Then, a Similarity Network Fusion (SNF) algorithm [21] was applied to integrate them into a unique simi-
larity network, through a cross diffusion process. The fused similarity network can be viewed as a way for
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Figure 1: A simplified classical model of the haematopoietic tree.

synthesizing significant features coming from different data types or, in other words, as a viable solution
for collecting information on how multiple variables determine similarities among entities constituting the
network. Lastly, the goodness of the myeloid/lymphoid hypothesis has been evaluated by applying a graph–
cut approach to networks of dissimilarity among cell types (represented by pairwise dissimilarity matrices).
According to our model, the weight of the edge between two cell types is proportional to their dissimilarity.
Consequently, if a given hypothesis is supported by data, partitioning the network on this basis will cause the
removal of high weight edges. In fact, in order to evaluate the plausibility of a binary classification, each node
of the dissimilarity network is labeled according to the class it belongs to. Then, the problem of verifying
how good the distinction between the two classes is reduces to quantifying the cost of bi–partitioning the
network into two sets, corresponding to the classes, and comparing such cost with that of the best cut. The
experimental results agree with the classical myeloid/lymphoid hypothesis, although they suggest that this
model cannot be the only mechanism for haematopoietic blood differentiation. Finally, and most interest-
ingly, the approach proposed in this paper, tested on blood cell differentiation, can be applied to different
problems in which the correctness of a particular hypothesis, supported by data, must be evaluated.

2 Method

Histone modification profiles from the IHEC database come as continuous signals, one for each of the 6
histone modifications marks identified by the Roadmap Epigenome Mapping Centers1, where each nucleotide
is associated a quantification of the corresponding modifier. The profiles have been obtained by means of the
ChIP–seq technology, which combines chromatin immunoprecipitation (ChIP) with DNA sequencing. The
ChIP–seq protocol [15] exploits the possibility of establishing a covalent crosslink between histone proteins
and the underlying DNA, in order to identify genomic regions where a histone modification is present. After
crosslinking, indeed, the resulting protein– DNA complexes can be captured using histone–specific antibodies.
Subsequently, the link is broken and the DNA is purified, enriched, and sequenced. This procedure causes
the amount of DNA of a specific location to be proportional to the amount of a histone modification. As a
result, quantification can be done by counting the number of reads piling up on each genomic location.

According to our hypothesis, DNA accessibility, and, in turn, gene expression ability, may depend not
only on the presence/absence of acetylated/methylated histone sites, but also on the concentration of these
modifications at certain locations, (i.e. on the formation of peaks). Indeed, the formation of such peaks may

1http://www.roadmapepigenomics.org/
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trigger noticeable modifications of the chromatin structure.

2.1 Peak calling

Let X = {x1, . . . , xn} be the histone modification profile of the sample cell X, where the value xi corresponds
to the number of supporting reads covering the genomic position i. Intuitively, a peak is a local maximum
in X, i.e. a point whose value is reasonably higher than those in its surrounding. Instead of just considering
the single maximum point, we can extend the definition of peak by including also the two monotone curves
leading to the maximum. Despite simple in principle, the two free parameters (peak height and surrounding
size) involved in the definition make finding peaks complicated, since different algorithms for specific needs
may be required. Setting large surrounding areas leads to large peaks which are suitable for the identification
of genomic sites involved in a histone modification (this is, for example, the case of Sole–Search [3] — the
peak detection algorithm used at IHEC). Small peaks, instead, are more appropriate for quantification.

With the aim of quantifying the number of peaks in the histone modification signals, we designed our
algorithm to identify small peaks. Let Xh = {x̂1, . . . , x̂n/h} be a transformation of the profile X at resolution
h (here x̂i = mean([xhi, x(h+1)i−1])), and let R(Xh) = {r1, . . . , rm} (m ≤ n/h) be a compact representation
of Xh, where consecutive pairs x̂i and x̂i+1 are merged if x̂i = x̂i+1. An element ri is eligible as a peak if it
satisfies, at least, the conditions: ri > ri−1 and ri > ri+1. We observe that the representation of a histone
modification profile with R() allows to consider as candidate peaks all the maxima, independently on their
width. However, in order for a point ri to be a real peak, we need to verify also the steepness of the signal
increase, and to compare ri with its background. To this end, we partition the profile R() into intervals of
the form I(ri) = [α, β], such that rα−1 = 0, rβ+1 = 0, and rj 6= 0 ∀j ∈ [α < i < β]. Finally, we compute the
z–score of the peak intensity as:

z(ri) =
ri − µ(I(ri))

σ(I(ri))
(1)

where µ() denotes the mean, and σ() is the standard deviation over the interval I(). The z–score defined
in Eq. 1 is independent on the scale of the histone modification signal, and has the advantage of being
interpretable as a sort of fold change. Consequently, we define a peak as a genomic locus where the score
z() is higher than a user defined threshold (set to 2 in our experiments).

2.2 Normalization

After calling, we proceeded with counting the number of peaks for each gene. Peak counting, as many other
quantification tasks from NGS data, is influenced by the sequencing depth. Indeed, in order for a peak to
be individuated, it needs to be endowed with enough supporting reads. This generally happens easily with
strong signals, while it requires high coverage for weaker signals. Counts Per Million (CPM) and Reads Per
Kilobase per Million [13] (RPKM) are two widespread normalization methods used in the field of RNA–seq
to mitigate the effect of sequencing productivity. Both methods leverage on the acceptable assumption that
the overall amount of signals (in our case, peaks) per sample is roughly constant.

The main difference between these two methods is that RPKM supposes also that the molar concentration
of RNA is constant and, consequently, the number of reads per gene is proportional to gene length. In
our context, CPM and RPKM assume a somehow different semantics. CPM is an absolute measure of
concentration of histone modification peaks on the gene, and it does not make any assumption on its
distribution across the gene. RPKM, in contrast, is a relative measure. The rationale, in this second case, is
that in order to produce a phenotype, the presence of a high concentration of a given histone modification
is not sufficient itself, but it has to be spread along the gene.

Due to the lack of evidence in support of either a model based on the absolute concentration of his-
tone modifications, or one based on a relative concentration, we tested both normalization methods in our
experiments.

2.3 Cell type expression profiles

The IHEC histone modification data portal makes a variable number of different samples available for a
given cell type. We exploited this redundancy by creating a signal–specific histone modification profile for
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each cell type, in order to mitigate the effect of intrinsic per sample variability. In short, we first computed
a cell type profile averaging the contributions of the corresponding samples, and then used feature selection
to retain only significant genes.

Similarly to what happens in the study of gene expression, it is sensible to assume that most genes
do not contribute to a phenotype of interest, since they have either constant or no expression. Although
apparently not interesting, these genes play a relevant role when computing distances between sample profiles.
Indeed, they add constant factors to the distance computation with the effect of stretching distances between
samples, and this causes the ratio between the two closest elements and the two farthest elements to tend
to 1. Filtering out these genes would therefore mitigate this stretching effect without altering the ordering
of pairwise distances.

Setting a cutoff threshold could potentially include/exclude genes with similar histone modification pro-
files only on the basis of a negligible distance from the threshold. We solved this problem by clustering genes
and using the centroids as representatives of all cluster members. This ensures that genes with a similar
profile are both either filtered or retained. We used a conservative threshold by requiring the maximum
value of the centroid on a sample to be higher than the lowest 10% of the expression interval. The k–means
algorithm was applied, endowed with the Lloyd procedure described in [11] (for the implementation we used
the R [16] function kmeans), to select initial centroids to perform clustering. We employed a large value for
k (as large as k = 50) to ensure high within–cluster homogeneity.

Cell type Origin Lineage H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me3 H4K9me3
Alternatively activated macrophage Blood Myeloid 7 7 7 7 7 7
Band form neutrophil Bone marrow Myeloid 3 3 3 3 4 3
CD14–positive, CD16–negative classical monocyte Blood Myeloid 14 9 6 10 9 8
CD34–negative, CD41–positive, CD42–positive megakaryocyte cell Blood Myeloid 2 2 3 3 3 2
CD38–negative naive B cell Blood Lymphoid 4 5 6 5 7 7
CD4–positive, alpha–beta T cell Blood Lymphoid 9 9 9 9 9 9
CD8–positive, alpha–beta T cell Blood Lymphoid 6 5 5 5 5 5
Central memory CD4–positive, alpha–beta T cell Blood Lymphoid 1 1 1 1 2 1
Class switched memory B cell Blood Lymphoid 3 3 2 3 3 3
Cytotoxic CD56–dim natural killer cell Blood Lymphoid 4 4 4 5 6 5
Effector memory CD8–positive, alpha–beta T cell Blood Lymphoid 2 1 2 2 3 3
Endothelial cell of umbilical vein (proliferating) Blood Lymphoid 2 2 2 2 2 2
Endothelial cell of umbilical vein (resting) Blood Lymphoid 1 2 2 2 2 2
Erythroblast Blood Myeloid 2 2 2 2 2 2
Inflammatory macrophage Blood Myeloid 8 8 9 7 8 9
Macrophage Blood Myeloid 14 7 7 13 14 8
Mature eosinophil Blood Myeloid 2 2 2 2 2 2
Mature neutrophil Blood Myeloid 15 13 13 13 13 13
Monocyte Blood Myeloid 36 22 3 28 28 15
Naive B cell Blood Lymphoid 8 8 9 7 8 8
Neutrophilic metamyelocyte Bone marrow Myeloid 3 3 3 3 4 3
Neutrophilic myelocyte Bone marrow Myeloid 3 3 3 3 4 3
Plasma cell Bone marrow Lymphoid 3 3 3 3 3 3
Segmented neutrophil of bone marrow Bone marrow Myeloid 3 3 3 3 4 3
Total 155 127 109 141 152 126

Table 1: Origin, lineage, and number of samples for each cell type and histone modification.

2.4 Similarity network fusion

The first tool that has been used to perform the experimental analysis presented in this paper is called
Similarity Network Fusion (SNF) [21]2. In brief, given multiple similarity networks obtained from different
data types referring to the same set of units, SNF integrates them into a unique similarity network through
a cross diffusion process (CrDP) [20] in such a way that two types of links are promoted [21]: (i) Strong
links, that are not necessarily present in all the networks, and (ii) links that are shared by all the networks.
The output similarity network can be viewed as a combination of the significant features coming from
different data types. Therefore, the fused network can give information on how multiple variables determine
similarities among the studied objects.

2.5 Hypothesis testing scheme: Hypothesis vs. maximum cut

In this section, we introduce a quantitative method for verifying the plausibility of the differentiation between
myeloid and lymphoid lineages, which characterizes the first hierarchical subdivision in the haematopoietic

2The software can be downloaded in the R or MATLAB version at http://compbio.cs.toronto.edu/SNF/SNF/Software.

html.
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Figure 2: Model outline for testing the differentiation hypothesis between myeloid and lymphoid
lineages in haematopoiesis. After the fusion process, the fused similarity matrix is transformed
into a dissimilarity network. Then, the comparison between the cost of the hypothesis cut and
of the maximum cut is applied both to the single data type dissimilarity networks and to the
fused network.

tree. The goodness of such hypothesis is evaluated by applying two different cuts to networks of distances
among cell types.

An outline of the hypothesis testing model applied to the experiments is represented in Figure 2.
Let X = {x1, . . . , xn} ⊆ Rm denote the experimental units, which are represented by m−dimensional

vectors. Moreover, let d : X×X −→ R denote a distance or a dissimilarity measure on X. The computation
of the distance/dissimilarity between pairs of experimental units allows to define the symmetric matrix
D = (d(xi, xj))i,j=1,...,n, which constitutes the adjacency matrix of the distance/dissimilarity network of the
considered units.

Suppose now that we want to evaluate the plausibility of a classification of the experimental units into
two distinct classes, namely, C1 and C2. To this aim, each node of the dissimilarity network is labeled
according to the class it belongs to. The problem of verifying how good the distinction between the two
classes is reduces to quantifying the cost of bi–partitioning the network into the two sets corresponding to
the classes, and to comparing it with the cost of the best cut.

A quantification of the cost of the hypothesis can be obtained by bi–partitioning the graph separating
the two classes, and then computing the cost of the cut as the sum of the eliminated edges. The cost of the
best cut can be obtained by computing the cost of the maximum cut of the dissimilarity network. Indeed,
a max–cut algorithm applied to a dissimilarity network individuates a bi–partition where the dissimilarity
within each set of the bi–partition is minimized, and the dissimilarity between the two sets is maximized.
Although the problem of finding the maximum cut of a graph is known to be NP–complete [10], there are
proposals of heuristic solutions, such as that given in [2].

The procedure presented in [2] — called Greedy Cut algorithm — starts by randomly selecting an edge,
and by using its endpoints to initialize the sets of the bi–partition. Then, all the other vertices are associated
to one of the two sets on the basis of an attraction function. The idea is to associate a vertex to the nearest
set of the bi–partition. Once all the vertices are organized into a bi–partition, the cost of the cut is computed
and compared with that at the previous iteration. The procedure is iterated enough to ensure that all the
edges are considered [2].
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3 Experiments

3.1 Dataset

For our tests, we used a collection of samples of cells of multiple stages in the haematopoietic cell lineages.
Data were taken from the blueprint consortium3, available through the International Human Epigenome
Consortium (IHEC) [9] data portal.

The database consists of healthy and diseased genome–wide profiles of several samples for each of the
6 marks on the Histone H3 identified by the Roadmap Epigenome Mapping Centers 4: the mono and tri–
methylation of lysine 4 (H3K4me1 and H3K4me3), the tri–methylation of lysine 27 and 36 (H3K27me3 and
H3K36me3) and the acetylation of lysine 27 (H3K27ac). Being interested to the physiological process of
haematopoietic differentiation, we limited our experiments only to healthy samples.

Due to a limitation of the similarity network fusion method, which requires all the single data type
networks to have the same nodes, we narrowed our experiment only to cell types for which all the histone
modification marks were available. At the end of this filtering step, we obtained a dataset consisting of 24
distinct cell types, half belonging to the myeloid lineage and half to the lymphoid one (see Table 1 for details
on the cell types considered and on the number of samples available).

3.2 Histone signal distribution

A first question we attempted to address is whether histone modification marks behave somehow similarly
to gene expression. As most genes have constant or no expression (and only a limited number of genes
have a noticeable one), we investigate the possibility that a (relatively) high signal intensity of a histone
modification is registered only in a fraction of genes.

Modification CPM RPKM INTERSECTION
H3K27ac 5.655 481 340
H3K27me3 5.294 235 184
H3K36me3 6.062 369 264
H3K4me1 7.309 248 206
H3K4me3 5.627 235 189
H3K9me3 5.295 383 280

Table 2: Number of retained genes after feature selection either after CPM or RPKM normal-
ization.

To answer this question, in table 2 we report the number of genes retained after feature selection.
Experiments were conducted in the R environment [16] and, in particular, CPM and RPKM normalization
were realized, respectively, with the R functions cpm and rpkm from the edgeR package [17]. Results show
that, out of 21, 987 quantified genes, only a fraction of them is active. In particular, using RPKM, thus
requiring the signal intensity to be proportional to the gene length, the number of active genes is rather
little. Interestingly, this seems to be independent of the type of histone modification mark.

Comparing CPM and RPKM, the latter normalization filters much more genes. This result matches
expectations, since large genes can have enough histone modification marks to be highlighted with CPM,
but with not sufficient concentration to emerge with RPKM. Inspecting the intersection of the two sets of
genes, however, we found that there is a portion of genes that passes the RPKM–based filtering, but not
the CPM–based one. An in–depth examination of these genes shows that they have little peaks, and they
emerge only because of their short length.

3.3 Myeloid/lymphoid differentiation evaluation

In this section, we report the results about the use of our model to assess the hypothesis of the differentiation
on the haematopoietic lineage tree at myeloid/lymphoid level. As explained in Section 2.5, the proposed

3https://www.blueprint-epigenome.eu/
4http://www.roadmapepigenomics.org/
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Figure 3: Barplot of the results of the hypothesis testing scheme for each modification network,
and for the SNF network.

method for testing the hypothesis starts from the construction of dissimilarity networks between cell types.
The dissimilarity networks were obtained in two different ways corresponding, respectively, to single

histone modification profiles and to the fused similarity network. For the single modification profiles, the
dissimilarity between pairs of cell types was computed as the squared Euclidean distance normalized in the
range [0, 1]. For the fused similarity network resulting from the SNF procedure, instead, dissimilarities were
computed by starting directly from the similarity network. More precisely, we first computed the z-–score of
each similarity value, so that similarities were centered with respect to the mean value. Then, we inverted
the z–scores with respect to the mean, thus obtaining a dissimilarity network of cell types.

In this approach, if a given hypothesis is supported by data, partitioning the network on the basis of it
should cause the removal of only highly weighted edges. We can thus use the cost of the cut induced by this
partitioning as a measure of how much the tested hypothesis is supported by data.

The coarse cost of the cut is difficult to interpret, due to its dependence on the dissimilarity function. In
order to get rid of scale problems, we converted it into a scale-free score according to the following equation:

R(h) =
C(h)−minC(G)

maxC(G)−min(C(G))
(2)

where G is the considered network, h is the hypothesis cut, and the function C() denotes the cost of a graph
cut. The cost of the maximum cut was computed by implementing in the R environment the Greedy Cut
Algorithm described in Section 2.5. The cost of the minimum cut was obtained by using the R function
min cut from the igraph package, which implements the minimum cut of a graph following the algorithm
proposed in [18].

The score in Eq. (2) ranges between 0 and 1 assuming maximum value 1 when the cost of the hypothesis
equals that of the maximum cut on G.

Figure 3 shows a comparison of the hypothesis score for the two normalization strategies (CPM and
RPKM) both for the SNF network and for the individual histone modification networks.

At a glance, we observe that scores obtained on CPM based normalization are consistently higher than
those obtained with RPKM. This suggests that, in order to trigger a certain phenotype, histone modifications
do not need to be uniformly spread along the gene, but it is enough to have their presence in sufficient
concentration. Comparing the histone modifications, Figure 3 shows that all the types of histone modification
almost equally contribute to the haematopoietic branch at this level. This is confirmed also by the analysis
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of the SNF network. Finally, although scores as high as those shown in Figure 3 agree with the classical
myeloid/lymphoid branch depicted in Figure 1, they suggest that this model cannot be the only mechanism
for haematopoietic blood cell differentiation.

4 Discussion

Histone modifications are complex signals which are not completely understood yet. It is known that an
increase/decrease in the concentration of such signals has an impact on the gene expression. In addition,
from [3], we know that the presence of large peaks in the signal wave is associated to loci involved in a
histone modification. In our experiments, a step forward was made, consisting in the investigation of the
possibility of using peaks at high resolution to quantify per gene histone modifications. Following this idea,
we studied the distribution of high resolution peaks across the genome, with the result that such peaks
behave similarly to gene expression profiles. More specifically, it can be observed, similarly to what happens
for gene expression, that only a small fraction of genes have a noticeable or high signal intensity. Moreover,
we verified that per gene unbalanced concentrations of peaks can be associated to different phenotypes.

Besides sequencing productivity, the number of peaks per gene can also be greatly influenced by gene
length, when working at high resolution. Nonetheless, performing differential analysis tasks, gene length
becomes a constant and, thus, normalizing counts could be not necessary. In our case, however, the adoption
of a normalization based on gene length can be viewed as a change in the interpretation of the quantification
of a histone modification: a histone modification is thought of as a signal distribution, rather than a measure
of concentration. With the aim of clarifying which one of the above interpretations better reflects the
mechanisms underneath histone modifications, we tested two normalization methods: CPM and RPKM5.
CPM corresponds to a measure of concentration, namely, a model in which differences on the phenotype
are triggered when a sufficiently high amount of modifications occurs across the gene, independently on
its distribution. This model is coherent with the idea that histone modifications have the mere role of
starting/stopping transcription. On the other hand, RPKM is a measure of distribution. In this case, high
quantification values for large genes are achieved only when the peaks are distributed across the gene. In
this case, the role of histone modifications is supposed to be that of keeping the entire sequence of the gene
accessible/hidden, in order to facilitate/prevent transcription.

Results in Table 2 show that, similarly to the expression of genes, in most cases the signal (i.e. the number
of peaks) is almost absent. Not surprisingly, this is particularly evident using the RPKM normalization.
Indeed, long genes could have a number of peaks high enough to overcome the threshold for CPM, but
not for RPKM. However, as the intersection of the relevant genes with CPM and with RPKM shows, the
opposite phenomenon is also present: there are short genes whose concentration of peaks is not sufficiently
high to pass the CPM filtering, but characterized by a signal distribution allowing to pass the RPKM one.

An in–depth inspection of the results in Table 2 also reveals that the number of active genes is quite
constant, regardless of the histone modification type. Although a precise biological interpretation of this fact
would require further investigations, we could speculate about the fact that none of the histone modification
signals seems to have a dominant role in the regulation of gene expression, but rather the displayed phenotype
is the result of the combination of the individual contributions. For example, in imprinted genes both the
open chromatin mark H3K4me3 and the compacted chromatin mark H3K9me3 are present at the promoter
site [12].

Based on this assumption, we used the well–known SNF method [21] to integrate all the histone modifi-
cation signals into a unified model. The resulting SNF network, shown in Figure 4, is a graph where nodes
correspond to cell types and edges are weighted with a score proportional to the similarity between the nodes
they connect.

In order to apply our hypothesis testing model, we turned this graph into a dissimilarity network by
computing the z–scores of the edge weights, and reversed the weights with respect to the mean weight. On
the obtained dissimilarity network we tested the hypothesis of differentiation between the myeloid and the
lymphoid lineages, i.e. the first step of the classical haematopoietic tree (see Figure 1). According to this
model, the relationships between pairs of the same lineage should be stronger (hence dissimilarity scores
should be lower) than relationships between the two lineages. Consequently, in the ideal case, the cost of

5Notice that, in our case, we substitute the number of reads with the overall number of peaks.
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the cut that partitions the SNF graph into the two clusters corresponding to the two lineages (one with
the myeloid cells and one with the lymphoid ones) should be maximum. Results reported in Figure 3 show
that this is almost the case, thus indicating that the classical myeloid/lymphoid differentiation branching
is a reasonable approximation of the real haematopoietic process. However, the same results leave enough
room to conclude that this model in not accurate enough to capture the complexity of haematopoiesis.
Interestingly, narrowing to the single histone modification graphs, comparing the myeloid/lymphoid cut
with the maximum cut, we found that all the signals approximate the classical model with comparable
scores. This, again, can be considered a confirmation of the hypothesis that all the histone modification
marks cooperate to the development of the displayed phenotype.

Overall, experiments have proved that histone modification marks can be quantified using high resolution
peaks. This quantification behaves similarly to gene expression, with only few active genes at the same time.
Moreover, experiments on a population involving 24 cell types belonging to the haematopoietic tree have
shown that there is a causal relationship between a given phenotype and a profile of the modification marks.
This opens to exploiting differential analysis to identify genes involved in a phenotype of interest.

Figure 4: Similarity network of cell types obtained after the application of the SNF method.
Here we chose to plot only the 100 strongest links, in order to reduce noise and to facilitate
visualization. The plot is obtained with the VOSviewer software [19].

5 Conclusions

Histone modifications are complex signals which regulate gene expression by modifying the tridimensional
structure of the genome and, in turn, making genes more/less accessible for transcription. The complexity
of these signals makes their mining very difficult.

In this paper, we show that counting peaks at high resolution (as high as few bps) can constitute a
reasonable approach to build per-gene profiles of histone modification marks. The experimental analysis
of signals from six histone modifications belonging to 24 cell types highlights that these profiles follow a
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distribution which is similar to that of the expression of genes. The meaningfulness of the peak-based
histone profiles is validated by computationally assessing the classical lympoid/myeloid branch at the first
level of the haematopoietic tree.

Our experiments confirm that the model fairly approximates the real haematopoietic process, although
suggesting that it does not completely capture its complexity. Besides the contribution on the specific
topic of haematopoiesis, our work constitutes an advance in the understanding of epigenetics by providing a
framework to analyze histone modification data, as well as a methodology to validate and compare different
hypotheses on a population of cell types.

Finally, the distribution of the signal of histone modification profiles enables using standard differential
expression techniques to identify genes whose modifications are involved in a given phenotype.
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et al. Sole–Search: An integrated analysis program for peak detection and functional annotation using ChIP–seq data.
Nucleic Acids Research, 38(3):e13, 2010.

[4] H. Cheng, Z. Zheng, and T. Cheng. New paradigms on hematopoietic stem cell differentiation. Protein & Cell, pages
1–11, 2019.

[5] A. Eberharter and P. Becker. Histone acetylation: A switch between repressive and permissive chromatin. Second in review
series on chromatin dynamics. EMBO Reports, 3:224–229, 2002.

[6] K. A. Gelato and W. Fischle. Role of histone modifications in defining chromatin structure and function. Biological
Chemistry, 389(4):353–363, 2008.

[7] I. Godin and A. Cumano. Hematopoietic Stem Cell Development. Springer Science & Business Media, 2010.

[8] S. Goyama and T. Kitamura. Epigenetics in normal and malignant hematopoiesis: An overview and update 2017. Cancer
Science, 108(4):553–562, 2017.

[9] IHEC. The international human epigenome consortium data portal. Cell Systems, 3, 2016.

[10] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations, pages 85–103.
Springer, 1972.

[11] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):129–137, 1982.

[12] T. S. Mikkelsen, M. Ku, D. B. Jaffe, B. Issac, E. Lieberman, G. Giannoukos, P. Alvarez, W. Brockman, T.-K. Kim, R. P.
Koche, et al. Genome–wide maps of chromatin state in pluripotent and lineage–committed cells. Nature, 448(7153):553–
560, 2007.

[13] A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold. Mapping and quantifying mammalian transcriptomes
by RNA–Seq. Nature Methods, 5(7):621, 2008.

[14] F. Notta, S. Zandi, N. Takayama, S. Dobson, O. I. Gan, G. Wilson, K. B. Kaufmann, J. McLeod, E. Laurenti, C. F.
Dunant, J. D. McPherson, L. D. Stein, Y. Dror, and J. E. Dick. Distinct routes of lineage development reshape the human
blood hierarchy across ontogeny. Science, 351(6269), 2016.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.22.350611doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.22.350611
http://creativecommons.org/licenses/by-nc-nd/4.0/


[15] H. O’Geen, L. Echipare, and P. J. Farnham. Using ChIP–seq technology to generate high–resolution profiles of histone
modifications. In Epigenetics Protocols, pages 265–286. Springer, 2011.

[16] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,
Vienna, Austria, 2017.

[17] M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edgeR: A bioconductor package for differential expression analysis of
digital gene expression data. Bioinformatics, 26(1):139–140, 2010.

[18] M. Stoer and F. Wagner. A simple min–cut algorithm. Journal of the ACM (JACM), 44(4):585–591, 1997.

[19] N. J. Van Eck and L. Waltman. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientomet-
rics, 84(2):523–538, 2010.

[20] B. Wang, J. Jiang, W. Wang, Z.-H. Zhou, and Z. Tu. Unsupervised metric fusion by cross diffusion. Proceedings of CVPR,
pages 2997–3004, 2012.

[21] B. Wang, A. Mezlini, F. Demir, M. Fiume, Z. Tu, M. Brudno, B. Haibe-Kains, and A. Goldenberg. Similarity network
fusion for aggregating data types on a genomic scale. Nature Methods, 11, 2014.

[22] B. Xhemalce and T. Kouzarides. A chromodomain switch mediated by histone H3 Lys 4 acetylation regulates heterochro-
matin assembly. Genes & Dev., 24:647–652, 2010.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.22.350611doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.22.350611
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Method
	Peak calling
	Normalization
	Cell type expression profiles
	Similarity network fusion
	Hypothesis testing scheme: Hypothesis vs. maximum cut

	Experiments
	Dataset
	Histone signal distribution
	Myeloid/lymphoid differentiation evaluation

	Discussion
	Conclusions

