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Abstract 19 

Cancer progression is driven by both somatic copy number aberrations (CNAs) and 20 

chromatin remodeling, yet little is known about the interplay between these two classes 21 

of events in shaping the clonal diversity of cancers. We present Alleloscope, a method 22 

for allele-specific copy number estimation that can be applied to single cell DNA and 23 

ATAC sequencing data, either separately or in combination. This approach allows for 24 

integrative multi-omic analysis of allele-specific copy number and chromatin accessibility 25 

on the same cell. On scDNA-seq data from gastric, colorectal, and breast cancer samples, 26 

with extensive validation using matched linked-read sequencing, Alleloscope finds 27 

pervasive occurrence of highly complex, multi-allelic copy number aberrations, where 28 

cells that carry varying allelic configurations adding to the same total copy number co-29 

evolve within a tumor. The contributions of such allele-specific events to intratumor 30 

heterogeneity have been under-reported and under-studied due to the lack of methods 31 

for their detection. On scATAC-seq from two basal cell carcinoma samples and a gastric 32 

cancer cell line, Alleloscope detects multi-allelic copy number events and copy neutral 33 

loss-of-heterozygosity, enabling the dissection of the contributions of chromosomal 34 

instability and chromatin remodeling in tumor evolution.   35 
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Introduction 36 

Cancer is a disease caused by genetic alterations and epigenetic modifications 37 

which, in combination, shape the dysregulated transcriptional programming of tumor 38 

cells1, 2. These somatic genomic events lead to a diverse cellular population from which 39 

clones with advantageous alterations proliferate and eventually metastasize3. The 40 

comprehensive study of cancer requires the integrative profiling of genetic and epigenetic 41 

changes at the resolution of single cells. We combined the analysis of two such genomic 42 

dimensions – DNA copy number and chromatin accessibility – through massively parallel 43 

single cell sequencing assays. 44 

First, consider copy number aberrations (CNAs), through which we have derived much of 45 

our current understanding of the relationship between genome instability and tumor 46 

evolution4. Total copy number profiling, which estimates the sum of the copy numbers of 47 

the two homologous chromosomes, is inadequate to characterize some types of cancer 48 

genomic aberrations. Such events include the pervasively occurring copy-neutral loss of 49 

heterozygosity (LOH)5-8, intriguing “mirrored events”9, 10 where a given tumor may have 50 

cancer cells carrying amplification of one haplotype are intermingled with cancer cells 51 

carrying amplification of the other haplotype, and the even more complex alterations that 52 

are only detectable through allele-specific analysis11. While the importance of allele-53 

specific copy number has been emphasized in bulk DNA sequencing analysis5-8, 11, most 54 

single-cell CNV analysis considers only total copy number due to low per-cell coverage12-55 

19. Recently, Zaccaria et al. developed CHISEL10, a method for single-cell allele-specific 56 

copy number analysis, but requires externally phased haplotypes based on large 57 
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reference cohorts. Despite these advances, there remain many missing details about the 58 

genomic landscape of allelic imbalances when considering single cells. 59 

Epigenetic modifications are also an important genomic feature of cancer. Analysis of 60 

chromatin structure is feasible with a variety of methods including transposase-accessible 61 

chromatin sequencing (ATAC-seq). This approach is applied either with conventional 62 

bulk-based or single-cell sequencing. Subsequently, analysis of chromatin structure has 63 

shown that epigenetic remodeling modulates the plasticity of cells in cancer20-24, leads to 64 

stem-like properties25-27 and generates therapeutic resistance28-31. Since copy number 65 

alterations involve large gains and losses of available chromatin, we expect the chromatin 66 

accessibility of a region to be influenced by the changes in underlying copy number. 67 

Current scATAC-seq studies estimate total copy number profiles by smoothing the read 68 

coverage and normalizing the signals against a control cell population, yet this 69 

appropriate control is often difficult to identify23,32. Currently, there is no method for reliable 70 

total or allele-specific copy number profiling in scATAC-seq data, and thus, how to 71 

disentangle the effects of CNA and chromatin remodeling in shaping the epigenetic 72 

landscape remains a challenge.  73 

Addressing these challenges, we present Alleloscope, a method for allele-specific copy 74 

number estimation and multiomic profiling in single cells. Alleloscope does not rely on 75 

external phasing information, and can be applied to scDNA-seq data or to scATAC-seq 76 

data with sample-matched bulk DNA sequencing data. To interrogate the single cell 77 

landscape of allele-specific CNA, we first apply Alleloscope on scDNAseq data from four 78 

gastric cancer samples, four colorectal cancer samples, and a breast cancer sample10, 12, 79 

33. For three of the gastrointestinal cancer samples, results are extensively validated by 80 
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10x linked-read sequencing which provides accurate phasing information34-36. In these 81 

datasets, Alleloscope accurately identifies LOH and mirrored-subclonal amplification 82 

events, and finds pervasive occurrence of highly complex, multi-allelic loci, where cells 83 

that carry varying allelic configurations adding to the same total copy number co-evolve 84 

within a tumor. The ubiquity of such events in all three cancer types analyzed reveal that 85 

they may be an important overlooked source of intratumor genetic heterogeneity.  86 

Having characterized the complexity of allele-specific CNA events at single cell resolution, 87 

we turn to scATAC-seq data from two basal cell carcinoma samples with paired bulk 88 

whole exome sequencing data23 and a complex polyclonal gastric cancer cell line that we 89 

analyzed by scDNA-seq. In these samples, we evaluate the accuracy of Alleloscope in 90 

genotyping and clone assignment and demonstrate its application to the integrative 91 

analysis of CNA and chromatin accessibility.  92 

Results 93 

Overview of Alleloscope allele-specific copy number estimation  94 

First, we briefly overview Alleloscope’s method for allele-specific copy number estimation 95 

(Figure 1). Clone assignment and integration with peak signals in scATAC-seq data will 96 

be described later. Alleloscope relies on two types of data features: coverage, derived 97 

from all reads that map to a given region, and allelic imbalance, derived from allele-98 

informative reads that cover heterozygous loci in the region. We start with some essential 99 

definitions. For a given single nucleotide polymorphism (SNP) site, we refer to its mean 100 

coverage across cells as bulk coverage and its mean variant allele frequency (VAF = ratio 101 

of alternative allele read count to total read count) across cells as its bulk VAF. Between 102 
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the two parental haplotypes, we define the term “major haplotype” as the haplotype with 103 

higher mean count across cells. Note that a haplotype may be the “major haplotype” of a 104 

sample, but be the haplotype with lesser copy number within some cells. For each 105 

individual cell 𝑖, in any given CNA region, we define two key parameters: (1) the major 106 

haplotype proportion (𝜃!), defined as the count of the major haplotype divided by the total 107 

copy number for the region, and (2) total copy fold change (𝜌!), defined as the ratio of the 108 

total copy number of the region in the given cell relative to that in normal cells.  109 

The genotyping algorithm starts by segmenting the genome into regions of homogeneous 110 

allele-specific copy number using both the bulk coverage and bulk VAF profiles (Fig.1 111 

Step 2). This can be achieved by multiple existing algorithms, which may be combined to 112 

increase detection sensitivity, see Methods for details. In our analyses of scATAC-seq 113 

data, the segmentation relied on the matched scDNA-seq data or the whole-exome 114 

sequencing data, which ensures that the putative CNA regions considered for genotyping 115 

are not confounded by the broad chromatin remodeling that occur in cancer.  116 

Now consider each putative CNA region. An expectation-maximization (EM) based 117 

algorithm is used to iteratively phase each SNP and estimate the major haplotype 118 

proportion (𝜃!) for each cell (Fig. 1, step 3). For each SNP 𝑗, let 𝐼" ∈ {0,1} be the indicator 119 

of whether the reference allele of SNP j is a component of the major haplotype. An initial 120 

estimate 𝐼."
($) is first derived from the bulk VAF profile. Then, in iteration 𝑡, Alleloscope 121 

computes 𝜃0!
(&) by pooling counts across sites within the region, weighted by the current 122 

phasing 𝐼."
(&), then updates the estimate of 𝐼" based on 𝜃0!

(&) by pooling counts across cells. 123 

The estimates of 𝜃! and 𝐼" usually converge within a few iterations as described in the 124 
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Methods. If matched scDNA-seq data are available for a sample sequenced by scATAC-125 

seq, 𝐼" values can be estimated from scDNA-seq and then used to compute 𝜃! for each 126 

cell in the scATAC-seq data, enabling integration of the two data types.  127 

The estimated major haplotype proportions (𝜃0! ’s), along with a preliminarily normalized 128 

coverage statistic (𝜌1!), are then used to identify a set of normal cells and diploid regions 129 

(Fig. 1, Step 4). This information is used to estimate an improved relative coverage fold-130 

change ( 𝜌2! ) for each cell within each CNA region. If cell 𝑖 ’s true allele-specific copy 131 

numbers are homogeneous within the given region, then its true value of (𝜃! , 𝜌!) should 132 

belong to a set of canonical points displayed in Step 5 of Figure 1. Thus, the estimated 133 

values (𝜌2! , 𝜃0!) are clustered across cells and associated with one of the canonical values 134 

to yield the cell-level haplotype profiles for the CNV region. These cell- and region-specific 135 

haplotype profiles serve as the base for clone assignment and subsequent integration 136 

with peak signals in scATAC-seq data. (Fig. 4b).  137 
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Fig. 1: Overview of allele-specific copy number estimation of single cells with Alleloscope. 1. The 
algorithm operates on raw read count matrices for reference allele (Ref) and alternative allele (Alt) 
computed from single cell DNA or ATAC sequencing. 2. First, we obtain a segmentation of the genome 
based on sample-matched whole genome or whole exome sequencing data using FALCON5. If scDNA-
seq is available, cells can be pooled to derive a pseudo-bulk. 3. For each region derived from the 
segmentation, simultaneously phase SNPs (𝐼"! ) and estimate cell major haplotype proportion (𝜃$" ) by 
expectation maximization (EM) algorithm. Since we are focusing on only one region, the region indicator 
is suppressed in our notation here. In the E-step, information is pooled across cells to estimate the 
phasing of each SNP. In the M-step, information is pooled across all SNPs in the region are pooled to 
estimate the major haplotype proportion 𝜃$" for each cell. The toy example shows a scenario with two 
cells for a region containing 5 SNPs, with cell 2 carrying an amplification of the major haplotype (in pink). 
For each cell and each SNP, alleles that are observed in a sequenced read are bolded in black (we 
assume that only one read is observed, reflecting the sparsity of the data). The true phase (𝐼!) of the 
SNPs and the true major haplotype proportion (𝜃$") are shown. 4. For region 𝑟 let {𝜃$"#} be its estimated 
major haplotype proportions across cells 𝑖. Pool data across regions to identify candidate normal cells 
and candidate normal regions for computing a normalized coverage 𝜌*"#  for region 𝑟  in cell 𝑖 . 5. 
Alleloscope assigns integer allele-specific copy numbers to each cell for each region based on the (𝜌*"#, 
𝜃$"#) pairs. 

  138 
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Whole genome haplotypes validate Alleloscope in scDNA-seq allele-specific copy 139 

number estimation 140 

First, we explore the single cell landscape of allele-specific CNAs using scDNA-seq data. 141 

To validate the phasing and genotyping accuracy of Alleloscope in scDNA-seq data, we 142 

used matched linked-read whole-genome sequencing data on three gastrointestinal 143 

tumor samples: P5931, P6335 and P6198. Linked-read sequencing, in which one derives 144 

reads from individual high molecular weight DNA molecules, provides variants that can 145 

be phased into extended haplotypes covering Mb34-36. As a result, one obtains accurate, 146 

Mb-scale haplotype information from cancer genome. To evaluate the accuracy of 147 

phasing, we compared the haplotypes estimated by Alleloscope to the haplotypes 148 

obtained from linked-read WGS. Additionally, we used the WGS haplotype to evaluate 149 

the allele-specific copy number estimation for each cell and to assess the impact of 150 

phasing errors on genotyping accuracy (Fig. 2a).  151 

Figure 2b shows the results for the gastric cancer sample from P5931, whose genome-152 

wide copy number profile indicates clear CNA events on four chromosomes—chr7, chr8, 153 

chr20, and chr21. For each event, the scatter plots of 3𝜃0! , 𝜌2!4 estimated by Alleloscope 154 

and colored by haplotype profiles, are shown in Fig. 2c. Note that the 3𝜃0! , 𝜌2!4 clusters fall 155 

almost directly on top of the expected canonical values (e.g. (1/2, 1) for diploid, (2/3, 1.5) 156 

for 1 copy gain of major haplotype). Interestingly, chromosomes 7, 8, and 21 each show 157 

subclonal clusters have differing allelic ratios but the same total copy number, which 158 

would not be detectable without allele-specific estimation. We denote the major haplotype 159 

of a region by “M”, and the minor haplotype by “m”. The chromosome 7 amplification 160 
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exhibits two tumor subclones with mirrored-subclonal CNAs (MMm and Mmm), each 161 

subclone amplifying a different haplotype. Such a mirrored-subclonal CNA configuration 162 

is also observed for the deletion on chromosome 21 (M- and m-). The chromosome 8 163 

amplification exhibits as four tumor subclones with different haplotype profiles— MMm, 164 

Mmm, MMmm, and MMMm.  165 

We compared the phasing estimated by Alleloscope (𝐼." ) against the whole genome 166 

haplotypes. The phasing accuracy is 98% for the deleted region (chr21), ~90% for the 167 

two clonal amplifications (on chr8 and chr20), and 79% for the subclonal chr7 168 

amplification (shown in the titles of the scatter plots of Fig. 2c). Moreover, we evaluated 169 

the genotyping accuracy for some of the somatic alterations. Figure 2d shows scatterplots 170 

of 𝜌2! against major haplotype proportion computed using haplotypes derived from linked-171 

read sequencing (𝜃5!), with the same coloring as Figure 2c. Comparing the scatterplots in 172 

Figure 2d to their counterparts in Figure 2c reveals that Alleloscope’s estimated cell 173 

haplotype profiles are highly concordant with those derived directly with the haplotypes 174 

from linked-read WGS. Specifically, the concordance is ~100% across all four events (the 175 

concordance for each event is labeled in the scatter plots of Figure 2d). This shows that 176 

the genotyping algorithm in Alleloscope is robust to errors in phasing (e.g. for chr7). 177 

Similar analysis performed for P6335 is given in Supplementary Fig. 1. We also applied 178 

CHISEL on P5931, yet it did not work well for this sample due to the low coverage 179 

(Supplementary Fig. 2).  180 
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Fig. 2: Validation of the Alleloscope results on the P5931 gastric cancer patient sample and 
linked-reads sequencing data. (a) Illustration of the validation scheme using linked-reads sequencing 
data. Phasing accuracy and genotyping accuracy are used to access performance of the method. (b) 
Hierarchical clustering of cells in the P5931t sample based on allele-specific copy numbers given by 
Alleloscope, showing normal cells and 4 main clones, as well as a number of small clones marked by 
highly confident low-frequency mutations. M: Major haplotype, m: minor haplotype. (c) (𝜌*#" , 𝜃$#") 
estimated by Alleloscope for four regions, colored by the inferred haplotype profile. Note that clusters fall 
on canonical points corresponding to discrete allele-specific copy number configurations. Phasing 
accuracy for each region is shown in the plot title. In the color legend, M and m represent the “Major 
haplotype” and “minor haplotype” respectively. (d) Similar to (c), with 𝜃$" estimated using known SNP 
phases from matched linked-reads sequencing data, colored by the haplotype profiles assigned in (c) 
using Alleloscope without the given phasing information. Genotyping accuracy is labeled in the plots. 
 

  181 
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Since copy neutral LOH events, common in cancer genomes, can only be identified 182 

through allele-specific copy number analysis. We examined the accuracy of Alleloscope 183 

specifically for copy-neutral LOH events with a colorectal adenocarcinoma from P6198. 184 

This tumor sample had a conventional WGS profile revealing several copy-neutral LOH 185 

regions that were not evident when considering the copy number heatmap in cellranger 186 

(Fig. 3a). Chromosome 5 presents an illustrative example: The bulk VAF clearly 187 

separates this chromosome into two main regions, a normal region followed by a copy-188 

neutral LOH (Fig. 3b). Concordantly, Alleloscope reveals a cluster centered at (𝜌, 𝜃) =189 

(1,1) corresponding to copy-neutral LOH only for the region on the right (Fig. 3b), which 190 

cleanly separates the tumor cells from normal cells. Comparing to the haplotype profiles 191 

derived using the haplotypes from linked-read WGS for this sample showed that the 192 

accuracy of Alleloscope for copy-neutral LOH events is nearly 100% (Supplementary Fig. 193 

3). 194 
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Fig. 3: Across multiple cancer types, Alleloscope detects loss-of-heterozygosity events and 
multi-allelic copy number aberrations, delineating complex subclonal structure which are 
invisible to total copy number analysis. (a) The Cell Ranger hierarchical clustering result for P6198t 
with copy-neutral regions labeled (total 512 cells). (b) Top: FALCON segmentation of P6198 chr5 into 
two regions with different allele-specific copy number profiles. Bottom: Detailed haplotype profiles of the 
two regions from Alleloscope, showing that the first region is diploid across cells and the second region 
has a loss-of-heterozygosity for a subpopulation of cells. The a and b following the chromosome number 
denote two ordered segments. 
(c) Single cell allele-specific estimates (𝜌*, 𝜃$), colored by assigned haplotype profiles, for select regions 
in the samples P6198t (metastasized colorectal cancer sample), SNU601 (gastric cancer cell line), 
P6335 (colorectal cancer sample), and BC10X (breast cancer cell line). In the color legend, M and m 
represent the “Major haplotype” and “minor haplotype” respectively. The lower-case letters following the 
chromosome number in the titles denote the ordered genomic segments. 

  195 
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Alleloscope finds pervasive occurrence of polyclonal CNA regions differentiated 196 

by haplotype ratios 197 

The scDNA-seq samples included in this study are shown in Table 1 of Methods, with 198 

detailed segmentation plots and heatmaps for genome-wide allele-specific copy number 199 

profiles in supplementary figure 4-10. Across most of the samples, we observed a high 200 

prevalence of complex subclonal CNAs indicated by multiple clusters of different 201 

haplotype structures within a given genomic region with prototypical examples from 202 

P6198, SNU601, P6335 and BC10X shown in Figure 3c. In some regions, such as 203 

chromosome 9 of SNU601, 3q of SNU601, 2q and 16p of BC210x, we see as many as 204 

seven subclonal clusters for a single event. In many cases there are multiple clusters 205 

corresponding to the same total copy number but varying in allelic dosage. Minor 206 

subclones carrying deletion of one haplotype can be easily masked by dominant 207 

subclones carrying amplifications of the other haplotype in a conventional sequencing 208 

analysis without the benefit of single cell resolution or an analysis that considers only 209 

copy number without allelic information. Overall, the high subclonal diversity in these 210 

genomic regions reveal an aspect of intratumor heterogeneity that was previously 211 

undetectable. 212 

Recurrent chromosomal instability events, affecting both haplotypes and producing 213 

gradients in haplotype dosage, is a common theme across all samples analyzed. 214 

Consider, for example, the region on chromosome 9 of P6198, which reveals 7 215 

subpopulations of cells: besides the normal cell cluster and the dominant tumor cell 216 

cluster with the haplotype profile MMm, there is a small cluster of cells with copy neutral 217 

LOH, two small subclones at four chromosome copies and two more at five chromosome 218 
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copies. This produces major haplotype ratios of {'
(
, )
*
, (
)
, +
*
, 1} in different cells, possibly 219 

conferring different fitness values. Another example of such complexity is chromosome 220 

3q of SNU 601 and chromosome 2q of BC10x, which share a similar pattern: two 221 

mirrored-subclonal CNAs (MMm, mmM) at total copy number of 3, as well as mirrored-222 

subclonal CNAs (MMMm, MMmm, mMMM) at total copy number of 4, producing a 223 

gradient of haplotype ratios {'
+
, '
)
, '
(
, (
)
, )
+
}. Interrogating the evolutionary route by which 224 

such diversity was achieved, Alleloscope reveals that a whole genome doubling event is 225 

highly likely to have taken place early in the development of BC10x and P6198, but not 226 

in the development of SNU601 (see Supplementary Fig. 4&6). Thus, the subclones at 2q 227 

in BC10x and 3q in SNU601 must have evolved through different evolutionary routes: In 228 

BC10x, the early whole-genome doubling produces the cluster MMmm, from which the 229 

other clusters of different haplotype profiles were most likely derived through successive 230 

loss and gene conversion events. On the contrary, the clusters on 3q of SNU601 were 231 

most likely a result of successive amplification events starting from the normal haplotype 232 

profile Mm. The fact that different evolutionary routes, in two different cancer types (breast 233 

and gastric) evolved to have such similar allelic-specific copy number patterns imply that 234 

such haplotype dosage gradients may serve as an important substrate for selection in 235 

tumor evolution.  236 

Another recurring theme is the co-occurrence of LOH and amplification within the same 237 

region.  Often, the loss and amplification affect different haplotypes, as for chromosome 238 

17p of P6198 and chromosome 11p, 11q of P6335. For 17p of P6198, a gene conversion 239 

leading to copy-neutral LOH is most likely the early event, followed by separate loss and 240 

gain events that lead to the clusters M- and MMM. Curiously, extreme instability of a 241 
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chromosome region leads to clones with LOH of a given haplotype coexisting with clones 242 

that have the same haplotype amplified. Such clones would have been undetectable in a 243 

conventional bulk WGS analysis or even a single cell analysis based solely on total 244 

coverage. For example, this is what occurred for SNU601’s chr18a (Figure 3c). Using the 245 

procedure in Figure 2a, we validated our findings of these multiallelic subclones in P6198 246 

and P6335 by comparing to the paired linked-reads sequencing data. Phasing accuracy 247 

is high for all LOH and amplification event types that create an allelic imbalance 248 

(Supplementary Fig. 3). 249 

Juxtaposition of single cell copy number and chromatin remodeling events by 250 

integrative scATAC-seq analysis 251 

To illustrate the integrative analysis of scATAC-seq data, we first consider two basal cell 252 

carcinoma samples with matched whole-exome sequencing (WES) data37. Using the 253 

matched WES data, the genome of each sample was first segmented into regions of 254 

homogeneous bulk copy number (Fig. 4a, middle panel shows the segmentation for 255 

SU008). Alleloscope was then applied to the scATAC-seq data to derive allele-specific 256 

copy number estimates of each cell in each region. Scatterplots of (𝜌2, 𝜃0) for five example 257 

CNA regions and 1 control region (chr12) from SU008 are shown in Fig. 4a. For this 258 

sample, peak profiles characterizing chromatin accessibility separated the cells 259 

confidently into three main clusters: 308 tumor cells, 259 fibroblasts and 218 endothelial 260 

cells. Since normal cells are not expected to carry broad copy number events, we 261 

compared the (𝜌2, 𝜃0) values of the tumor cells against those of the fibroblast and epithelial 262 

cells to assess our genotyping accuracy. Density contours for each cell type are shown 263 
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in the (𝜌2, 𝜃0)- scatterplots (Fig. 4a). The (𝜌2, 𝜃0) values clearly separate the tumor cells from 264 

the normal cells for each CNV region, with the tumor cell cluster positioned at canonical 265 

points, indicating that these statistics used by Alleloscope can accurately distinguish 266 

amplifications and loss-of-heterozygosity events in scATAC-seq data. In particular, 267 

Alleloscope differentiated the cells that carry copy neutral LOH events through shifts in 268 

major haplotype proportion. Note that normal cells, which are not expected to carry broad 269 

chromosome-scale CNVs, exhibit chromosome-level deviations in total coverage due to 270 

broad chromatin remodeling as exemplified by the chr6b region. Furthermore, many 271 

regions with no CNA signal in bulk WES data also exhibit shifts in aggregate coverage in 272 

ATAC data, but with no significant difference in their 𝜃0! distribution. Thus, relying solely 273 

on shifts in coverage, without complementary shifts in major haplotype proportion, would 274 

lead to false positive copy number detections for scATAC-seq data. 275 

By assigning allele-specific CNA profiles to single cells in scATAC-seq data, Alleloscope 276 

allows the integrative analysis of chromosomal instability and chromatin remodeling as 277 

follows (Figure 4b): The scATAC-seq data, paired with bulk or single-cell DNA sequencing 278 

data, allows us to detect subclones. In parallel, a peak-by-cell matrix can be computed 279 

following standard pipelines. Then, the subclone memberships or CNA profiles can be 280 

visualized on the low-dimensional embedding of the peak matrix, and the subclones can 281 

be further compared in terms of peak or transcription factor motif enrichment. Precise 282 

haplotype profiles for each subclone then allow us to identify significantly 283 

enriched/depleted peaks after accounting for copy number differences, thus delineating 284 

events that are uniquely attributable to chromatin remodeling. 285 
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Hierarchical clustering using major haplotype proportion 𝜃0 identifies the tumor cells from 286 

the normal cells for both SU006 (Supplementary Fig. 11) and SU008, and clearly 287 

delineates a subclone in SU008 marked by a copy-neutral LOH event on chr4a (Fig. 4c). 288 

Focusing on SU008, we call the cell lineage that carries the chr4a LOH event clone-2, 289 

and the other lineage clone-1. In parallel, clustering by peaks cleanly separates the tumor 290 

cells from the epithelial cells and fibroblasts (Fig. 4d: left), and further, demarcates two 291 

distinct clusters in the tumor cells (peaks-1 and peaks-2) (Fig. 4d: middle). What is the 292 

relationship between the peaks-1 and peaks-2 clusters obtained from peak signals to the 293 

two clones delineated by chr4a LOH? Coloring by chr4a major haplotype proportion (𝜃0) 294 

on the peaks-derived UMAP shows that the LOH in this region is carried by almost all of 295 

the cells in peaks-2 but only a subset of the cells in peaks-1 (Fig. 4d: middle). This can 296 

also be clearly seen in the density of 𝜃0 (Fig. 4d: right): While 𝜃0 is heavily concentrated 297 

near 1 for peaks-2, it is bimodal for peaks-1. Since clone-1 and clone-2 are differentiated 298 

by a copy-neutral event, this separation by peaks into two clusters is not driven by broad 299 

differences in total copy number. Since clone-2 is split into two groups of distinct peak 300 

signals, we infer that the chromatin remodeling underlying the divergence of the peaks-2 301 

cells must have occurred in the clone-2 lineage, after the chr4a LOH event (Fig. 4e). In 302 

this way, Alleloscope analysis of this scATAC-seq data set allowed us to overlay two 303 

subpopulations defined by peak signals with two subpopulations defined by a subclonal 304 

copy-neutral LOH, and infer their temporal order.   305 
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Fig. 4: Alleloscope multiomic analysis of scATAC-seq data of a basal cell carcinoma sample 
(SU00823). (a) Genotype profiles for six example regions for cells in scATAC-seq data. The regions are 
taken from segmentation of matched whole exome sequencing (WES) data. Each dot represents a cell-
specific (𝜌*", 𝜃$") pair. Cells are colored by annotation derived from peak signals23, Tumor: tumor cells, 
Fibro: fibroblasts, Endo: Endothelial cells]. Density contours are computed for each cell type (tumor, 
fibroblasts, endothelial) separately and shown by color on the plot. The lower-case letters following the 
chromosome number in the titles denote the ordered genomic segments. (b) Pipeline for multi-omics 
analysis integrating allele-specific copy number estimates and chromatin accessibility peak signals on 
ATAC-seq data. (c) Hierarchical clustering of cells by major haplotype proportion (𝜃$ ) allows the 
separation of tumor cells from normal cells, as well as the differentiation of a subclone within the tumor 
cells. The marker region on chr4a separating the two tumor subclones is highlighted. (d) Integrated 
visualization of chr4a major haplotype proportion (𝜃$"	 ) and genome-wide peak profile. Left: UMAP 
projection of the 788 cells in the dataset by their genome-wide peak profile, colored by 𝜃$". The cell type 
annotation (endothelial, fibroblasts, and tumor cells) is labeled in the plot. Middle: UMAP projection of 
only the 308 tumor cells by their genome-wide peak profile shows two well-separated clusters: peaks1 
and peaks2. Right: Density of 𝜃$"  values for the peaks1 and peaks2 subpopulations. (e) Intratumor 
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heterogeneity of SU008 is shaped by a subclonal LOH of chr4a followed by subsequent genome-wide 
chromatin remodeling leading to three subpopulations: Clone 1 which does not carry the chr4a LOH 
(peaks cluster 1), Clone 2 carrying the chr4a LOH (peaks cluster 1), and remodeled clone 2 (peaks 
cluster 2). 

 306 

Integrative analysis of clonal evolution and altered chromatin accessibility for a 307 

complex polyclonal gastric cancer cell line 308 

The gastric cancer cell line SNU601 exhibits complex subclonal structure, as evidenced 309 

by multiple multiallelic CNA regions (chr3e and chr18a are shown in Figure 3c). In addition 310 

to scDNA-seq, we also performed scATAC-seq on this sample to profile the chromatin 311 

accessibility of 3,515 cells at mean coverage of 73,845 fragments per cell. This allows us 312 

to compare the allele-specific copy number profiles obtained by scATAC-seq with those 313 

given by scDNA-seq and integrate the two data types in a multi-omic characterization of 314 

this complex tumor.  315 

First, we segmented the genome and estimated the allele-specific copy number profiles 316 

of single cells at each segment for both the scATAC-seq and scDNA-seq data, following 317 

the procedure in Figure 1 with some modifications due to the lack of normal cells to use 318 

as control for this sample (see methods). Figure 5a shows the relative total coverage, 319 

pooled across cells from scDNA-seq. Figure 5b shows (𝜌2, 𝜃0)-scatterplots for five example 320 

CNA regions in scDNA-seq and scATAC-seq. Compared to the scATAC-seq data, the 321 

scDNA-seq data has about 8-fold higher total read coverage and 7-fold higher 322 

heterozygous site coverage per cell. Thus, while subclones corresponding to distinct 323 

haplotype profiles are cleanly separated in the scDNA-seq data, they are much more 324 

diffuse in the scATAC-seq data. Yet, cluster positions in scATAC-seq roughly match those 325 
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in scDNA-seq. As expected, the (𝜌2, 𝜃0)-scatterplots reveal the high level of chromosomal 326 

instability in this sample, with each region exhibiting multiple clusters of different 327 

haplotype structures that indicate the existence of subclones carrying mirrored events 328 

and, for some regions, the variation of haplotype dosage over a gradient across cells. 329 

Figure 5c shows the hierarchical clustering of cells from scDNA-seq based on their allele-330 

specific copy number profiles, revealing the subclonal structure and the co-segregating 331 

CNA events that mark each subclone. For each cell in each region, Alleloscope also 332 

produces a confidence score for its assignment to different haplotype profiles 333 

(Supplementary Fig. 12). Based on visual examination of the confidence scores at the 334 

marker regions, we identified 6 subclones for further investigation (Clones 1-6 labeled at 335 

the right of the heatmap). The allele-specific copy number profiles allow us to manually 336 

reconstruct the probable evolutionary tree relating these 6 clones under the following 337 

three rules:  338 

(1) Parsimony: The tree with the least number of copy number events is preferred. 339 

(2) Monotonicity: For a multi-allelic region with escalating amplifications (e.g. Mm, MMm, 340 

MMMm), the haplotype structures were produced in a monotonic order (e.g. Mmà 341 

MMmà MMMm) unless a genome doubling event occurred. 342 

(3) Irreversibility of LOH: Once a cell completely loses an allele (i.e. copy number of that 343 

allele becomes 0), it can no longer gain it back.  344 

The evolutionary tree, thus derived, is shown in Figure 6b. The mirrored-subclonal 345 

amplifications on chr3q, the deletion on chr4p, and the multiallelic amplification on chr20q 346 
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allowed us to infer the early separation of clones 3-6 from clones 1-2. Subclones 3-6 are 347 

confidently delineated by further amplifications on chr3q, chr20q, chr11, chr13, and chr17. 348 

Note that high chromosomal instability led to concurrent gains of 1q and 7p in both the 349 

Clone 1-2 and Clone 3-6 lineages. We also observed a large number of low-frequency 350 

but high-confidence CNA events indicating that ongoing chromosomal instability in this 351 

population is spawning new sporadic subclones that have not had the chance to expand. 352 

We now turn to scATAC-seq data, focusing on the 10 marker regions which, together, 353 

distinguish Clones 1-6: chr1b, 3b-d, 4b, 7a, 11b, 13b, and 20b-c. The (𝜌2, 𝜃0)  values 354 

computed by Alleloscope allows us to directly assign allele-specific copy number profiles 355 

to each cell for each region, as well as subclone labels to each cell, with posterior 356 

confidence score. The subclone assignment utilizes a Bayesian mixture model that pools 357 

information across the 10 marker regions. Despite the low accuracy in per-region 358 

genotyping, when information is pooled across the 10 marker regions, 81.6% of the 2,753 359 

cells after filtering can be assigned to a subclone with >95% posterior confidence 360 

(Supplementary Fig. 13, the number of ATAC cells confidently assigned to each clone 361 

are shown in Figure 6a.). These subclone assignments for each cell, and cell-level 362 

haplotype profiles for each region, can now be integrated with peak-level signals. 363 
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Fig. 5: Alleloscope analysis of scDNA-seq and scATAC-seq data reveals complex subclonal 
heterogeneity in the SNU601 gastric cancer cell line. (a) Genome segmentation using HMM on the 
pooled total coverage profile computed from scDNA-seq data. 
(b) Single cell allele-specific copy number profiles (𝜃$, 𝜌*) for five regions in scDNA-seq and scATAC-seq 
data. Cells are colored by haplotype profiles according to legend in Figure 5c.  
(c) Tumor subclones revealed by hierarchical clustering of allele-specific copy number profiles from the 
scDNA-seq data. Genotypes of the five regions shown in Figure 5b, for three example cells, are shown 
in the left. The haplotype structures for the 5 regions in Figure 5b of three cells randomly chosen from 
Clone 1, 2, and 3, are shown to the left of the heatmap. In the color legend, M and m represent the “Major 
haplotype” and “minor haplotype” respectively. The six clones selected for downstream analysis in 
scATAC-seq data are labeled in the plot. 
 

364 
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Following the scheme in Figure 4b, we computed the Uniform Manifold Approximation 365 

and Projection (UMAP) coordinates for the scATAC-seq cells based on their peak profiles, 366 

which gives a two-dimensional visualization of the geometry of the chromatin accessibility 367 

landscape of this sample (Fig. 6a). UMAP scatterplots colored by clone assignment show 368 

that the 6 clones exhibit marked differences in their chromatin accessibility profiles (Fig. 369 

6a): While Clone 1 and Clone 2 are concentrated at the top half of the UMAP, Clones 3-370 

5 are positioned almost exclusively at the bottom half. Clone 6, which exhibits more 371 

variance, is also significantly enriched at the bottom half of the UMAP. Among Clones 3-372 

5, Clone 3 has a distinct chromatin accessibility profile that is mostly concentrated at the 373 

bottom tip, Clone 4 is positioned higher, while Clone 5 contains cells that are similar to 374 

both clones 3 and 4. We expect some of these peak-level differences to be driven by 375 

CNAs.  376 

To delineate the peaks that differ between clones, and to distinguish peak differences 377 

that are not accountable by CNAs, we identified differential accessibility peaks (DAPs) 378 

across each split of the tree (Fig. 6b) by performing pairwise Chi-square tests for peak 379 

enrichment between the cell populations on the two branches. The DAPs are categorized 380 

into two groups —1. DAPs lying in CNA regions for which the direction of change aligns 381 

with the direction of change of DNA coverage, and 2. DAPs not in CNA regions and DAPs 382 

in CNA regions that don’t align in directionality of change with DNA coverage. The number 383 

of DAPs in both groups are shown along each branch (Fig. 6b). For the smaller subclones 384 

(Clone 3,4,5), low coverage limits the detection power and thus limits the DAP counts in 385 

both categories. Yet, juxtaposing DAP and CNA events along the tumor phylogeny yields 386 

insights: Along most lineages, a significant proportion of DAPs are attributable to CNAs 387 
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(p-values shown along each branch), and CNA events drive a substantial 36.3% of all of 388 

the DAPs identified. This argues for the importance of CNAs as a mechanism underlying 389 

subclonal differences in chromatin accessibility in this tumor.  390 

Nevertheless, along some branches we find a large number of DAPs not attributable to 391 

broad CNAs, and thus must be due to other mechanisms. Two example DAPs of this 392 

latter category are shown as insets in Figure 6b, with full list given in Supplementary Table 393 

1. The first example is a peak at the transcription start site (TSS) of the REC8 gene, which 394 

is located on chr14 where no apparent CNAs were observed across the six major 395 

subclones. The TSS of REC8 is open in clones 3-6 but closed in clones 1-2 (p-396 

value<0.0001). REC8 is a gene encoding a meiosis-specific cohesion component that is 397 

normally suppressed in mitotic proliferation, and its role in cancer has recently gained 398 

increasing attention and controversy: While Yu et al.38 found the expression of this gene 399 

to suppress tumorigenicity in a gastric cancer cell line, McFarlane et al.39 postulated that 400 

it may be broadly activated in some cancers where it generates LOH by reductional 401 

segregation. The opening of the TSS of REC8, stably maintained in Clones 3-6, suggests 402 

that meiotic processes may underlie the increased chromosomal instability of this 403 

multiclonal lineage. The second example is a peak at the TSS of the WWOX gene, located 404 

on chr16, which is significantly depleted in Clone 3 (p-value<0.0001). Although chr16 has 405 

LOH across all tumor cells, there are no detectable subclonal differences, and thus we 406 

don’t expect the decrease in accessibility at WWOX for subclone 3 to be due to a large 407 

copy number event. Since WWOX is a well-known tumor suppressor whose down-408 

regulation is associated with more advanced tumors40, 41, its decrease in accessibility 409 

suggests a more aggressive phenotype for Clone 3. Overall, these two examples show 410 
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how Alleloscope can be used to dissect the roles of CNA and chromatin-level changes in 411 

the identification of gene targets for follow-up study.  412 
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Fig. 6: Integrative analysis of allele-specific copy number and chromatin accessibility for SNU601 
ATAC sequencing data. (a) UMAP projection of genome-wide scATAC-seq peak profile on 2,753 cells. 
The same group of cells were clustered into one of the six subclones based on their allele-specific copy 
number profiles across the 10 selected regions. Cells in different subclones are labeled with different 
colors, using the same color scheme as that for the subclone labels in Fig. 4c. The number of cells 
colored in each UMAP is shown at the bottom-right corners. 
(b) A highly probable lineage history of SNU601, with copy number alterations (CNAs) and differential 
accessibility peaks (DAPs) marked along each branch. P-values of the tests for association between 
DAPs and CNAs are shown along each branch. For two example DAP genes, pooled peak signals for 
each subclone are shown as inset plots.  

  413 
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Discussion 414 

Despite the recent advances in the application of single cell sequencing to cancer, we are 415 

still far from understanding the diversity of genomes that are undergoing selection at the 416 

single cell level. Notably, little is yet known about the intratumor diversity of allelic 417 

configurations within CNV regions, and to what extent the diversity of cells in chromatin 418 

accessibility can be attributed to diversity in allele-specific copy number. We presented 419 

Alleloscope, a new method for allele-specific copy number estimation that can be applied 420 

to single cell DNA and ATAC sequencing data (separately or in combination). First, on 421 

scDNA-seq data of 9 samples from 3 different tumor types, with phasing validation by 422 

linked-read sequencing on three samples, Alleloscope revealed an unprecedented level 423 

of allelic heterogeneity within hypermutable CNA regions. In these regions, subclones 424 

reside on a gradient of allelic ratios that is unobservable in total copy number analysis. In 425 

simple cases, these hypermutable regions contain mirrored subclones, as previously 426 

identified9,10, but are often much more complex. We observed multiple instances of 427 

recurrent CNA events, some verified by linked read sequencing, where the same region 428 

is mutated multiple times during the evolution of the tumor, arriving at the same haplotype 429 

profile in distinct clones. In accordance with the findings in Watkins et al.42, we found 430 

using Alleloscope that chromosomal instability drives the formation of subclones not only 431 

in primary tumors but also after metastasis.  432 

Having established the allelic complexity of CNAs at single cell resolution, we next applied 433 

Alleloscope to scATAC-seq data, thus enabling the combined study of clonal evolution 434 

and chromatin accessibility. First, we considered the analysis of a public data set 435 

consisting of two basal cell carcinoma samples, for which matched bulk whole-exome 436 
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sequencing data was used for initial genome segmentation upon which single cell CNA 437 

genotyping was then conducted in the scATAC-seq data. Here we showed that 438 

Alleloscope can detect amplifications, deletions, and copy-neutral LOH events accurately 439 

in scATAC-seq data, and was able to find a subclone delineated by a copy-neutral LOH 440 

event. Juxtaposing this subclone assignment with peak signals allowed us to detect a 441 

wave of genome-wide chromatin remodeling in the lineage carrying the LOH. Next, we 442 

applied Alleloscope to a complex polyclonal gastric cancer cell line with matched scDNA-443 

seq data. We found, by overlaying peak signals with subclones delineated by allele-444 

specific copy number estimates, that much of the intratumor heterogeneity in chromatin 445 

accessibility can be attributed to CNAs. Focusing on subclone-enriched peaks outside of 446 

CNA regions allowed the prioritization of genes for downstream follow-up.  447 

Alleloscope can potentially be applied to the integration of single cell data of other 448 

modalities, for example scATAC-seq and scRNA-seq data, to investigate the relationships 449 

between clonal evolution, chromatin remodeling, and transcriptome. To facilitate 450 

experimental design for single cell omics sequencing protocols, we investigated the 451 

performance of Alleloscope under different scenarios (number of cells, total per cell 452 

coverage, and total coverage at heterozygous SNP sites), see Supplementary Methods. 453 

As expected, accuracy is a function of all three quantities (Supplementary Fig. 14). 454 

Coverage at heterozygous SNP sites is especially important for scRNA-seq and scATAC-455 

seq data, for which shifts in total coverage is an unreliable proxy for underlying DNA copy 456 

number. For scATAC-seq, the lower heterozygosity within peak regions led to lower 457 

number of reads mapping to heterozygous loci as compared to scDNA-seq, and this 458 

resulted in noisier subclone detection. Most of the current scRNA-seq technologies only 459 
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sequence either the 3’ or 5’ end of the mRNA transcripts, which limits the number of 460 

heterozygous SNP sites covered by reads. The latest developments in single cell long 461 

read sequencing43-45 and single cell multimodal sequencing46 herald new analysis 462 

opportunities with this method.  463 

Methods 464 

ScDNA-seq Data Sets and Pre-processing 465 

Table 1 summaries the nine 10x scDNA-seq samples analyzed in this study: 466 

The Cell Ranger DNA pipeline (https://support.10xgenomics.com/single-cell-467 

dna/software/) automates sample demultiplexing, read alignment, CNA calling and 468 

visualization. We first applied the tool to process the sequencing data (beta version: 469 

6002.16.0) using the GRCh38 reference genome. The output bam files from the tool 470 

contain all information for later analysis. If the tumor samples had a matched normal 471 

sample, the GATK HaplotypeCaller was used to reliably call heterozygous SNPs on the 472 

matched normal samples. Otherwise, SNPs were retrieved on the tumor sample 473 

themselves. Next, we applied VarTrix, a software tool for extracting single cell variant 474 

information from the 10x barcoded bam files (https://github.com/10XGenomics/vartrix), to 475 

Sample Cancer 
type 

Source Paired
normal 

Linked
-reads 

Coverage 
per cell 

Cell 
number 

Ref 

P5846 Gastric Primary tissue Yes No 454,806 510 33 
P5847 Gastric Primary tissue Yes No 422,134 715 33 
P5915 Colorectal Liver meta Yes No 126,2629 233 33 
P5931 Gastric Primary tissue Yes Yes 730,932 796 12 
P6198 Colorectal Liver meta Yes Yes 532,343 2,271 33 
P6335 Colorectal Omentum meta No Yes 564,058 953 33 
P6461 Colorectal Liver meta Yes No 483,524 1,242 33 
SNU601 Gastric Ascites meta No No 565,648 1,531 12 
BC10x Breast Primary tissue No No 781,506 1,916 10 
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efficiently generate two SNP-by-cell matrices for both reference alleles and alternative 476 

alleles of the SNPs called in the previous step.  477 

To include high-quality SNPs in the later analysis, we filtered out the SNPs with <5 reads 478 

for P5846 and P5847, <10 reads for P5915 and P5931, <15 reads for P6335 and P6461, 479 

<20 reads for P6198 and SNU601, and <40 for BC10X samples based on the number of 480 

SNP detected for each sample. Additionally, SNPs located in the regions of repetitive 481 

sequences such as centromeres and telomeres were excluded. To exclude cells that 482 

might undergo apoptosis or cell cycles, the cells labeled noisy from the metadata output 483 

by the Cell Ranger tool were excluded.  484 

Single-cell ATAC Data sets, Sequencing and Preprocessing 485 

Table 2 summaries the scATAC-seq samples analyzed in this study: 486 

 487 

The scATAC-seq dataset for the SNU601 sample was generated in this study. About 488 

400,000 cells were washed with RPMI media and centrifuged (400g for 5 min at 4°C) 489 

twice. The supernatant was removed and chilled PBS + 0.04% BSA solution was added. 490 

The resuspended pellet was added to a 2ml microcentrifuge tube and centrifuged (400g 491 

for 5min at 4°C). After removing the supernatant without disrupting the pellet, 100 µL of 492 

chilled Lysis Buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 1% BSA, 0.1% 493 

Sample Cancer 
type 

Source Matched 
DNA 

Coverage 
per cell 

Cell 
number 

Ref 

SU006 Basal cell 
carcinoma 

Primary tissue Yes 41,368 2771 23 

SU008 Basal cell 
carcinoma 

Primary tissue Yes 36,057 788 23 

SNU601 Gastric Ascites meta Yes 73,845 3614  - 
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Nonidet P40 Substitute, 0.1% Tween-20 and 0.01% digitonin) was added and carefully 494 

mixed 10 times. The tube was incubated on ice for 7 min. After incubation, 1 mL of chilled 495 

Wash Buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 1% BSA and 0.1% 496 

Tween-20) was added and mixed 5 times followed by centrifugation of nuclei (500g for 5 497 

min at 4°C). After removing the supernatant carefully, nuclei were resuspended in chilled 498 

Nuclei Buffer (10X Genomics), filtered by Flowmi Cell Strainer (40uM) and counted using 499 

a Countess II FL Automated Cell Counter. Then the nuclei were immediately used to 500 

generate scATAC-seq library.  501 

ScATAC-seq library was generated using the Chromium Single Cell ATAC Library & Gel 502 

Bead Kit (10X Genomics) following the manufacturer’s protocol. We targeted 3000 nuclei 503 

with 12 PCR cycles for sample index PCR. Library was checked by 2% E-gel 504 

(Thermofisher Scientific) and quantified using Qubit (Thermofisher Scientific). 505 

Sequencing was performed on Illumina NextSeq500 using NextSeq 500/550 High Output 506 

Kit v2.5 (Illumina).  507 

Raw sequencing reads of the SNU601 scATAC-seq sample was de-multiplexed with the 508 

10x Genomics Cell Ranger ATAC Software (v.1.2.0; https://support.10xgenomics.com/single-509 

cell-atac/software/pipelines/latest/algorithms/overview) and aligned to the human GRCh38 510 

reference genome. The aligned scATAC-seq data of the two pre-treatment basal cell 511 

carcinoma samples (SU006 and SU008) were downloaded from the Gene Expression 512 

Omnibus under accession GSE12978523. To obtain all potential SNPs for the SU006 and 513 

SU008 samples, GATK Mutect2 was used to call all single-nucleotide variants (SNVs) on 514 

the deduplicated bam files by the Picard toolkits of both the t-cell dataset and the tumor 515 

dataset from the same tumor. All SNVs from the paired tumor-normal datasets were 516 
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combined and the read counts of these SNPs were quantified for each cell in the tumor 517 

scATAC-seq dataset. The pre-filtered cell barcodes for the two public scATAC-seq 518 

datasets were retrieved from the previous study23. For the SNU601 scATAC-seq data, we 519 

instead quantified the read counts of the two alleles of the SNPs more reliably called from 520 

the paired normal scDNA-seq data. Like scDNA-seq, we applied VarTrix to generate two 521 

SNP-by-cell matrices for both reference alleles and alternative alleles of all the SNVs for 522 

all the scATAC-seq datasets. To obtain a SNP set including only SNVs that are more 523 

possible to be germline SNPs, we further filtered out the SNVs <20 reads for the SU008 524 

sample and <30 reads for the SU006 sample. SNPs with extreme VAF values <0.1 or 525 

>0.9 were also excluded for both samples. Since we used the phasing information from 526 

the paired scDNA-seq data to assist the estimation of the haplotype structures for the 527 

SNU601 scATAC-seq data, we instead filtered out the cells <5 reads and the SNPs <5 528 

reads to improve quality of the downstream analysis.  529 

Linked-reads sequencing and data processing 530 

The three samples with the linked-reads sequencing data were acquired as surgical 531 

resections following informed consent under an approved institutional review board 532 

protocol from Stanford University. Samples were subjected to mechanical and enzymatic 533 

dissociation as previously described, followed by cryopreservation of dissociated cells33. 534 

Cryofrozen cells were rapidly thawed in a bead bath at 37 ºC. Cell counts were obtained 535 

on a BioRad TC20 cell counter (Biorad, Hercules, CA) using 1:1 trypan blue dilution. 536 

Between 1.5-2.5 million total cells were washed twice in PBS. Centrifugation was carried 537 

out at 400g for 5 minutes. PBS was removed and cell pellets were frozen at -80 ºC. DNA 538 
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extraction was carried out on cell pellets following thawing using either MagAttract HMW 539 

DNA Kit (P5931) or AllPrep DNA/RNA Mini Kit (Qiagen Inc., Germantown, MD, USA) as 540 

per manufacturer’s protocol. Quantification was carried out using Qubit (Thermofisher 541 

Scientific).  542 

Sequencing libraries were prepared from DNA using Chromium Genome Reagent Kit (v2 543 

Chemistry) (10X Genomics, Pleasanton, CA, USA) as per manufacturer’s instructions. 544 

Sequencing was performed using Illumina HiSeq or NovaSeq sequencers using 150x150 545 

bp paired end sequencing and i7 index read of 8 bp. Long Ranger (10X Genomics) 546 

version 2.2.0 was used to perform read alignment to GRCh38, calling and phasing of 547 

SNPs, indels and structural variants.  548 

Segmentation 549 

The first step of Alleloscope is to segment the genome into regions with different CNA 550 

profiles. The appropriate segmentation algorithm depends on what samples are available. 551 

First, matched bulk DNA sequencing data (WGS/WES) or pseudo-bulk data from 552 

scDNAseq data can be segmented using FACLON5, a segmentation method that jointly 553 

models the bulk coverage and bulk VAF profiles, if a matched normal sample is available. 554 

To accommodate segments from rare subclones, methods that integrate shared cellular 555 

breakpoints in CNA detection for scDNA-seq data such as SCOPE47 can improve 556 

sensitivity. Since FALCON requires a matched normal sample or a sufficiently large set 557 

of normal cells, if these are not available then Alleloscope instead relies on an HMM-558 

based segmentation method. The HMM method, which operates on the binned counts of 559 

pooled cells, assumes a Markov transition matrix on four hidden states representing 560 
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deletion, copy-neutral state, single-copy amplification and double-copy amplification: 561 

7

1 − 3𝑡 𝑡 𝑡 𝑡
𝑡 1 − 3𝑡 𝑡 𝑡
𝑡 𝑡 1 − 3𝑡 𝑡
𝑡 𝑡 𝑡 1 − 3𝑡

:, where 𝑡 = 1 × 10,- as default. Emission probabilities 562 

follow a normal distribution with means equal to {1.8, 1.2, 1, 0.5} and standard deviations 563 

equals to 0.2. All the scDNA-seq samples were segmented using the HMM algorithm. 564 

With the paired sample, the P6198 tumor sample was segmented using FALCON on the 565 

1,399,650 SNPs >30 reads across 2,271 cells with all the default parameters. 566 

Whole-exome sequencing (WES) data processing 567 

The WES data of the two paired tumor-normal samples (SU006 and SU008) were 568 

obtained from the Sequence Read Archive under accession PRJNA533341. Raw fastq 569 

files were aligned to the GRCh37 reference genome using bwa-mem48 with duplicate 570 

reads removed using the Picard toolkits49. The copy number calls of paired normal-tumor 571 

samples were obtained using Varscan250. To perform allele-specific copy number 572 

analysis on the WES using FALCON, GATK HaplotypeCaller49 was used to call SNPs on 573 

both tumor and normal samples. Then FALCON was used to segment each chromosome 574 

based on the read counts of the reference alleles and alternative alleles of the SNPs 575 

overlapped between the paired tumor-normal samples.  576 

SNP Phasing and Single-cell Allele Profile Estimation 577 

For each region after segmentation, an expectation-maximization (EM)- based method is 578 

used to iteratively phase each SNP and estimate cell-specific allele-specific copy number 579 

states for all scDNA-seq and scATAC-seq data sets. Recall that by “major haplotype” we 580 
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refer to the haplotype with higher aggregate copy number in the sample. Let 𝐼" indicate 581 

whether the reference allele of SNP j is located on the major haplotype and 𝜃! denote 582 

major haplotype proportion of cell i. The EM model iterates the expectation step and the 583 

maximization step. The complete log likelihood of the model is  584 

𝑙(𝜃) ==𝑙𝑜𝑔𝑃(𝐴!" , 𝐵!"|𝜃)
.

"/'

 585 

	= ={E𝐴!"𝑙𝑜𝑔𝜃 + 𝐵!" log(1 − 𝜃)J𝐼" + E𝐵!"𝑙𝑜𝑔𝜃 + 𝐴!" log(1 − 𝜃)J(1 − 𝐼")}
.

"/'

 586 

where 𝐴!" and 𝐵!" are the observed read counts for the reference and alternative alleles 587 

of cell i on SNP j. In the E-step, we first calculate the expected value of the posterior 588 

probability of the hidden variable 𝐼" to construct a lower bound for optimization 589 

𝐸01(&)E𝐼"L𝐴!" , 𝐵!" 	J = 𝐼."
(&) =

∏ 𝜃0!
(&)2()N1 − 𝜃0!

(&)O
3()

!

∏ 𝜃0!
(&)2()N1 − 𝜃0!

(&)O
3()

! +∏ N1 − 𝜃0!
(&)O

2()
𝜃0!
(&)3()

!

 590 

where 𝜃0!
(&) is the parameter from the tth iteration. In the M-step, 𝜃0! is updated by solving 591 

𝜃0!
(&4') = 𝑎𝑟𝑔𝑚𝑎𝑥0(𝐸T𝑙(𝜃)U𝐴!" , 𝐵!" , 𝜃0!

(&)V 592 

=
∑ [𝐴!"𝐼."

(&) + 𝐵!"(1 − 𝐼."
(&))]"

∑ [𝐴!"𝐼."
(&) + 𝐵!"(1 − 𝐼."

(&))]" +∑ [𝐴!"(1 − 𝐼."
(&)) + 𝐵!"𝐼."

(&)]"
 593 

Where 𝜃0!
(&)  and 𝜃0!

(&4')  are from two successive iterations of EM. The two steps are 594 

iterated until converge. To speed up the EM process, we limited the maximum number of 595 
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SNPs in a region to be 30,000 in our analysis. For the SNU601 scATAC-seq dataset, 596 

since the phase were estimated in the paired scDNA-seq dataset with higher depth, we 597 

directly applied the estimated 𝐼." ’s from scDNA-seq data to estimate the 𝜃0! ’s of the cells in 598 

the scATAC-seq data. To improve the estimation results, cells with <20 read counts 599 

covering the identified SNPs were excluded for each region. 600 

Selecting normal cells and normal regions for single-cell Coverage Normalization 601 

Let 𝑟  represent a region in the genome after segmentation. To compute the relative 602 

coverage change for each cell in region 𝑟 (𝜌2!5), normal cells and diploid regions identified 603 

within the sample are required for normalization. After major haplotype proportions for 604 

each cell in each region 𝜃0!5 ’s are inferred from the EM-based algorithm, the estimates are 605 

used to identify normal cells and diploid regions under a hierarchical clustering of all cells. 606 

To identify normal cells, the dendrogram tree is first cut into k largest groups (we used 607 

𝑘 = 5 which worked well across samples). The cluster with normal cells is identified by 608 

selecting the cth cluster with the minimum distance calculated by 609 

=\
∑ 𝜃0!501(∈7*

𝑛8
− 0.5\

(9

5/'

	 610 

where 𝑆8 represents 𝜃0! values of the cells in the cth cluster, and 𝑛8 is total cell number in 611 

the cth cluster. All cells in the cth cluster are considered as candidate normal cells.  612 

Putative diploid regions are next identified in each cluster. Similar to normal cell 613 

identification, Alleloscope computes the first measurement (𝑑85) as the sum 𝜃0! distance 614 

of the cells in the cth cluster for each region r 615 
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𝑑85 = = L𝜃0!5 − 0.5L
(

01(∈7*

 616 

Since amplified regions with both haplotypes equally amplified can also have small sum 617 

𝜃0! distance, adjusted raw coverages are also considered in diploid region selection. The 618 

adjusted raw coverage of cell i in region r (𝜌1!9) is computed by  619 

𝜌1!5 =
𝑁!5
𝑁!

×
𝐿5
𝐿𝐿, 620 

where 𝑁!5 is the total read counts in region r of cell i and 𝑁! is the total read counts of cell 621 

i across the regions. 𝐿5 is length of the region r and 𝐿𝐿 is total length of the genome. For 622 

region r, cells with 𝜌1!5 values larger than the 99th percentile are assigned the 𝜌1!5 values 623 

equal to the 99th percentile across the cells. The second measurement (𝑚85) used to 624 

select diploid regions in the cth cluster is the mean 𝜌1!5 for each region r  625 

𝑚85 =
∑ 𝜌1!5:;(∈7*

𝑛8
 626 

where 𝑆8 here represents 𝜌1! values of the cells in the cth cluster. To identify diploid regions, 627 

𝑑85  and 𝑚85  are both ranked from the smallest to the largest for each cluster c. 628 

Alleloscope shows a list of potential diploid regions for each cluster by raking the sums 629 

of 	𝑑85  ranks and 𝑚85  ranks. Excluding the cth cluster identified as the normal group, 630 

Alleloscope proposed a list for the candidate diploid regions across the clusters by 631 

selecting the majority region.  632 

Since coverage on scATAC-seq data is confounded by the epigenetic signals, 633 

chromosome 22 for SU008 and chromosome 18 for SU006 were directly selected as 634 
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normal regions based on the WES data. Individual cells were classified into normal and 635 

tumor cells based on the epigenetic signals on the scATAC-seq data. For the SNU601 636 

scATAC-seq dataset, chromosome 10 was selected as the normal region based on the 637 

paired scDNA-seq data.  638 

Cell-level Genotyping 639 

The cell-level allele-specific copy number profiles are defined by both relative coverage 640 

change (𝜌2!5) and major haplotype proportion (𝜃0!5) of region r and cell i. After the normal 641 

cells and normal control region are identified, cell-specific relative coverage change in 642 

region r is calculated as 643 

𝜌2!5 =
𝑁!5
𝑁!$

/	𝑚𝑒𝑑𝑖𝑎𝑛(
𝑁$5
𝑁$$

)	 644 

where 𝑁!5 is total read counts in region r and 𝑁!$ is total read counts in a reference region 645 

of cell i. 𝑁$5 is a vector denoting total read counts in region r of all identified normal cells 646 

and 𝑁$$  is a vector denoting total read counts in the same reference region r of all 647 

identified normal cells. Since SNU601 is a tumor cell line with no normal cells in the 648 

dataset, 𝑁$5 and 𝑁$$ were calculated from the cells in the matched normal P6198 sample 649 

as a substitute for the scDNA-seq data. For SNU601 scATAC-seq data, we aligned the 650 

distribution of the 𝜌2!5 values in paired scDNA-seq data to the distribution of the <(+
<(

 values 651 

for each region to get the normalized 𝜌2!5 in the scATAC-seq data. The normalized 𝜌2!5 652 

values for the scATAC-seq data were computed by 653 

𝜌2!5=&=8 =
𝑁!5
𝑁!$

/	𝑚𝑒𝑑𝑖𝑎𝑛(
𝑁!5
𝑁!$

) × 	𝑚𝑒𝑑𝑖𝑎𝑛(𝜌2!5>.=)	 654 
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Next, cells with extreme 𝜌2!5 values larger than the 99th percentile and smaller than the 655 

first percentile across the cells are considered outliers and excluded for each region. With 656 

the (𝜌2!5 , 𝜃0!5) pairs, cells in the scDNA-seq data can be classified into the haplotype profiles 657 

(g) with the expected (𝜌?, 𝜃?) values based on minimum distance. Although signals in the 658 

scATAC-seq data are much noisier, the haplotype structures identified in the paired 659 

scDNA-seq data can help to guide the genotyping for each region. In region r, the 660 

posterior probability of cell i carrying a haplotype profile observed in region r in the paired 661 

scDNA-seq data was 662 

𝑃3𝐺𝑇!5 = 𝑔5L𝜌2!5 , 𝜃0!54 =
𝑃3𝜌2!5 , 𝜃0!5L𝐺𝑇!5 = 𝑔54𝜋?+

∑ 𝑃3𝜌2!5 , 𝜃0!5L𝐺𝑇!5 = 𝑔@4𝜋?+,?+@
, 663 

where 𝑔5 denotes the haplotype profiles observed in region r in the paired scDNA-seq 664 

data and 𝜋?+ denotes the prior probability that a randomly sampled cell carrying the 𝑔5 665 

haplotype profile. A uniform prior can be used for 𝜋?+  in the absence of external 666 

information. In the formula, 667 

𝑃3𝜌2!5 , 𝜃0!5L𝐺𝑇!5 = 𝑔54 = 	𝑃3𝜌2!5L𝜇 = 𝜌?; 	𝜎: = 0.254 × 𝑃 l𝜃0!5m𝜇 = 𝜃?; 𝜎 = n𝜃
0!531 −	𝜃0!54

𝑛!5
o, 668 

where 𝑛!5 is the number of total read counts in region r for cell i. The haplotype profile of 669 

cell i in region r was estimated by maximizing the above posterior probability. The 670 

haplotype profiles of each region are visualized using different colors in the two-671 

dimensional scatter plots for both scDNA-seq and scATAC-seq data with the confidence 672 
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scores calculated using the distance of the points to the canonical centers and the 673 

standard deviations.  674 

Validations using paired linked-reads sequencing data 675 

We validated our algorithm using paired linked-reads sequencing data with two strategies 676 

in one gastric cancer patient sample and two colorectal cancer patient samples. First, the 677 

phasing accuracy was assessed by comparing the estimated SNP phases on the scDNA-678 

seq data and the known phases of the same SNPs from the linked-reads sequencing data 679 

in individual regions. In the linked-reads sequencing data, SNPs within the same phase 680 

sets are phased with respect to one another, while those between different SNP sets are 681 

not. Therefore, we compared the phases of the SNPs overlapping between our estimated 682 

SNP set and the phase set with the largest numbers of SNPs in the linked-reads 683 

sequencing data for each region. The reference alleles of the overlapping SNPs with 𝐼." 684 

>0.5 are estimated to be on the major haplotype. Otherwise, the reference alleles of the 685 

overlapping SNPs with 𝐼." <0.5 are estimated to be on the minor haplotype. The SNPs with 686 

𝐼."=0.5 are excluded. By comparing estimated phases and known phases from the linked-687 

reads sequencing data of the overlapping SNPs, the phasing accuracy was computed for 688 

each region.  689 

Secondly, we evaluated the genotyping accuracy by comparing the estimated haplotype 690 

profiles of each cell and the haplotype profiles inferred from the linked-reads sequencing 691 

data in individual regions. In the linked-reads sequencing data, the phase set with the 692 

largest numbers of SNPs was selected. The known phases of the overlapping SNPs 693 

between the phase set and the estimated SNPs were used to infer 𝜃! for each cell. Cell-694 
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level haplotype profiles using 𝜃! ’s from linked-reads sequencing data were considered as 695 

gold standard. By comparing the estimated haplotype profiles from 𝜃0! and the haplotype 696 

profiles from 𝜃!, genotyping accuracy was computed for each region. If the number of 697 

overlapping SNPs for an amplified region is smaller than 5000, the phase sets were 698 

combined from the largest to the smallest to reduce variance of 𝜃! ’s inferred from linked-699 

reads sequencing data. The estimated SNP phases (𝐼." ) were used as templates to 700 

combine separate phase sets. 701 

Cell Lineage Reconstruction 702 

To investigate the tumor subclonal structure for scDNA-seq data, cell-specific haplotype 703 

profiles from Alleloscope across the genome were used to reconstruct cell lineage trees. 704 

The “Gower’s distance” is calculated using “cluster” R package on the nominal haplotype 705 

profiles between cells. Then hierarchical clustering is performed on the distance using the 706 

“ward.D2” method. Since variance of 𝜃0! ’s is higher when fewer SNPs are located in a 707 

segment, we included the segments with more than 2,000 SNPs identified. The clustering 708 

results are visualized using the ‘pheatmap’ R package. Each segment was plotted with 709 

its length proportional to 5,000,000 bins. The heights of the clustering tree were log-710 

transformed for easier visualization.  711 

The tumor subclonal structures were also investigated in the scATAC-seq data. Instead 712 

of using the haplotype profiles defined by the (𝜌2!5 , 𝜃0!5) pairs, the cells from the two public 713 

basal cell carcinoma were clustered using 𝜃0!5 values, which are orthogonal to the peak 714 

signals based on total coverage, across the segments with more than 500 SNPs. Then 715 

hierarchical clustering is performed on the Euclidean distance using the “ward.D2” 716 
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method and visualized using ‘pheatmap’ R package with the three largest clusters 717 

separated by marginal lines. The heights of the clustering tree were log-transformed for 718 

easier visualization.  719 

Since the subclones for the SNU601 sample were identified first from the scDNA-seq data, 720 

for this cell we adopted a supervised strategy to assign each cell into different subclones. 721 

First, we identified 10 marker regions-- chr1b, 3b-d, 4b, 7a, 11b, 13b, and 20b-c that help 722 

to differentiate the cells into the six major subclones based on the subclone specific copy 723 

number profiles from the scDNA-seq data. Combining the haplotype profiles across the 724 

ten regions for each cell enables assignment of the cells into one of the six subclones 725 

with high confidence. The posterior probability of cell i coming from clone k was  726 

𝑃3𝐶𝑙𝑜𝑛𝑒! = 𝑘L	𝜌2! , 𝜃0!4 =
𝑃3𝜌2! , 𝜃0!L𝐶𝑙𝑜𝑛𝑒! = 𝑘4𝜋A

∑ 𝑃3𝜌2! , 𝜃0!L𝐶𝑙𝑜𝑛𝑒! = 𝑘@4𝜋A,A@
, 727 

where 𝑘 ∈ {1~6} for the six clones and 𝜋A is the prior probability that a randomly sampled 728 

cell coming from the 𝑘&B clone, which can be estimated from the paired scDNA-seq data 729 

or set to uniform (in our analysis setting to uniform gives very similar results). In the 730 

formula,  731 

𝑃3	𝜌2! , 𝜃0!L𝐶𝑙𝑜𝑛𝑒! = 𝑘4 =s𝑃(𝜃0!C , 	𝜌2!C|𝐶𝑙𝑜𝑛𝑒! = 𝑘)
C

732 

=s𝜙u
𝜃0!C − 𝜃AC

v𝑛!C𝜃AC(1 − 𝜃AC)
w𝜙 u

𝜌2!C − 𝜌AC
𝜎:

w
C

, 733 

where 𝑥  is the index for the ten marker regions, 𝜃0!C  and 𝜌2!C  are the estimated major 734 

haplotype proportion and relative coverage for cell i in the scATAC-seq data, 𝜃AC and 𝜌AC 735 
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are the “known values” for specific haplotype profiles for clone k derived from the paired 736 

scDNA-seq data, and 𝑛!C is the number of total read counts in the 𝑥&B marker region for 737 

cell i. Each cell was assigned into one of the six subclones by maximizing the above 738 

posterior probability with the confidence score being the posterior probability of the 739 

assigned clone.  740 

ScATAC-seq data analysis 741 

To investigate the relationships between allele-specific CNAsand chromatin accessibility, 742 

for each cell in scATAC-seq data we processed the peak signals in addition to the allele-743 

specific CNAs. For the two public basal cell carcinoma samples, the peak by cell matrices 744 

was obtained from GSE129785. We subset the fragment counts for each peak in the cells 745 

from the SU008 sample, regressed out cell total coverage for each peak by linear 746 

regression, and projected the cells onto the UMAP plot using genome-wide peak signals51. 747 

The cell type identify for each cluster was retrieved from the labels in the previous study23. 748 

To further explore intratumor heterogeneity, we selected the cells labeled as tumor cells, 749 

regressed out cell total coverage, and projected the tumor cells onto the UMAP plot like 750 

previously described. Then the DNA level information and epigenetic signals for each cell 751 

can be visualize and analyzed together. 752 

For the SNU601 scATAC-seq dataset, scATAC-pro52 was used to call peaks and 753 

generate the peak by cell matrix from the bam file and fragment file output by the Cell 754 

Ranger software. We first filtered out the cells that have proportions of fragments on the 755 

detected peaks <0.4 and or total peaks outside of the range 15,000~100,000, and filtered 756 

out the peaks observed in less than 0.1 of cells. Next, we regressed out cell total coverage 757 
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for each peak by linear regression, and projected the cells onto the UMAP plot using 758 

genome-wide peak signals. Then the clonal assignment based on the DNA information 759 

and the peak signals can be integrated at the single-cell level.  760 

Based on the lineage structure from the paired scDNA-seq data, the cells can also be 761 

placed in the lineage tree based on their clonal assignment. Under the lineage structure, 762 

pairwise comparison using Chi-squared test was performed on the proportion of the to 763 

identify differential accessible peaks (DAPs) for each branch. A peak was considered a 764 

DAP if the FDR adjusted p-values<0.05. Since copy number alterations are confounding 765 

factors that also affect the peak signals, the DAPs were further divided into two groups— 766 

1. “CNA” group if the DAPs are in the CNA regions and both signals are positive correlated; 767 

2. “Other” group if the DAPs are not categorized in the first group. A set of DAPs were 768 

considered to be enriched in the CNA regions if the p-values<0.05 under the 769 

hypergeometric test. This type of analysis enables investigation of the relationships 770 

between the two signals. Each DAP was further mapped to the genes that are potentially 771 

regulated based on the ± 2,000 bp distance on the genome. To further visualize the 772 

difference of the peak signals among the six clones, the peak signals were pooled across 773 

the cells and normalized by the total cell number in each subclone.  774 

Data availability 775 

All the linked-reads sequencing data and the scATAC-seq dataset are available under 776 

accession ###. There are no restrictions on data availability or use. The patient scDNA-777 

seq data were obtained from dbGAP under accession phs001818.v3.p133 (all except 778 

5931 scDNA) and phs00171112 (5931 scDNA). The cell line scDNA-seq dataset was from 779 
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the Sequence Read Archive (SRA) under accession PRJNA498809. The public scATAC-780 

seq data and whole exome sequencing data were obtained from the SRA under 781 

accession PRJNA53277423 and PRJNA53334137. 782 

Code availability 783 

Alleloscope is available on GitHub at https://github.com/seasoncloud/Alleloscope. 784 
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