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ABSTRACT 

Understanding how diet and gut microbiota interact in the context of human health is a key 

question in personalized nutrition. Genome-scale metabolic networks and constraint-based 

modeling approaches are promising to systematically address this complex question. However, 

when applied to nutritional questions, a major issue in existing reconstructions is the lack of 

information about degradation pathways of relevant nutrients in the diet that are metabolized 

by the gut microbiota.  Here, we present AGREDA, an extended reconstruction of the human gut 

microbiota metabolism for personalized nutrition. AGREDA includes the degradation pathways 

of 231 nutrients present in the human diet and allows us to more comprehensively simulate the 

interplay between food and gut microbiota. We show that AGREDA is more accurate than 

existing reconstructions in predicting output metabolites of the gut microbiota. Finally, using 

AGREDA, we established relevant metabolic differences among clinical subgroups of Spanish 

children: lean, obese, allergic to foods and celiac.    
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INTRODUCTION 

Understanding how diet and gut microbiota interact in the context of human health is a key 

question in personalized nutrition1. Nutrients derived from the diet affect the abundance of 

different species present in the gut microbiome, which, on the other hand, release key 

metabolites and signals that regulate host health. The relevance of this interaction is supported 

by an increasing body of literature showing that the beneficial effect of dietary interventions in 

different clinical conditions is associated with specific signatures of the gut microbiota1–3.  

Given the complex molecular events implied in this relevant question, the development of 

computational models, driven by meta-omics data, constitutes a major task in Systems 

Biology4,5. In particular, the integration and analysis of genome-scale metabolic models of 

different bacterial species that are present in the human gut microbiota have received much 

attention6. Thanks to the tremendous effort in the last years to generate high-quality 

computational platforms for metabolic reconstruction7–10, extensive microbial community 

models of the human gut microbiome are now available. Currently, AGORA constitutes the 

largest effort in the literature, involving 818 species present in the human gut microbiota11.   

These network-based community models, which integrate the metabolic capabilities of different 

bacterial species in the gut microbiome, can be analyzed via Constraint-Based Modeling 

(CBM)12–14. This approach is promising in personalized nutrition and could help in elucidating 

how different microbial species in the human gut exploit and transform nutrients derived from 

the diet and in systematically designing effective dietary strategies when the gut microbiome is 

dysregulated. For example, AGORA has been already applied to predict dietary supplements for 

Crohn’s disease15. Using a similar approach, we predicted the effect of solid diet on the gut 

microbiota metabolism of infants16.   

However, a major issue of current metabolic reconstruction platforms is the limited information 

about degradation pathways of key diet-derived nutrients. For example, AGORA only involves 
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99 out of 650 nutrients included in i-Diet, a commercial software for personalized nutrition17. In 

addition, universal metabolic databases, such as the Model SEED7, on which reconstruction 

platforms rely for gap filling, are incomplete and include metabolic capabilities of species that 

are not present in the human gut. Overall, these limitations restrict the scope of CBM 

approaches to establish personalized nutrition programs.   

In this article, using a combination of bioinformatic tools, literature and expert knowledge, we 

extend AGORA and substantially improve the coverage of the metabolism of diet-derived 

nutrients. Particularly, we include the degradation pathways of 231 nutrients (not present in 

AGORA), from which 211 are phenolic compounds, a family of metabolites highly relevant for 

human health and nutrition. Our reconstruction, called AGREDA (AGORA-based REconstruction 

for Diet Analysis), is thus more amenable to analyze the effect of dietary interventions. 

To illustrate our contribution, we first show that AGREDA outperforms AGORA in differentiating 

20 typical recipes of the Mediterranean diet, according to their nutrient composition. In 

addition, using 16S rRNA sequencing data, we apply AGREDA to analyze the metabolic output of 

the gut bacterial community during the in vitro fermentation of lentils with faeces of children 

belonging to different clinical groups: lean, obese, allergic to foods and celiac. We provide 

experimental validation for 10 different output phenolic compounds and establish important 

metabolic differences in the gut microbiota of the children analyzed, emphasizing the insights 

derived from AGREDA that could not be obtained with AGORA. In conclusion, AGREDA addresses 

the necessary intersection between human nutrition, genomics and computational modeling to 

reach the 21st century nutrition: personalized nutrition. 

RESULTS 

We present a new metabolic reconstruction of the human gut microbiota that is focused on 

covering significant gaps in the degradation of diet-derived nutrients. We started from AGORA11, 

the most detailed metabolic resource that includes 818 reconstructions of bacterial species 
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present in the human gut microbiota. We first assessed the number of nutrients present in i-

Diet17, a commercial nutritional software designed to elaborate optimal diets, that are 

annotated in AGORA. We found that 551 out of 650 metabolites are missing, which justifies the 

need for the work presented here.   

In order to reduce the size of the reconstruction and computation time, we did not take into 

account the boundaries of individual organisms and extracted a non-redundant set of reactions 

and metabolites from AGORA. In other words, we defined a metabolic network with only two 

compartments: external and internal, obtaining 2473 metabolites and 5312 reactions. Note here 

that, for meta-omics data integration, we stored for each reaction its taxonomic annotation in 

AGORA. Henceforth, this summarized network is referred to as AGORA.  

We then built a universal metabolic network based on the Model SEED7 (SEED) database and 

expert nutritional knowledge. Through their EC numbers (if available), reactions were annotated 

to species present in AGORA using different bioinformatics tools and metabolic databases 

(Figure 1 and Methods section for details). This universal network was consistently integrated 

with the reactions and metabolites from AGORA. We finally applied a gap filling algorithm to 

include in our reconstruction the maximum number of diet-derived nutrients and their 

degradation pathways, which was based on FastCoreWeighted, included in the COBRA 

Toolbox18,19 (see Methods section for full details). Our final reconstruction is called AGREDA 

(AGora-based REconstruction for Diet Analysis, Supplementary Data 1). 
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Figure 1. Summary of the reconstruction pipeline. First, AGORA reconstructions11 (black) are 
combined into a supra-organism model, while saving the taxonomic assignment of the reactions. 
Next, Model SEED7 reactions (green) are annotated to AGORA species through EC number 
information (see Methods section) and added to the supra-organism model. Then, metabolites 
provided by i-Diet and manually curated by expert nutritional knowledge are integrated with 
AGORA and Model SEED (maroon). Finally, gap-filling techniques, based on the Cobra 
Toolbox18,19, are applied to derived AGREDA. 

 

AGREDA adds to AGORA 899 reactions and 401 metabolites, from which 231 are diet-derived 

nutrients from i-Diet not included in AGORA. Full details, including functional and taxonomic 

annotation of reactions, can be found in Supplementary Data 2. Figure 2a shows the number of 

reactions and metabolites related to each species grouped by the respective phyla. It can be 

observed that all phyla contain a higher number of metabolites in AGREDA than in AGORA. 

Specifically, each phylum in AGREDA contains on average 70 reactions and 170 metabolites 

more than in AGORA.  
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Figure 2. Main features of AGREDA. (a) Number of metabolites and reactions in AGORA (red) 
and AGREDA (blue) belonging to the 14 phyla present in the models. The number of strains per 
phylum is shown in brackets. (b) Distribution of the 211 phenolic compounds added by AGREDA 
separated in 19 families. (c) Degradation capabilities for three families of phenolic compounds 
present in AGREDA. The total number of strains in each phylum is reported in brackets. 

 

An important set of metabolites included in AGREDA is that of phenolic compounds. These 

nutrients are widespread in the vegetal kingdom, where they act as a defensive system against 

external aggressions and have been pointed out to be responsible for many of the health 

benefits of vegetable consumption. AGREDA covers a very wide range of phenolic compounds, 

from the simpler ones (benzoic and hydroxycinnamic acids) to the more complex 

(proanthocyanidins), with all families represented (Figure 2b). Overall, AGREDA added the 

degradation pathways of 211 phenolic compounds, significantly improving the coverage of 

AGORA, which only contained 19 phenolic compounds. 
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The daily intake of phenolic compounds is rather high, since they are especially abundant in 

highly consumed food items such as tea or coffee (specially rich in cinnamic acids and flavan-3-

ols) and fruits, vegetables and legumes (wide range of different flavonoids)20. However, they are 

barely absorbed in the small intestine and reach the gut microbiota where they are metabolized 

by organisms belonging to different phyla, usually into smaller molecules that are more easily 

absorbed in the large intestine21. Therefore, the benefits of most phenolic compounds are 

actually exerted by their output metabolites, hence the importance of being able to define their 

microbial metabolization22. Figure 2c, for example, shows the degradation capabilities of 

different phyla for 3 families of phenolic compounds: flavanones, benzoic acids and 

hydroxycinnamic acids.  

In order to assess the improvement over AGORA, we selected 20 representative recipes and 

employed i-Diet to calculate the nutrients present in each of them (Supplementary Data 3). As 

shown in Figure 3a, approximately only half of the nutrients of each recipe captured by AGREDA 

are captured by AGORA. In addition, the heatmaps in Figure 3b represent the dissimilarity 

(Jaccard´s distance) among the sets of nutrients present in each recipe captured by AGORA and 

AGREDA, respectively. We observe that the latter is significantly greater than the former, 

meaning that AGREDA performs better at capturing the potential metabolic differences 

between the recipes. We can, therefore, conclude that AGREDA provides us with a more 

accurate tool to assess the effects of the different diets on the gut metabolism with a 

straightforward application to personalized nutrition. 
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Figure 3. Capability of the models to capture the nutritional composition of 20 representative 
recipes. (a) The number of nutrients that AGORA and AGREDA are able to capture per recipe. 
Note that all the metabolites present in AGORA are also included in AGREDA. (b) Differences 
between the nutritional content of the recipes captured by AGORA and AGREDA respectively. 
The Jaccard´s distance between the composition of the recipes is represented. 

 

In vitro fermentation of lentils with children faeces 

A commercial Spanish recipe of boiled lentils was used for the next set of experiments. Its 

nutritional composition was obtained by means of the i-Diet software17 (Supplementary Data 3). 

Lentils were fermented in vitro with faecal inocula from children belonging to 4 different clinical 

conditions, i.e. lean, obese, allergic to foods and celiac. Seven inocula were prepared with the 

fecal samples proceeding from lean, obese and celiac children, while six were prepared with 
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those proceeding from allergic children, for a total of 27 fermentations. The taxonomic 

composition of the microbiota present in the different fermentations was measured by means 

of 16S sequencing technologies (see Methods section). Next, we contextualized the reference 

AGREDA and AGORA models with the nutritional information of the lentils recipe and the 

taxonomic composition of the fecal inocula (see Methods section, Supplementary Data 3), 

obtaining 27 context-specific AGORA and 27 context-specific AGREDA models for the 

aforementioned conditions. 

We experimentally measured the presence or absence of a set of 10 representative phenolic 

compounds in three inocula per clinical condition through targeted metabolomics analysis, for 

a total of 12 samples (see Methods section for details, Supplementary Data 3) and assessed the 

predictive potential of the respective AGORA and AGREDA models (Figure 4a). Here, we noticed 

that the reference (uncontextualized) AGORA network only captures 3 out of 10 measured 

phenolic compounds, while the reference (uncontextualized) AGREDA network contains all the 

measured metabolites. As a consequence, the sensitivity of the AGREDA context-specific models 

is remarkably higher than that of the AGORA context-specific models (76,4% versus 22,3%, 

Figure 4a). Moreover, AGREDA outperforms AGORA regarding accuracy (75% versus 32,5%). We, 

therefore, conclude that the new metabolites and degradation pathways included in AGREDA 

significantly improve our predictive capacity of gut microbiota metabolism and enable the 

detection of output metabolites not considered in AGORA. 

Next, we employed the aforementioned AGREDA contextualized reconstructions aiming at 

identifying the relevant output metabolites for each disease condition in comparison to the lean 

state (Bayesian Logistic Model, p-value <= 0.05) using the 27 samples previously described. We 

found a list of 52, 16 and 4 relevant metabolites for allergic, obese and celiac conditions, 

respectively (Figure 4b, Supplementary Data 3). Importantly, 22 out of these 72 metabolites 

were only captured in AGREDA and not in AGORA.  
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Figure 4. Case Study: Degradation of a traditional lentils recipe. (a) Comparison of the 
predictive potential of 10 metabolites secreted by the gut microbiota between AGREDA and 
AGORA. The medium was defined by the nutrients of a traditional lentils recipe. (b) Summary of 
the AGREDA prediction of representative metabolites secreted by the gut microbiota in samples 
from allergic, obese, celiac children in comparison to lean children. (c) Bacterial species involved 
in the biosynthesis of histamine (green), tryptamine (green), myricetin (blue) and isoprene 
(orange). Rarefaction was applied for normalization. Abbreviations: TP (True Positives), TN (True 
Negatives), FP (False Positives), FN (False Negatives), 34dhpgval (5-(3',4'-Dihydroxyphenyl)-
gamma-valerolactone), 3hpppn (3-(3-hydroxy-phenyl)propionate), 4hphac (4-
hydroxyphenylacetate), 34dhpha ((3,4-dihydroxyphenyl)acetate), CPDIM-6116 (Dihydrocaffeic 
acid). 

 

The samples from allergic children show more extreme differences with respect to the rest of 

conditions. In particular, we identified the biosynthesis of histamine and tryptamine as a specific 

feature in these fermentation samples. Both metabolites are closely related since tryptamine 

tends to increase the levels of histamine in the organism23 and the latter is involved in the 
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inflammatory response of allergies24,25. Interestingly, the gut microbiota supports the 

production of histamine and tryptamine, as reported in different works for adults26,27. We could 

identify the species involved in histamine and tryptamine biosynthesis, namely, Citrobacter 

amalonaticus Y19, Citrobacter freundii UCI 31 and Morganella morganii subsp. morganii KT, 

which are only present in these samples (Figure 4c).  

Regarding the obese children´s samples, two relevant metabolites caught our attention, namely, 

isoprene and myricetin. The former is predicted to be produced exclusively in the obese 

condition and, interestingly, it has been reported to be involved in many metabolic disorders 

and as a potential obesity marker exhaled in breath28,29. With respect to myricetin, however, just 

the opposite occurs since it is only produced in the fermentations with inocula from the lean 

children´s stools but not in those from the obese children. Importantly, several works performed 

with mice have shown that this phenolic compound provides anti-obesity effects30,31. Note that 

myricetin is one of the metabolites that would not have been captured by AGORA. For both 

isoprene and myricetin, we could identify the species involved in their biosynthesis, i.e. 

Sutterella wadsworthensis 3_1_45B and Clostridium hathewayi 12489931 and Clostridium 

ramosum VPI 0427, DSM 1402, respectively (Figure 4c).  

DISCUSSION 

Constraint-based modeling constitutes a promising approach to investigate the interaction of 

diet and gut microbiota and their impact in the host´s health. In the last years, the number of 

high-quality genome-scale metabolic reconstructions of species present in the human gut has 

significantly increased, aiming to conduct a more comprehensive analysis of the gut microbiota 

metabolism. However, they need further developments to become a practical tool in the area 

of personalized nutrition, since a large variety of key nutrients present in the diet are not 

considered in these reconstructions. This limitation could substantially impair our study of the 

interplay between diet and gut microbiota metabolism.            
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In this article, we directly address this relevant issue and extend AGORA11, the largest repository 

of metabolic reconstructions of species present in the human gut microbiome. In particular, we 

add to AGORA the degradation pathways of 231 nutrients included in i-Diet17, a commercial 

nutritional software designed to elaborate optimal diets, collectively involving 899 new 

reactions and 401 new metabolites. Our reconstruction, termed AGREDA, was built through an 

exhaustive literature analysis and gap filling algorithms using the Model SEED7 as universal 

database. For this task, we used different bioinformatic tools to integrate SEED and AGORA and 

avoided the use of reactions with limited evidence in the human gut microbiota. As a result, our 

proposed reactions in AGREDA include taxonomic annotation to species present in AGORA, 

which facilitates the analysis of their activity with 16S rRNA sequencing data.  

Note here that we decided to follow a supra-organism strategy to build AGREDA. This was done 

to reduce the size of the community model and, therefore, the computation time of our 

simulations. Given our positive results, this simplification does not seem to affect our 

predictions. However, a future study should analyze the deviations derived from our supra-

organism assumption and, if necessary, correct AGREDA to include exchange reactions and 

boundaries among the different species involved. 

AGREDA focuses on phenolic compounds. This family of compounds is one of the most abundant 

source of bioactive compounds present in the human diet, mainly in plant foods, fruits and plant-

derived beverages, which are mostly metabolized by the gut microbiome. With the inclusion of 

the degradation pathways of more than 200 nutrients, AGREDA constitutes the largest effort in 

the literature to compile the metabolism of phenolic compounds in the human gut microbiome. 

Despite our advance, there is substantial room for improvement, since AGREDA currently only 

includes 99 out of 372 metabolites detailed in Phenol-Explorer, the first comprehensive 

database of polyphenol contents in foods. Many of them are not annotated in universal 

metabolic databases, such as KEGG32,33 or SEED, requiring new strategies to address this issue. 
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In this direction, enzyme promiscuity methods constitute a promising approach to further 

complete degradation pathways of phenolic compounds. 

Importantly, AGREDA more accurately models the effect of diet on gut microbiota metabolism 

than AGORA, as shown in Figure 3 for 20 different representative recipes, where a significantly 

better coverage of their nutrient composition was obtained. This advance logically allows us to 

carry out a more comprehensive analysis of output metabolites from the gut microbiota. This 

was illustrated in the case study of lentils, where AGREDA showed higher accuracy than AGORA 

in predicting 10 experimentally measured output metabolites.  

Finally, we applied AGREDA to assess metabolic differences in the way the gut microbiome of 

different clinical groups of children degrade lentils. We identified relevant insights for allergic 

and obese children when compared with the lean condition, but limited evidence for differences 

in the metabolic output of the microbiota of the celiac children. We found supporting literature 

for some of our predictions, particularly histamine and tryptamine for fermentations with 

inocula from the allergic children, and isoprene and myricetin for the obese children. Further 

experimental validation is necessary to confirm our predictions in a larger cohort of children. 

However, our work opens new avenues to incorporate the effect of gut microbiota in 

personalized nutrition programs. 

METHODS 

Universal biochemical reaction database 

We start from AGORA11, which comprises manually curated metabolic models of 818 species of 

the human gut microbiome. In order to reduce the computational cost, we followed a supra-

organism strategy and removed the boundaries between different species. Based on AGORA, 

we defined a non-redundant set of metabolites and reactions, including their taxonomic 

assignation. Overall, we obtained 2473 metabolites and 5312 reactions. 
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AGORA currently lacks the degradation pathways of key diet-derived metabolites. In particular, 

we found that AGORA only includes 99 out of 650 diet-derived metabolites from i-Diet17, a 

commercial nutritional software designed to elaborate optimal diets. Among these neglected 

metabolites, we found an important number of phenolic compounds, whose functional role in 

the human gut microbiota is of major interest in the field of personalized nutrition34. To 

overcome this issue, we integrated the information provided by AGORA with the Model SEED 

database7 (SEED), as well as with other metabolic databases and expert knowledge of gut 

microbiota metabolism, as we detail below. 

We first downloaded SEED from the online portal (https://modelseed.org/), which involves 

20133 metabolites and 34655 reactions. To minimize the inclusion of reactions from species not 

active in the human gut microbiota, we decided to annotate the EC numbers present in SEED 

with the species present in AGORA. Note here that SEED does not incorporate Gene-Protein-

Reaction rules, as available in AGORA; instead, SEED presents a wide functional annotation of 

reactions through EC numbers. In this event, the integration of SEED into AGORA can be done 

through the taxonomic annotation of its EC numbers. We describe below the different strategies 

followed to carry out this task with existing genomic annotation tools and relevant metabolic 

databases. 

Genome fasta files from different species in AGORA were downloaded from GenBank35 and 

Ensembl36 through the NCBI taxonomy identifier and species name, respectively. These genomes 

were annotated using myRAST software from the RAST Server37, which outputs their protein-

encoding genes and (if available) associated EC numbers. This information was incorporated into 

the reactions present in SEED. In addition, from the KEGG database32,33, we downloaded the list 

of EC numbers for 500 species present in AGORA. With this information, we could further 

annotate reactions in SEED without taxonomic information.   
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We also performed a manual annotation of reactions and EC numbers present in SEED. We 

found that several reactions that did not contain any EC number information in SEED were 

annotated in public databases such as KEGG or MetaCyc38. Based on them, we extracted more 

reactions with enzymatic information and repeated the process described above for taxonomic 

annotation. For the remaining EC numbers without taxonomic information, we manually looked 

for additional information in KEGG, BRENDA39 and UniprotKB40 databases. After this process, we 

obtained a list of 3577 different EC numbers and 14021 reactions in SEED that are related to at 

least one of the species in AGORA.  

We noticed that some metabolites in SEED were involved in reactions under different names. 

Using both manual curation and chemoinformatic tools, we identified and deleted metabolites 

and reactions that were duplicated in SEED. In particular, we first extracted the InChI identifier 

for the metabolites in SEED (13028 out of 20133 metabolites), based on PubChem41, the Human 

Metabolome Database42, KEGG and RetroRules database43. We then conducted a similarity 

analysis with RDKit package44 and the Morgan (circular) fingerprint with radius 245. Fingerprints 

with similarity 1 were obtained and manually checked. We removed 703 repeated metabolites 

and 1054 reactions from SEED. 

In order to integrate AGORA and SEED, we performed an automatic search of the compound 

names in both sources and identified duplicated metabolites and reactions. SEED added to 

AGORA 17820 metabolites and 32409 reactions, including 12459 with taxonomic assignment.  

In addition, we manually identified the list of nutrients from i-Diet present in SEED, finding 232 

that were not present in AGORA. We created an exchange reaction for each of these nutrients 

and included them in our metabolic database. We also added 221 reactions and 19 metabolites 

from expert knowledge and existing literature of metabolism of phenolic compounds in the gut 

microbiota, including their taxonomic annotation (Supplementary Data 2). After this final step, 

our universal biochemical reaction database reached 20376 metabolites and 38059 reactions. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.23.350462doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.350462
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

Note here that 20023 and 13478 of these reactions do not have taxonomic and functional 

assignment, respectively. 

Gap filling strategy 

Our aim is to extend AGORA and include the missing metabolic pathways of the 232 diet-derived 

nutrients using the least possible information from our universal biochemical database 

described above. Note here that 211 out of these 232 nutrients are phenolic compounds, which 

are particularly interesting in personalized nutrition.  

In order to fill these gaps, we used the implementation of FastCoreWeighted included in the 

COBRA Toolbox18,19. This reconstruction algorithm requires the definition of a subset of reactions 

that must take part in the resulting network, termed core, and efficiently identifies the reactions 

needed from the universal database to make the core functional. In addition, it allows us to 

penalize differently the inclusion of reactions from our universal database. Here, we set a weight 

equal to 0 for reactions in the core, 0.1 for reactions with taxonomic assignment to species in 

AGORA, 50 for reactions without taxonomic assignment but with functional annotation (at least 

one EC number available), 100 for reactions without taxonomic and functional annotation, and 

1000 for reactions manually assigned to plant metabolism.  

As we found dependencies between different nutrients from i-Diet, namely some of them are 

interconnected as inputs and outputs, we run FastCoreWeighted sequentially, updating the core 

at each iteration. In the first iteration (Iteration 1), the core included the reactions from expert 

knowledge and AGORA. In the second iteration, the core comprised the resulting network from 

Iteration 1 and the input exchange associated with the first nutrient from i-Diet. In the third 

iteration, the core comprised the resulting network from Iteration 1 and the input exchange 

associated with the second nutrient from i-Diet. This process was repeated for the 232 nutrients 

from i-Diet. Reactions obtained at each iteration were included in the final model.  
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Note here that, in order to include each input exchange reaction as part of the core in the 

different iterations, we split reversible reactions in our universal database into two irreversible 

steps. In addition, when we added the input exchanges of nutrients from i-Diet in the different 

iterations described above, we penalized the inclusion of their associated output exchanges to 

avoid artifacts in the resulting network (weight of 1e5). The same approach was employed for 

the output exchanges of i-Diet metabolites.   

We integrated the reactions selected in the different iterations described above, obtaining an 

active network made of 2920 metabolites and 6277 reactions. At this stage, we still had 51 

reactions without taxonomic assignment. To avoid false positives, we deleted this subset of 

reactions and ran fastFVA46, obtaining a metabolic model, called AGREDA (AGORA-based 

reconstruction for diet analysis), that involves 2744 metabolites and 6112 reactions. AGREDA 

can degrade and produce 207 and 208 (out of 232) metabolites from i-Diet, respectively. Full 

details can be found in Supplementary Data 2. 

Contextualization of AGORA and AGREDA for different clinical conditions 

In order to obtain the context-specific models for the given conditions, the same methodology 

was applied to both AGORA and AGREDA. First, the uptake of those nutrients that were not 

present in the recipe was blocked, by setting the lower bound of the respective reactions equal 

to zero. Next, by means of the 16S sequencing data, all those reactions which were not related 

to at least one taxon present in the given sample were blocked by setting both their lower and 

upper bounds equal to zero. Finally, fastFVA was applied and blocked reactions were removed.  

In vitro gastrointestinal digestion and fecal fermentation of lentils 

For the in vitro digestion and fermentation, the following reagents were used: potassium di-

hydrogen phosphate, potassium chloride, magnesium chloride hexahydrate, sodium chloride, 

calcium chloride dihydrate, sodium mono-hydrogen carbonate, ammonium carbonate, 

hydrochloric acid, all obtained from Sigma-Aldrich (Germany). The enzymes – salivary alpha-
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amylase, pepsin from porcine, and bile acids (bile extract porcine) – were purchased from Sigma-

Aldrich, and porcine pancreatin was from Alfa Aesar (United Kingdom). The fermentation 

reagents (sodium di-hydrogen phosphate, sodium sulfide, tryptone, cysteine, and resazurin) 

were obtained from Sigma-Aldrich (Germany). 

The in vitro digestion method was carried out  according to the protocol described by Brodkorb 

and colleagues47. Briefly, in the oral phase, 5 mL of salivary solution with alpha-amylase (75 

U/mL) and 25 μL of 0.3 M CaCl2 were added to 5 g of lentils and the mix was incubated at 37oC 

for 2 minutes. Then, 10 mL of gastric solution with pepsin (2000 U/mL) and 5 μL of 0.3 M CaCl2 

were added and the pH was lowered to 3.0 by adding 1N HCl; the mix was then incubated at 

37oC for 2 hours. Finally, 20 mL of intestinal solution with pancreatin (100 U/mL), bile salts (10 

mM) and 40 μL of 0.3 M CaCl2 were added and the pH was raised to 7.0 with 1N NaOH, after 

which the mix was incubated at 37oC for 2 hours. The enzymatic reactions were halted by 

immersing the tubes in iced water. The samples were then centrifuged at 6000 rpm for 10 

minutes at 4oC and the supernatants separated from the solid residue or pellet.  

The in vitro fermentation was carried out according also to the protocol described by Pérez-

Burillo et al48. Faeces were collected from three children (9-11 years old) from each of the groups 

studied: cow’s milk allergic, celiac, obese (BMI >= 30) and lean (BMI <= 25). Faeces from children 

belonging to the same group were pooled together to reduce inter-individual variability. 

Additionally, seven different inocula were prepared from the celiac, lean and obese derived 

pools respectively and six different inocula from the allergic derived one, yielding therefore a 

total of 27 fermentation experiments. Right after collection, faeces were mixed with glycerol 

(50:50 w/v) and frozen at -80oC. Briefly, 500 mg of digested wet-solid residue were placed in a 

screw-cap tube. The 10% of the digestion supernatant was added to the solid residue in order 

to mimic the fraction that is not readily absorbed after digestion. Then, 7.5 mL of fermentation 

medium (15 g/L of peptone, 0.312 mg/L of cysteine and 0.312 mg/L of Na2S, adjusted to pH 7.0) 
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and 2 mL of inoculum (consisting of a solution of 32% faeces in phosphate buffer 100 mM, pH 0 

7.0) were added, to reach a final volume of 10 mL + digestion supernatant volume. Nitrogen was 

bubbled through the mix to produce an anaerobic atmosphere and the mix was then incubated 

at 37oC for 20 hours under oscillation. Immediately afterwards, the samples were immersed in 

ice, to stop microbial activity, and centrifuged at 6000 rpm for ten minutes. The supernatant 

was collected as a soluble fraction potentially absorbed after fermentation and stored at -80oC. 

DNA extraction and amplicon sequencing 

Genomic DNA from the solid residues of the fermentation reactions was extracted using the 

MagNaPure LC JE379 platform (ROCHE) and the DNA Isolation Kit III (Bacteria, Fungi) Ref 

03264785001, following manufacturer’s instructions, with a previous lysozyme lysis. DNA quality 

was determined by agarose gel electrophoresis (0.8 % wt/vol agarose in Tris-acetate-EDTA 

buffer) and quantified using the Qubit 3.0 Fluorometer (Invitrogen) and the Qubit dsDNA HS 

Assay Kit.  

In order to prepare amplicon libraries, DNA at 5ng/µL in Tris 10mM (pH 8.5) was used for the 

Illumina protocol for the small subunit ribosomal DNA gene (16S rRNA) Metagenomic 

Sequencing Library Preparation (Cod 15044223 Rev. A). PCR primers targeting the V3-V4 

hypervariable region of the 16S rRNA gene were designed as described by Klindworth and 

colleagues49, i. e. forward primer (5′-TCGT CGGC AGCG TCAG ATGT GTAT AAGA GACA GCCT 

ACGG GNGG CWGCA-G3′) and reverse primer (5′-GTCT CGTG GGCT CGGA GATG TGTA TAAG 

AGAC AGGA CTAC HVGG GTAT CTAA TCC3′). Primers were fitted with adapter sequences added 

to the gene-specific sequences to make them compatible with the Illumina Nextera XT Index Kit 

(FC-131-1096). After 16S rRNA gene amplification, amplicons were multiplexed and sequenced 

in an Illumina MiSeq sequencer according to the manufacturer’s instructions in a 2 x 300 cycles 

paired-end run (MiSeq Reagent kit v3MS-102-3001). 
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Taxonomic assignment of 16S rRNA sequencing data  

16S rRNA gene raw sequence reads were processed, trimmed and clustered into amplicon 

sequence variants (ASVs) using DADA250. Once we obtained the ASV table, we assigned species-

level taxonomic identifications to each ASV with DADA2, based on exact matching (100% 

identity) between ASVs and the reference sequences in the Silva database (version 132)51.  

In addition, for those ASVs that were identified with DADA2 at genus level but not at species 

level, we applied the MegaBLAST module from BLAST52. Here, we required at least 97% identity 

for the species level assignment; however, as MegaBLAST does not take into account the 

previously assigned genus level, we only considered ASVs for which MegaBLAST and DADA2 

classifier method assigned the same genus. Finally, ASVs with less than 0.01% of the total 

number of counts were removed and rarefaction was applied up to the smallest library size 

across samples (52923 counts) for further analysis. 

Finally, we linked each of the taxa to the species present in AGORA. As the taxonomic assignment 

methods typically provide information at the species level but not at the strain level, each 

obtained taxon could be related to different strains of AGORA, where most of the taxa are 

defined at strain level. In this event, our analysis was conducted at species level, which is a 

stricter strategy. 

Identification and quantification of phenolic compounds 

For individual phenolic quantification the following standards were used: phloroglucinol, 

phenol, 3-(3-hydroxy-phenyl)propionate, 4-hydroxyphenylacetate, (3,4-

dihydroxyphenyl)acetate, dihydrocaffeic acid, cianidanol, myricetin, and quercetin were 

purchased from Sigma-Aldrich (Germany). 5-(3',4'-Dihydroxyphenyl)-gamma-valerolactone was 

purchased from Toronto Research Chemicals (Canada). Moreover, diethyl ether for extraction 

was purchased from Sigma-Aldrich (Germany). 
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Phenolic compounds were analyzed through UV-UHPLC as described by Perez-Burillo et al.53, 

slightly modified to adapt it to UHPLC. In brief, one mL of fermentation supernatant was mixed 

with 1 mL of diethyl ether and kept in the dark at 4oC for 24 hours. The organic phase was then 

collected and another two extractions with diethyl ether were performed. These 3 mL of diethyl 

ether were dried in a rotary evaporator set at 30oC and the solid residue was resuspended in 1 

mL of methanol:water (50:50 v/v) mix. The mixture was then ready to be injected into UHPLC 

system. The UHPL is an Agilent 1290 Infinity II equipped with a quaternary pump, an 

autosampler kept at 5oC and a diode array detector (DAD) set at 255 nm. The column used was 

InfinityLab Poroshell 120 Sb-Aq 2.1 x 150 mm and 1.9 micron. The flow rate was set at 0.250 

mL/min for 46 minutes. Two mobile phases were used; milli-Q water with 0.1% of formic acid 

(A) and acetonitrile (B) with the following gradient: 0 to 28 minute from 95% of A to 60% and 

from 5 to 40% of B; 28-36 minute from 60% to 0% of A and from 40 to 100% of B; 36 to 41 minute 

from 0% to 95% of A and from 100% to 5% of B; these last conditions are kept for 5 minutes. 

Identification and quantification were carried out by comparing retention times obtained from 

pure standards (listed in reagents section). A calibration curve for each of the compounds was 

performed in the range of 0.1 to 25 ppm. 
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