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ABSTRACT 
 
Motivated by desire to understand pulmonary physiology and pathophysiology, scientists have developed models of 
pulmonary physiology. However, pathophysiology and interactions between human lungs and ventilators, e.g., 
ventilator-induced lung injury (VILI), present problems for modeling efforts. Real-world injury is too complex for 
simple models to capture, and while complex models tend not to be estimable with clinical data, limiting both the 
clinical utility with existing approaches. To address this gap, we present a damaged-informed lung ventilator (DILV) 
model to model and quantify patient-ventilator interactions and lung health. This approach relies on systematically 
mathematizing the pathophysiologic knowledge clinicians use to interpret lung condition from ventilator waveform 
data. This is achieved by defining clinically relevant features in the ventilator waveform data that contain 
hypothesis-driven information about pulmonary physiology, patient-ventilator interaction, and ventilator settings. To 
capture these features, we develop a modelling framework where the model has enough flexibility to reproduce 
commonly observed variability in waveform data. We infer the model parameters with clinical (human) and 
laboratory (mouse) data. The DILV model can reproduce essential dynamics of differently damaged lungs for tightly 
controlled measurements in mice and uncontrolled human intensive care unit data in the absence and presence of 
respiratory effort. Estimated parameters correlate with known measures of lung physiology, including lung 
compliance. This method has the potential to translate laboratory physiology experiments to clinical applications, 
including pathways for high fidelity estimates of lung state and sources of VILI with an end goal of reducing the 
impact of VILI and acute respiratory distress syndrome. 
 
 
INTRODUCTION  
 
Mechanical ventilation is a life-saving therapy for patients who are unable to perform gas exchange by breathing on 
their own. When used incorrectly, mechanical ventilation has the potential to worsen lung injury through 
barotrauma, volutrauma, and atelectrauma that are collectively referred to as ventilator-induced lung injury (VILI). 
Furthermore, when there is a mismatch between the patient’s respiratory demands and the mechanical breath, termed 
ventilator dyssynchrony (VD), VILI may be more severe and may lead to poor outcomes.1-7 Additionally, there are 
conditions or syndrome such as acute respiratory distress syndrome (ARDS) that carry a high mortality rate and may 
be exacerbated, or even caused, by VILI.8-11 Therefore, identifying lung-protective ventilation to reduce VILI both 
important and challenging because the oxygenation needs are often in opposition to safe ventilation, leading to a 
complex interplay between the underlying pulmonary pathophysiology, ventilator mechanics, and patient-ventilator 
interactions (respiratory effort).12-15 The current standard of care dictates a formulaic application of low tidal 
volumes to reduce overdistension and positive end-expiratory pressure to maintain patency. This approach reduces 
VILI but does not prevent it in all cases and is not personalized.16-18. While such protocols have provided measurable 
improvements in outcomes, the formulaic approach could potentially be improved through personalization of 
individual respiratory mechanics and respiratory effort.19  
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Modern mechanical ventilators produce data in the form of time-dependent pressure, volume, and flow waveforms 
that contain a wealth of information about respiratory mechanics, patient-ventilator interactions, and ventilator 
settings. These data can be used to troubleshoot and optimize mechanical ventilation.20,21 However, ventilator 
waveforms are typically analyzed heuristically by visual inspection and, therefore, the outcome of such an analysis 
is limited by individual expertise and experience. 20,21 A quantitative interpretation of these complex signals could 
increase diagnostic accuracy and repeatability while facilitating the application of personalized lung-protective 
ventilation. One simple example of waveform quantification that is currently used in clinical care is the driving 
pressure, which serves as a readout of both patient condition and ventilator settings.22 In the current study, we seek 
to develop a methodology to provide a more comprehensive quantitative description of lung injury severity from 
ventilator waveform data.  
 
The analysis we present herein is a departure from traditional modeling methods that link measured pressures and 
flows through physiologically-based parameters, such as the well-recognized single-compartment model that lumps 
the spatially heterogeneous lung mechanical properties into single values of resistance and compliance.23-27 In the 
traditional models, the entirety of the pressure and volume dynamics emerge from the hypothesized physiological 
mechanics. Due to this straightforward formulation, the single-compartment model is computationally efficient but 
often not be able to reproduce all of the features in waveform data, such as patient respiratory effort because the 
model lacks the complexity to allow such complex dynamics to emerge. On the other hand, more complicated 
formulations, including multi-compartment models, use many states and parameters that cannot be directly 
measured, such as recruitment pressure distributions, causing identifiability problems where there is no unique 
solution, or more often no convergent solution for parameter values. As such, those models require expensive data to 
estimate, data not available in humans, and require substantial computational resources. Even then, complex multi-
compartment models often cannot produce all the relevant features present in the pressure and volume waveform 
data.28-36 One of the objectives is to identify, quantify the severity of, and understand the damage due to VILI and 
VD. This is out of reach with current fully mechanistic models, and while machine learning approaches can 
potentially be used to detect VD,37 they are not hypothesis-driven and therefore while these methods produce 
machinery that is explainable in the sense of identifying predictive sources of the classification task of VD/no-VD 
breaths, these methods are not compatible with physiology-anchored explanations of, e.g. VD.  
 
Our approach offers the potential to overcome these limitations and provides both identifiability and fidelity by 
using mathematical models with interpretable parameters to recapitulate pressure and volume signals. This high 
fidelity is due, in part, to the limited dependence between the pressure and volume models. The relationship between 
components of the pressure and volume waveforms are used to define specific physiologic features, just as the 
quasi-static compliance is defined from the observed ratio of tidal volume and driving pressure. We anticipate that 
this approach will find applications in real-time clinical readouts of ventilation safety, long-term monitoring to 
detect changes in patient condition, and as a quantitative outcome measure for clinical trials. 
 
Here we build a model that takes as baseline “healthy” breaths, and then adds terms that correspond to deviations 
from healthy breaths whose hypothesized source include VILI/VD/pathophysiological features observed in 
ventilator waveforms. By estimating the model, we identify the presence and severity of deviations from normal in a 
way that has a physiologically-based hypothesis attached to it. In essence, we compute hypothesis-driven breath 
phenotypes that may potentially be used to run trials on outcomes related to the frequency and strength of certain 
deviations that correspond to types of VD. One primary goal of this work is to tie these phenotypes to the 
pathogenesis of VILI and the associated cause of VILI. To this end, we work to understand what damage is 
happening to the lungs, and under what circumstances, by estimating the model for both humans and mice where (1) 
the waveforms are very similar and only differ in scale and more importantly, (2) under the same hypothesized 
conditions - created in the mice and observed in the humans and believed to be present. In this case, we can dig 
deeply into the mouse lungs in a way not possible with humans and carefully and deeply characterize the nature, 
severity of lung damage. In these ways, this modeling framework is meant to be a bridge between the clinic and 
laboratory. 
 
In the current study, we first identify clinically important deviant features in typical volume and pressure waveform 
data. We then separately define the models for volume and pressure waveforms as the sum of a set of terms through 
which we modularly capture physiologically relevant features. This approach allows independent modeling of the 
components of damage so that clinical and physiologic knowledge can be used to constrain the model. We named 
this model the damage-informed lung-ventilator (DILV) as it contains information about both lung physiology and 
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ventilator dynamics. To demonstrate the model’s flexibility, the volume and pressure models are qualitatively 
validated in a simulation study where we show various relevant features that are commonly observed in health and 
disease. We then identify the parameters that correspond to interpretable pathophysiology by analyzing simulated 
pressure-volume waveforms (also known as PV loops) and by relating the changes in the DILV model with known 
lung compliance and resistance. Finally, in a quantitative verification, we demonstrate that the model can accurately 
and uniquely represent laboratory and clinical ventilator data, which includes mouse model and human-intensive 
care unit (ICU) ventilator data in the absence and presence of respiratory effort.37 Through a comprehensive 
comparison between the DILV model and the single-compartment model, we demonstrate that our approach can 
produce the features present in the waveform data and report values of lung compliance. Temporal changes in the 
model parameters are compared to other assessments of injury severity and qualitative features of the pressure and 
volume waveforms.  
 
METHODS 
 
Identifying relevant and realistic variables for the model 
 
Our goal is to develop a model that can reproduce most common physiologically-relevant features present in 
waveforms data so that the model can identify, understand, and quantify lung pathophysiology, particularly VILI, in 
clinical settings. Therefore, it is critical to identify the appropriate complexity of the model and anchor the model to 
hypothesized lung/ventilator/damage mechanics to achieve the desired outcome. This paper represents a starting 
point for this approach, but the work is far from complete. The model presented here does not represent all types of 
VILI, VD, and pathophysiology. Instead, as a methodological starting point, the DILV model can represent some 
types of VILI, VD, and pathophysiology. The model construction shows a pathway by adding model features tied to 
particular kinds of VILI or hypothesized pathophysiology, allowing the model to include a wide swath of VILI and 
VD eventually.  
 
To start, mechanical ventilation is characterized by three measured state variables which vary over time: volume, 
pressure and flow. In human ventilator data these time-dependent waveforms have diverse features arising from 
physiology, pathophysiology, the ventilator, and health care process effects such as clinical interventions, and 
patient-ventilator interaction. 39-41 The flow is the time-derivative of volume and so the volume variable contains the 
same information about the underlying lung mechanics but in a different representation.34 In this study, we focused 
on two state-variables, the volume and pressure.  
 
In the simplest ventilation mode, there is one variable that is primarily controlled by the ventilator, e.g., pressure or 
volume, while the other variable, e.g., volume or pressure, is free to vary, referred to as pressure-controlled 
ventilation (PCV) or volume-controlled (VCV) respectively. In this case, only the ‘free’ variable contains direct 
information about the respiratory mechanics of the patient.34,43 Moreover, in some models there is a rigid coupling 
between the controlled and free states that often limits the model flexibility, precluding the model from reproducing 
some features that are present in the clinical data. For example, the single-compartment model performs a linear 
transformation between pressure and volume variables due to the fixed coupling defined as the sum of linear 
resistive and elastic contributions. 25,26,34 We, therefore, do not explicitly couple the controlled (also known as an 
independent) and free (also known as a dependent) variables such that the volume and pressure models will be 
independent of one another. Human ventilators also have an expansive set of other modes, the most notable of which 
are the patient-triggered modes where the ventilator’s action is triggered by patients such as inspiratory effort. These 
modes can be very lung protective, but they can also lead to complex forms of VD that are difficult to model. 
Patient-triggered modes are the most commonly used modes for humans unless the human is given neuromuscular 
blockades.42 
 
Identifying important features in the volume and pressure waveform  
 
In PCV, the pressure is the controlled variable and is set by the ventilator, shown in blue in Fig. 1a. 20,21 In this case, 
the volume is a free variable and generally has two characteristic features that can be divided into two features, 
shown in red in Fig. 1a. The first feature is the inspiration, denoted as A in Fig. 1a, which continues until the amount 
of gas delivered in that breath is reached (the tidal volume). The pressure and lung elastic recoil are at equilibrium. 
The second feature is expiration, denoted as B in Fig. 1a. Depending on the ventilator settings and lung condition, 
the gradient of the rising and falling signals can vary across patients and in the same patient over time. Therefore, 
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the model must be able to represent these features independently. Accordingly, the gradients of inspiration and 
expiration of volume are features that are variable and estimable in the volume model. 
 

  
 Figure 1: Graphical representation of typical volume and pressure waveforms. (a) In PCV, the volume is a 
free (also known as a dependent) variable and generally has two distinct features. The rising and falling of the 
volume signal during inspiration and expiration, respectively, are denoted as A and B. (b) When pressure is a free 
variable (in VCV), there can be multiple features in the waveform that contain useful information. The gradient 
of the rising signal in which pressure continues to increase during inspiration can have two distinct features, 
denoted as A1 and A2. These two features define the gradient of the rising signal before and after the inflection 
point such that there may be abrupt increases (breath 1) or decreases (breath 2) in the signal gradient. The shape 
of the plateau pressure is captured using features B1 and B2 such that there may be a peak at the beginning (B1-
breath 2) and/or at the end (B2-breath 2) of the plateau. Finally, the gradient of the falling signal is captured using 
feature C that represents the expiration process. The baseline pressure is known as positive end-expiratory 
pressure (PEEP), and often used in ARDS patients to maintain an open lung.45 Here, the controlled and free 
variables are shown in the blue and red colors, respectively. 

 
The characteristic shape of the pressure waveform can vary more dramatically than the volume waveform (Fig. 1b). 
When pressure is a free variable, such as in VCV, the pressure waveform has several important features that convey 
information about lung condition and ventilator-patient interaction, shown in red in Fig. 1b. Based on clinical 
understanding, we identified five important features in the pressure waveform that may be affected by lung 
condition. Features A1 and A2 in Fig. 1b determine the gradient of the inspiration. The time-varying graph of 
inspiration can have two distinct modes where the gradient of the signal may increase (Fig. 1b, breath 1) or decrease 
(Fig. 1b, breath 2) during inspiration. These features are hypothesized to correspond to the volume-dependent 
decrease in lung compliance (breath 1) or an increase in compliance due to recruitment (breath 2). 25,26 Features B1 
and B2 (Fig. 1b) are related to the shape of the waveform at the start and end of the plateau pressure, which is a 
period of constant pressure. There may be peaks at the beginning (B1) and/or at the end (B2) of the plateau pressure, 
which are hypothesized to correspond to inspiratory flow resistance and patient effort, respectively. 20,34 Feature C in 
Fig. 1b corresponds to the gradient of expiration. We also model the constant baseline pressure, known as the 
positive end-expiratory pressure (PEEP), because it is a key independent variable in ARDS management.44,45 Note 
that in hybrid ventilation modes, there may be scenarios where both pressure and volume variables are partially 
controlled and so, in those cases, both the waveforms can be confounded in additionally complex ways and would 
admit more subtle interpretations.  
 
Constructing the damage-informed lung ventilator model  
 
Construction of the volume model: Irrespective of the state variable, the models have periodic dynamics with a 
frequency defined by the respiratory rate (breaths/min) that should be the same in pressure and volume waveform 
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models. In addition to this constraint, the volume model has two additional features, the rate of inspiration and 
expiration (A and B in Fig. 1a, respectively). Volume model development begins by modeling the respiratory rate 
with a sinusoidal function (fs1):  
 

 
 
Here, the respiratory frequency (breaths/s) is set by θ and t represents time in seconds while parameter f1 allows to 
control the starting point in the respiratory cycle. To control the rate of inspiration or expiration while maintaining 
the periodicity, we create a periodic rectangular waveform function fb1 by combining the sinusoidal function with 
hyperbolic tangent function:  

 
 
To control the smoothness of the rectangular waveform, we added a smoothing parameter a1. The other terms (1/2, 
+1) are added to generate a rectangular waveform that has a zero-base value and unit amplitude. To control the duty 
cycle of the rectangular waveform that sets inspiratory:expiratory (I:E) ratio, we used parameter b1 such that the 
zero value of b1 corresponds to 1:1 I:E ratio.  
 
Fig. 1a shows additional model features: the rate of inspiration (A) and expiration (B). To represent these rates 
independently, we define the volume (V) using the rectangular waveform as a base waveform:  

 
Where fv1 term produces the inspiration part of the volume signal (feature A): 

  
and fv2 term produces the expiration part of the volume signal (feature B): 
 

 
 
Here, β1 and β2 control the gradient of the inspiration and expiration, respectively, while Av controls the amplitude of 
the volume waveform. Figure 2a shows the volume waveform (top plot) and the constitutive terms added through 
with Eqns. 1-5. 
 
Construction of the pressure model: The pressure model has five explicit features that might correspond to lung 
pathophysiology and ventilator settings. These features are depicted in Fig. 1b. Features A1 and A2 capture the 
gradient of the rising signal during inspiration at low (A1) and high (A2) volume and might be correlated with lung 
compliance. Features B1 and B2 capture the shape of the peaks at the beginning (B1) and end (B2) of the plateau 
pressure and might reflect changes in inspiratory flow resistance and patient effort, respectively. Finally, feature C 
captures the rate of change of the pressure during expiration. To build a model that can capture all these features and 
be able to estimate parameters effectively, we used a specific set of parameters that were used to build the 
components that contribute to the pressure model modularly.  
 
The pressure model construction begins like the volume model, with a sinusoid. Because volume and pressure are 
coupled through their period, we enforce this constraint by requiring that both models have the same respiratory 
frequency (θ) in their base periodic sinusoid: 
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fb1 =
1

2
{tanh(a1fs1) + 1}. (2)
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Because the pressure may lag or lead the volume, we include a phase shift term, f2 in the sinusoid. To account for 
additional variations in the duty cycle of the rectangular waveform, we added the parameter b2 that defines the I:E 
ratio. We then create a rectangular waveform fb2 as we did for the volume model using the hyperbolic tangent, or:  
 

 
 
The smoothness of the rectangular waveform is controlled via the parameter a2. The five key features in pressure are 
represented with three additional terms: (i) fp13 defines the rates of pressure change during inspiration and expiration, 
(ii) fp24 determines the peaks at the beginning and end of the pressure plateau, and (iii) fp33 specifies the gradient of 
the initial rising signal during inspiration, leaving us with the full the pressure model (P):  
 

 
 

The constant parameter Ap4 corresponds to the baseline pressure value (PEEP). The rates of pressure change during 
inspiration and expiration (see A2, and C in Fig. 1b, respectively) are: 
 

 
where fp11 term produces the rising part of the pressure signal: 

 
and fp12 term produces the falling part of the pressure signal: 

 
 
Here, β3 and β4 control the gradient during inspiration and expiration, respectively. The next set of features, the 
peaks at the beginning and end of plateau pressure (B1 and B2 in Fig. 1b), are represented by:  

 
where fp21 and fp22 terms create the initial shape of peaks at the plateau pressure: 

 
and fp32 term further reshapes both the peaks:  

 

fb2 =
1

2
{tanh(a2fs2) + 1}. (7)
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Figure 2: Simulated response of various terms that make up the damage-informed volume (V) and 
pressure model (P). (a) A periodic rectangular waveform fb1 is used to create terms fv1 and fv2 through which the 
gradient of the rising (feature A) and falling (feature B) signals in the volume waveform are controlled, 
respectively. Equations 1-5 were used to simulate the response within each term with parameter values θ = 0.3, a1 
= 200, b1 = 0.7, f1 = 0, β1 = 30, β2 = 10, Av = 1. (b) A periodic rectangular waveform (fb2) serves as a basis of the 
pressure model. The overall shape of the pressure waveform, which defines the gradient of the inspiration and 
expiration signals, is formed using fp13 comprised of the rising signal of fp11 (A2) and falling signal of fp12 (C). The 
shape of the plateau pressure is defined by fp24, where the output of fb2 is processed via fp21, fp22 and fp23 to produce 
peaks at the beginning (B1) and end (B2) of the plateau pressure. The shape of the rising signal at low volume 
(A1) is defined by fp33, where a short pulse is produced via fp31 and reshaped via fp32. Note that the amplitude 
terms Ap1, Ap2 and Ap3 control the amplitude of fp13, fp24 and fp33, respectively. Equations 6-18 were used to 
simulate the response of each term with parameter values θ = 0.3, a2 = 200, b2 = 0.7, f2 = 0, a3 = 10, b3 = 0.9, f3 = 
-0.6, β3 = β4 = 5, β5 = 1.001, β6 = 1.1111, Ap1 = 1, Ap2 = 0.5, Ap3 = 0.5, Ap4 = 0. Note that the model variability 
shown here is independent of the ventilator mode.  

 
The parameters β5 and β6 control the shape of both the peaks, which are present at the plateau pressure. Finally, the 
gradient of the initial rate of inspiration (Fig. 1b, A1) is modeled by: 
 

 
where a short pulse is produced via fp31: 
 

 
and reshaped via fp32 term: 

 
 

fp33 = Ap3

fp32{1� (fp11 + fp12)}
max[fp32{1� (fp11 + fp12)}]

, (16)

where
fp31(t) = sin(2⇡✓t� �3)� b3, (17)

and

fp32 =
1

2
{tanh(a3fp31) + 1}. (18)
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The position, shape and gradient of the rising signal, produced by fp33 term are controlled using the parameters f3, b3 
and a3, respectively. Figure 2b shows the pressure waveform and the constitutive terms added through Eqns. 6-18. 
The pressure waveform (top plot) composed of the three terms fp13, fp24 and fp33 that capture the gradient of the 
inspiration (A2) and expiration signals (C), the shape of the plateau pressure (B1 and B2), and the shape of the rising 
signal at low volume (A1), respectively. 
 
Qualitative model validation, parametric descriptions and simulated model variability 
 
The first step in model validation—qualitative validation38—involves demonstrating the model has enough 
flexibility to recapitulate the key features that are often seen in clinically collected volume and pressure waveform 
data.  
 
Volume model flexibility: The volume model flexibility is demonstrated in Fig. 3 where we vary the rates of 
inspiration (feature A) and expiration (feature B) through the terms fv1 and fv2, which is controlled by parameters β1 
and β2 (Fig. 3a), respectively. The full variability of terms fv1 and fv2 is shown in Supplementary Fig. S1 (all 
Supplemental Material is available at 
https://www.biorxiv.org/content/10.1101/2020.10.23.351320v1.supplementary-material). Additionally, the 
amplitude of the volume waveform is controlled by Av (Fig. 3c), variations in respiratory rate are controlled by θ 
(Fig. 3d), and the I:E ratio is altered through the parameter b1 that changes the duty cycle of the rectangular base 
waveform (Fig. 3e). Finally, the starting point of the breath in the breathing cycle and the smoothness of the volume 
waveform are set by f1 and a1 as shown in Fig. 3f and Supplementary Fig. S2a,b, respectively.  
 

 
Figure 3: Demonstrating the volume model flexibility by varying parameters that alter characteristic 
features of the volume waveform. The gradient of the rising and falling signals can be altered using the (a) β1 
and (b) β2 parameters, respectively. Increased values of these parameters increase the transient time for the signal 
to reach the same volume level. (c) The amplitude of the waveform can be altered using the parameter Av. (d) 
Changes in the respiratory frequency (θ) change the period of the breath while (e) the I:E ratio (inspiratory to 
expiratory time ratio) can be modified using the b1 parameter. (f) The starting point of the inspiration can be 
modified using the parameter f1. The output of the model (V) was calculated using Eqns. 1-5 while considering θ 
= 0.3, a1 = 200, b1 = 0.7, f1 = 0, β1 = 30, β2 = 10, Av = 1. The respective variation in the functions that make the 
volume model is shown in Supplementary Fig. S1 for each case. Note that the model variability shown here is 
independent of the ventilator mode.  
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Pressure model flexibility: The pressure model flexibility is demonstrated in Fig. 4 where we vary the five features 
of the pressure waveform via respective parameters: variation in the rate of change of the pressure before (A1 in Fig. 
2b) and after (A2 in Fig. 2b) the inflection point during inspiration; the shape of the peaks at the beginning (B1 in 
Fig. 2b) and end (B2 in Fig. 2b) of the plateau pressure; and variation in the rate of change of the pressure during 
expiration (C in Fig. 2b). In brief, these features are controlled by the following parameters.  
 
The initial gradient of the pressure during inspiration (A1) is controlled by the a3 parameter such that higher values 
of a3 result in a slower rising signal (Fig. 4a). The full variation these terms are capable of is shown in 
Supplementary Fig. S3. The shape of the initial gradient signal (A1) before inflection point can be altered using the 
b3 parameter (Fig. 4b) and the amplitude of the initial gradient alteration is controlled by the Ap3 parameter (Fig. 4c). 
By setting Ap3 parameter to zero, feature A1 can be removed from the pressure waveforms. The rate of inspiratory 
pressure after the inflection point (A2) is specified by β3 such that higher values of β3 result in a slower rising signal 
(Fig. 4d). The shapes of the peaks at the beginning (B1) and end (B2) of the plateau pressure are controlled by 
several parameters. The overall shape of the peaks is controlled by the β5 (Fig. 4e) and the sharpness of these peaks 
can be further altered by β6 (Fig. 4f). The amplitude of the peaks is controlled by Ap2 (Fig. 4g). By setting Ap2 
parameter to zero, features B1 and B2 can be turned off. Additional control of features B1 and B2 can be achieved in 
combination with parameter β3 shown in Supplementary Fig. S2c-f. The rate of pressure decrease during expiration 
(C) is specified by β4 such that higher values of β4 result in a slower falling signal (Fig. 4h). Finally, the amplitude of 
the plateau pressure can be altered using the Ap1 parameter (Fig. 4i). The I:E ratio is defined by the b2 parameter in 
the same way that parameter b1 controls the I:E ratio in the volume model (Fig. 3e). A summary of model 
parameters is provided in Table 1. 
 
  
Table 1: Interpreting damaged-informed lung ventilator model parameters. The parameters that are correlated with 
known measures of lung physiology are in bold. 

Parameter Model relevance Physiological relevance  
(with increased values) 

Volume model 
𝜃 Number of breaths/s. Higher values result in a higher number of 

breaths/s. 
- 

a1 Smoothness of the square waveform (fb1). Higher values result in a 
sharper transition. 

- 

b1 I:E ratio. Higher values result in smaller inspiration cycle. - 
Φ1 Starting of the inspiration point. Higher value results in a more 

delayed response. 
- 

β1 Gradient of the rising signal. Higher values result in a slower rising 
signal. 

Lower compliance and/or 
higher resistance. 

β2 Gradient of the falling signal. Higher values result in a slower 
falling signal 

Higher expiration time 
constant. 

Av Peak amplitude  Higher overall compliance.  
Pressure model 
b2 I:E ratio. Higher values result in a smaller inspiration cycle. - 
a2 Smoothness of the square waveform. Higher values result in a 

sharper transition. 
- 

Φ2 Starting of the fb2 function. Higher value results in a more delayed 
response 

- 

a3, b3 Gradient of the pressure signal at low volume. Higher values result 
in a slower rise. 

Higher low volume 
compliance.  

Φ3 Starting of the inspiration point. Higher value results in a more 
delayed response 

- 

β3  Gradient of the rising signal after inflection point. Higher values 
result in a slower rising signal 

Higher high-volume 
compliance. 

β4 Gradient of the falling signal. Higher values result in a slower 
falling signal. 

- 
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β5, β6 Shape of plateau. Higher value means a sharper peak Associated with ventilator 
desynchrony. 

Ap1 Amplitude at plateau Lower high-volume 
compliance. 

Ap2 Amplitude of the peaks at the plateau   
Ap3 Higher values increase the amplitude of fp33 function Moves upper inflection point 

up  
Ap4 Pressure base line value PEEP 

 
 
Explicit physiological lung function hypothesized to model parameters to lung function  
 
The model developed here is anchored to physiology through variations or deviations from nominal breath 
waveforms that are hypothesized to directly relate to VILI, VD, and pathophysiology observed in mechanical 
ventilation data collected in clinical settings. Throughout the paper, we list the physiological interpretations of the 
parameters - a short description of how the model parameters contribute to the model is provided in Table 1 - but 
here we will go into interpretative depth regarding the qualitative correlation between model parameters and the 
fundamental characteristics of the lung such as compliance and resistance. In this qualitative interpretation we 
consider only one variable (volume in PCV and pressure in VCV) while assuming the other waveform does not 
change breath-to-breath (pressure in PCV and volume in VCV).  
 
We first show how the changes in the volume model parameters can be qualitatively related to changes in lung 
compliance and resistance when the volume variable is free. For that, we focus on three model parameters that might 
have direct physiological meaning: β1, β2, and Av. First parameter, β1 might be inversely correlated with lung 
compliance as higher values of β1 result in a lower inspiratory flow rate (Fig. 3a, Supplementary Fig. S4a). During 
PCV, the inspiratory flow rate will decrease with reduced compliance or increased resistance. A second parameter, 
β2, controls the gradient of expiration and is captured as feature B in Fig. 1a. Higher values of β2 result in a longer 
expiration (cf. Fig. 3b, Supplementary Fig. S4a) and so β2 is directly proportional to the expiratory time constant, 
which is the product of resistance and compliance. Therefore, an increase in parameter β2 might suggest an increase 
in lung compliance. Finally, parameter Av controls the amplitude of the volume waveform and for the same pressure 
waveform (in PCV) indicate a direct correlation with compliance (Fig. 3c, Supplementary Fig. S4a). In VCV, 
parameter Av would present the tidal volume, which is set by the ventilator.  
 
The pressure model has five parameters that are associated with aspects of lung compliance during VCV: a3, b3, β3, 
Ap1 and Ap3. The parameter a3, which controls feature A1 (Fig. 4a), may be directly correlated with low-volume 
compliance as higher values of a3 result in slower pressure rise at low volume while maintaining the shape of the 
gradient (Supplementary Fig. S4b). Additionally, parameter b3 can also be used to control feature A1 (Fig. 4b, 
Supplementary Fig. S4b) and is directly related to the low-volume compliance. A third parameter, β3 controls the 
rate of pressure increase above the inspiratory inflection point (A2), and higher values of β3 result in slower pressure 
increase (Fig. 4d, Supplementary Fig. S4b), indicating β3 might be correlated with high-volume compliance during 
VCV. A fourth parameter, Ap1, defines the plateau pressure with higher values of Ap1 yielding higher plateau 
pressures (Fig. 4i, Supplementary Fig. S4b), indicating an inverse correlation between Ap1 and compliance during 
VCV. Finally, change in the upper inflection point (UIP) can be directly related to the Ap3 parameter such that higher 
values of Ap3 increase the UIP pressure as shown in Supplementary Fig. S4b. During PCV, these (and other) 
parameters may be directly controlled via a ventilator. 
 
It is important to note that these interpretations are qualitative and valid only when a change is observed in one of 
the variables (volume or pressure) while the other waveform (pressure or volume) is held fixed. In cases where both 
the volume and pressure waveforms change simultaneously, additional interpretation is needed to establish the 
relationships between pressure and volume parameters. For example, when there is a change in the amplitude of 
volume and pressure simultaneously, we use the Av/Ap1 to assess compliance. 
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Figure 4: Demonstrating the pressure model flexibility by altering relevant features in the pressure 
waveform. The initial gradient of the pressure signal during inspiration at low volume (A1) is controlled by (a) 
the a3 and (b) b3 parameters while (c) the inflection point location can be altered using the Ap3 parameter. (d) The 
gradient of the rising signal after the inflection point (A2), is controlled by the β3 parameter. (e) The shapes of the 
peaks at the beginning (B1) and at the end (B2) of the plateau are regulated by the β5 parameter when Ap4 = 0.5. 
(f) The sharpness of these peaks can be altered further by the β6 parameter for a given shape while (g) the 
amplitude of the peaks is controlled by the Ap2 parameter. (h) The gradient of the falling signal (C) during 
expiration can be modified by the β4 parameter. (i) The amplitude of the waveform can be altered using the 
parameter Ap1. Equations 6-18 were used to simulate the response of the pressure model while considering θ = 
0.3, a2 = 200, b2 = 0.7, f2 = 0, a3 = 10, b3 = 0.9, f3 = -0.6, β3 = β4 = 5, β5 = 1.001, β6 = 1.1111, Ap1 = 1, Ap2 = 0.5, 
Ap3 = 0.5, Ap4 = 0. The respective variations in the terms that make the pressure model are shown in the 
Supplementary Fig. S3 for each case. Note that the model variability shown here is independent of the ventilator 
mode.  

 
Mouse Mechanical Ventilation Experiments  
 
Three 8 to 10-week-old female BALB/c mice (Jackson Laboratories, Bar Harbor, ME, USA) were studied under 
University of Colorado, Anschutz Medical Campus Institutional Animal Care and used Committee (IACUC)-
approved protocol (#00230). Anesthesia was induced with an intraperitoneal (IP) injection of 100 mg/kg Ketamine 
and 16 mg/kg Xylazine, a tracheostomy was performed with a blunted 18 ga metal cannula, and ventilation was 
started on the flexiVent small animal ventilator (SCIREQ, Montreal, QC, Canada). Anesthesia was maintained with 
50 mg/kg Ketamine or 50 mg/kg Ketamine with 8 mg/kg Xylazine at 30 min intervals along with 50 µL IP 5% 
dextrose lactated Ringer’s solution. Heart rate was monitored via electrocardiogram.  
 
Baseline ventilation, consisting of a tidal volume (Vt) = 6 ml/kg, PEEP = 3 cmH2O, and respiratory rate (RR) = 250 
breaths/min, was applied for a 10 min stabilization period with recruitment maneuvers at 3 min intervals. Pressure 
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and volume were recorded with a custom flowmeter based on our previously published design.46 Four types of 
ventilation were recorded for analysis: 1) VCV-PEEP0, consisting the baseline ventilation with PEEP = 0 cmH2O, 
2) VCV-PEEP12 that was the baseline ventilation with PEEP = 12 cmH2O, 3) HighPressure-PEEP0 that consisted 
of a inspiratory pressure (Pplat) = 35 cmH2O and PEEP = 0 cmH2O with RR = 60 breaths/min, and 4) PCV-PEEP0 
with Pplat = 10 and PEEP = 0 cmH2O with RR=70 breaths/min. After the initial measurements of the healthy lung, 
lung injury was induced with a 0.15 ml lavage with warm saline.23 This fluid was pushed into the lung with an 
additional 0.3 ml air, and suction was applied to the tracheal cannula with an approximate return of 0.05 ml. The 
mouse was then ventilated for 10 mins with the HighPressure-PEEP0 settings. The sequence of four measurement 
ventilation patterns (above) was repeated, then the mouse received 0.8 mg/kg IP pancuronium bromide to suppress 
respiratory efforts, and the measurements were repeated again.  
 
Human Data Collection 
 
Between June 2014 and January 2017, 140 adult patients admitted to the University of Colorado Hospital medical 
intensive care unit (MICU) at risk for or with ARDS and requiring mechanical ventilation were enrolled within 12 
hours of intubation.47 At risk patients were defined as intubated patients with hypoxemia and a mechanism of lung 
injury known to cause ARDS, who had not yet met chest x-ray or oxygenation criteria for ARDS. To facilitate the 
capture of continuous ventilator data, only patients ventilated with a Hamilton G5 ventilator were included. Patients 
requiring mechanical ventilation only for asthma, COPD, heart failure, or airway protection were excluded. 
Additionally, patients less than 18 years of age, pregnant, or imprisoned were excluded. The University of Colorado 
Hospital utilizes a ventilator protocol that incorporated the ARDS network low tidal volume protocol with the low 
PEEP titration table. The Colorado Multiple Institutional Review Board approved this study and waived the need for 
informed consent. 
 
Baseline patient information including age, gender, height, and initial P/F ratio were collected. Continuous ventilator 
data were collected using a laptop connected to the ventilator and using Hamilton DataLogger software (Hamilton, 
v5.0, 2011) to obtain pressure, flow, and volume measurements. Additionally, the DataLogger software allowed 
collection of ventilator mode and ventilator settings based on mode (i.e.: set tidal, respiratory rate, positive end-
expiratory pressure (PEEP), and fraction inspired oxygen (FiO2)). Data were collected until extubation or for up to 
seven days per patient. 
 
Parameter estimation methodology 
 
The damage-informed lung ventilator model is a complex model and we estimate its parameters for mouse and 
human clinical ventilator data. In clinical situations, the patient data are variable and often nonstationary because of 
interventions, patient-ventilator interactions, changes in health, etc., leading to complex parameter estimation issues. 
Moreover, the model we develop here is not likely to be structurally identifiable.48-50 However, formally computing 
identifiability properties here is subtle because many parameters in the model functionally affect only part of the 
breath. This feature helps facilitate the convergence of parameter estimates and potentially leads to the uniqueness of 
those estimates, although because the DILV model is neither linear nor convex, there is no guarantee of unique 
global optima and no way of guaranteeing that the optimal solution we compute is a, or the, global optimum. 
Nevertheless, this feature—parameters being active at different times during a breath—also makes formal structural 
identifiability calculations complex to compute. These complexities force us to address four issues, (1) 
computational estimation methodology, (2) management of parameter identifiability issues and parameter selection 
methods, (3) uncertainty quantification, and (4) estimation evaluation methodology. 
 
Computational estimation methodology: Our needs require an estimation methodology that allows us to estimate 
states and parameters of the model effectively and the respective uncertainties in the estimated parameters. While 
stochastic methods, e.g., Markov Chain Monte Carlo (MCMC)51, might guarantee to find global minima and 
quantifying uncertainty in the estimated parameters values, they are generally quite slow. On the other hand, 
deterministic methods, e.g., Nelder-Mead optimization52, are substantially faster and by choosing many initial 
conditions, we are still able to quantify the uncertainty of a solution. In particular, here we infer parameters with a 
standard class of deterministic, multivariate, constrained nonlinear optimization methods, interior-point methods,53,54 
a choice that is not critical among constrained, nonlinear optimization algorithms. As such, we focus on a smoothing 
task that employs deterministic nonlinear optimization methods that work well with careful parameter selection and 
constraints and can be used to quantify uncertainty. 
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Management of parameter identifiability and parameter selection methods: Irrespective of the estimation 
methodology, identifiability failure—non-uniqueness of non-convergence of solutions—can occur. In particular, the 
DILV model is likely not identifiable. To mitigate this problem, we use three different approaches to minimize 
impacts of identifiability failures while estimating parameters for a given waveform data. First, the model was 
constructed such that each parameter in the model contributes to the specific feature in the volume and pressure 
curves, allowing the parameter to be estimated relative to the specific, time-limited feature by definition. Second, we 
constrain the ranges of all parameters to lie within physically possible values. And third, we do not estimate every 
parameter in all circumstances but rather limit parameters estimated to those relevant for a given setting and fix 
many low-impact, low-sensitivity parameters.55-57 

 
In more detail, the DILV model includes two state variables, volume and pressure with one overlapping parameter, 
the frequency of the breath (θ). The volume model has six parameters (a1, b1,f1, β1, β2, Av). The pressure model has 
fourteen parameters (a2, b2, f2, a3, b3, f3, β3, β4, β5, β6, Ap1, Ap2, Ap3, Ap4). Many of these parameters can effectively 
be uniquely estimated because they operate on a particular part of the waveform, e.g., parameters that control the 
gradient of the rising signal (β1, β3) and falling signal (β2, β4) and amplitudes of the waveforms (Av, Ap1). 
Nevertheless, there are parameters that are not necessarily uniquely estimable, e.g., parameters that control feature 
A1 (a3, b3, f3, Ap3) and features B1 and B2 (β5, β6, Ap2). 
 
Uncertainty quantification: Because we use deterministic optimization methods whose final solution depends on the 
initialization, we quantify uncertainty by randomly sampling a set optimization initialization for the parameters we 
estimate from a uniform distribution within a bounded interval (upper and lower bounds) centered around initial 
values.58,59 The boundaries of the intervals were chosen to exclude parameter variation that was unrealistic. The 
upper and lower boundaries of the intervals were chosen by computing parameters that provide a qualitative 
agreement between the model and the measured response. The optimal parameter estimate is then represented as a 
probability density in a similar way as is created using MCMC, allowing us to understand how informative, unique, 
and uncertain a given parameter solution set is. Additionally, we have uncertainty for individual breaths—we 
estimate every breath many times computing an uncertainty in by-breath parameter estimation—and uncertainty due 
to variation in many breaths over time. This allows us to both resolve and quantify single-breath features, and how 
those features vary over time, for different breaths, and even between individuals.  
 
Estimation evaluation methodology: The output of this computational method is a distribution of optimal solutions. 
Through this distribution we understand the robustness of the solution and the uncertainty of the solution. If the 
distribution of solutions has multiple modes with similar error then we can conclude that there are multiple plausible 
solutions. Similarly, if the distribution of solutions is narrow or wide with similar errors, we can conclude that the 
model either does or does not depend highly on a given parameter. And finally, it is the distribution of parameter 
solutions that define the phenotype computed by the model in the sense that the distribution of parameters explains 
the by-breath characterization of the patient. We verify a model’s ability to represent data by computing the mean 
squared error between the model computed with parameter values taken as the medians of the optimally computed 
solution and the data. There is uncertainty in these MSE values too, and if one model has a lower MSE value than 
another with non-overlapping uncertainty in MSE, we conclude that the model with the lower median MSE more 
accurately represents the data. 
 
RESULTS 
 
Damage-informed lung ventilator model quantitative verification for experimental mouse model ventilator 
data 
 
To demonstrate the effectiveness of the damage-informed lung-ventilator (DILV) model, we quantitatively verify 
the model by estimating parameters for data sets corresponding to different phenotypes—e.g., injured versus 
healthy. We then show differences in the estimated parameter values reflect different phenotypic states in a manner 
that is consistent with observed changes in lungs for mice in the absence and presence of ventilator dyssynchrony 
(VD) using data sets that belong to PVC and VCV modes of ventilation to verify volume and pressure models, 
respectively. 
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In PCV, volume model outcome agrees with the experimental outcome and with the single-compartment model: 
Figure 5, panel 1 shows two different pressure-controlled breaths recorded from the first mice in a healthy condition 
(green) and after a lung injury induced by injurious lavage and mechanical ventilation (orange). The pressure-
volume loops suggest a reduction in lung compliance and an increase in hysteresis that is characteristic of lung 
injury. The DILV model estimated states (dashed-dot lines) show the same trends. The estimated parameter values 
and the respective uncertainty for individual breaths are shown in Table 2 with bold indicating physiological 
relevance.  
 

Table 2: Estimated model parameters obtained from the optimization scheme for the results shown in Fig. 5 
(Panel 1) and Fig. 6 (human patent 1) correspond to the mouse and human data, respectively. The error values 
were determined using the standard error of the mean for individual breaths. To quantify uncertainty in parameter 
estimates, each individual breath was estimated 1000 times. The parameters that are correlated with a known 
measure of lung physiology are in bold. Here, Cs and Cd are lung compliance values extracted by fitting the 
single-compartment model to data (Cs) and from the damaged-informed lung ventilator model (Cd) = Av/Ap1. 

 
 
In the volume model, the injured lung showed a lower inspiratory flow rate, quantified by an increase in β1, and a 
faster expiration, quantified by a reduction in both β2 and Av than the healthy lung model estimates. This might 
suggest a reduction in lung compliance, and the associated decrease in the expiratory time constant (See Table 1).  
Physiologic interpretation of the pressure model is limited because of the use of PCV. In this case, the pressure 
signal is prescribed by the ventilator and the observed differences between the healthy and injured lungs are a result 
of the ventilator control system algorithms. Hence, the respective changes in the parameters’ values, such as an 
increase in parameters a3 and β3 correspond to the changes in the ventilator settings and not in the respiratory 
mechanics. These results make an important point: it is essential to see the relative change in the parameters that 
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control these features and to synthesize the model-based inference in a holistic fashion, instead of focusing on any 
one parameter or feature in isolation, given lung mechanics depends on both pressure and volume signal mutually.  
 
To analyze changes in lung mechanics in a manner that accounts for ventilator settings, we define the lung 
compliance Cd = Av/Ap1 (Table 2), which is the ratio of volume and pressure model amplitudes. As expected, Cd 
decreases with injury. Furthermore, Cd shows a strong correlation with compliance (Cs) calculated with the single-
compartment model34 (Table 2). 
 
DILV model accurately captures mouse model data with ventilator dyssynchrony while the single-compartment 
model is unable to capture this variability: In section above, we demonstrate that the DILV model can estimate 
single breath accurately but we did not verify that the model has enough flexibility to account for the large variations 
in the waveform data. The DILV model can estimate a large number of breaths reliably while maintaining unique 
solutions of parameters values for each breath. To show these characteristics, we estimate a large number of breaths 
for the second mouse in three different lung conditions: 1) healthy breaths without VD, 2) injured breaths without 
VD, and 3) injured breaths with VD (See Methods). In the 1st and 2nd cases, we selected sixty breaths in a sequence 
from the random location in the data. In the 3rd we manually selected ten breaths that had VD from a large data set 
containing breaths with and without respiratory effort. A representative breath for each case is shown in Fig. 5, panel 
2 along with the DILV model response at the optimum parameter values (Supplementary Table S1). Histograms of 
the initial guesses and estimated parameters are shown in the Supplementary Fig. S5a. We observed minor 
variability in most of the estimated parameters values for individual breaths, suggesting that each feature is 
modularly controlled by the respective parameter. We do observe high variability in some parameters (a1, β1, a3, β3) 
due to the low sensitivity of the model for those parameters (Supplementary Fig. S5a).  
 
To demonstrate what is gained by the DILV model we compare it to single-compartment model34 estimated 
resistance and compliance to estimate the same breaths for each case (Fig. 5, panel 2). The single-compartment 
model has substantially larger estimated mean squares errors (MSE) and these errors increase as the mouse lung 
condition worsens (Fig. 5h,i, Supplementary Fig. S5b-d). Consequently, in terms of lung compliance values, the two 
models' outcomes closely agree in the healthy lung case but then diverge for the injured lung, and especially during 
VD (Supplementary Fig. S5e-g). These discrepancies have their root in the limited ability of the single-compartment 
model to estimate respiratory efforts (Fig. 5f,g), errors that are quantified by the MSE between model estimates and 
data (Supplementary Fig. S5b-d). Note that the compliance value that we calculate includes the effects of muscle 
effort – it’s not a true pulmonary system compliance. It’s also different from the non-VD breaths in that same 
injured mouse. 
 
In VCV, pressure model outcome agrees with the experimental outcome: We verified the DILV model using data 
sets that were collected during PCV, where the estimated volume model parameters reflected the lung dynamics 
since the volume was the free variable. We now consider data set that was collected in VCV mode where the 
estimated pressure model parameter should reflect the lung condition. For that, we preform third mouse verification 
including variations in PEEP during low tidal volume ventilation (VCV). The PV loops show reduced compliance 
with injury for both PEEP settings. The full PEEP-varied results are shown in the Supplementary Fig. S6. The 
pressure model indicates a reduction in compliance in the injured lung as quantified by lower values of parameters 
a3, b3 and β3, and elevated estimates of in Ap1 (Table 1, Supplementary Fig. S6, Supplementary Table S1). In 
contrast to the results shown in Fig. 5, differences in parameter estimates between healthy and injured lungs in the 
pressure model were much larger compared to those estimated differences in the volume model. This is expected 
since the tidal volumes were approximately equal during VCV, and the reduction in compliance is reflected in 
increased pressure. This effect can be inferred by analyzing the Av/Ap1 ratio showing a reduction in the injured cases 
at both the PEEP settings (Supplementary Table S1). We also note that the healthy lung becomes stiffer at PEEP = 
12 cmH2O due to strain stiffening. In contrast, the injured lung becomes more compliant at high PEEP, presumably 
due to recruitment.  
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Figure 5: Volume and pressure models’ responses closely agree with the experimental data from the 
representative mice in healthy and injured condition. (a-c) In Panel 1, the measured breaths of first mouse are 
shown in healthy and injured conditions (solid lines) while the damaged-informed lung ventilator (DILV) model 
response is shown in dashed lines. Equations 1-18 were used to generate the best-fit model response using 
estimated mean parameter values shown in Table 1, respectively. In Panel 2, (d-g) three representative breaths of 
mouse two is shown here, which are corresponding to three different lung conditions (solid lines) while the 
damaged-informed lung ventilator model response is shown in the dashed-dot lines. For these breaths, histograms 
of the initial guesses and estimated parameters are shown in Supplementary Fig. S5a. The response of the single-
compartment model is shown in dashed-dashed lines. (f-i) The cumulative values of mean squares errors (MSE) 
of the two models are compared here. These values corresponded to sixty breaths for healthy no ventilator 
dyssynchrony (VD) and injured no VD cases while ten breaths for injured VD case. For each case and breath, the 
estimated parameter values and MSE are shown in the Supplementary Fig. S6b-d. All the data shown here was 
collected in PCV (see Methods). 

 
 
Damage-informed lung ventilator model quantitative verification for intensive care unit (ICU) patient-
ventilator data  
 
The DILV model is intended to be used with both laboratory data and clinical ventilator data where standard models, 
such as the single-compartment model, cannot recapitulate all of the potentially relevant waveform features, 
particularly patient-ventilator interactions and pathophysiological lung problems. To show the clinical applicability 
of the DILV model we consider waveform data of two ICU patients, the first—patient 1—includes waveform data 
without VD and the second—patient 2—has waveform data with VD. For each case, we estimate each individual 
breath 1000 times to quantify uncertainty in parameter estimates for each of 263 breaths to quantify uncertainty in 
parameter estimates across many breaths. These data were recorded near extubation when ARDS had nearly 
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resolved. For both patients, the ventilator was operating in patient-triggered mode, a ventilator mode that is not 
possible in our mouse ventilators but is commonly used ventilator mode in the ICU. 
 
Patient 1 ICU data-driven verification in the absence of VD: For patient 1, of the thousands of breaths available, we 
selected a sequence of 130 breaths without VD at a random location and performed parameters estimation breath by 
breath. The sequence of breaths starts at PEEP = 20 cmH2O and switches to PEEP = 18 cmH2O at breath number 68. 
Fig. 6a-c shows two representative breaths along with the DILV model response at the optimum parameter values 
(Table 2). Histograms of the initial guesses and estimated parameters are shown in the Supplementary Fig. S7a for 
the respective breaths. For all the model parameters, we observed unimodal estimated parameter distributions with 
low variance, suggesting that each parameter controls a specific feature of the waveform. We also estimated each 
breath using the single-compartment model and substantially higher MSE compared to the DILV model (Fig. 6g,h). 
Note that in Fig. 6g-j, an MSE ratio less than one indicates that the DILV model produced waveforms that were 
more similar to the measured data.    
 

 
Figure 6: Damaged-informed lung ventilator model can accurately follow breaths of the ICU patients with 
ARDS without and with dyssynchrony. Measured representative breaths of (a-c) patient 1 without 
dyssynchrony and (d-f) patient 2 with dyssynchrony are shown in solid lines, while the DILV model inferred 
response is shown in the dashed-dot lines. The response of the single-compartment model is shown in dashed-
dashed lines. Histograms of the initial guesses and estimated parameters are shown in the Supplementary Figs. 
S7a and 8a. For all the breaths in each case, the corresponding ratio of mean squares errors (MSE) between the 
DILV model and the single-compartment model is shown in (g-h) and (i-j), respectively, while histograms are 
shown in Supplementary Figs. 9 and 10. The response of the DILV model was determined using Eqns. 1-18 to 
generate the best-fit model response using estimated mean parameter values shown in Table 1, and 
Supplementary Table 1. All the data shown here were collected in human-triggered mode (see Methods). 
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PV loops for these cases (Fig. 6c) suggest that lung compliance is increased by the prescribed change in PEEP. We 
found that the model-estimated parameters indicate an increase in compliance (the Av/Ap1 ratio) with a reduction in 
PEEP (Table 2). The increased compliance at lower PEEP agrees with the single-compartment model34 response 
(Supplementary Fig. S8b,c) and also the patient outcome (successful extubation). Moreover, a significant increase in 
parameters a3, and β3 suggested the same (Table 2). The prescribed reduction in PEEP was reflected in a reduction 
in Ap4. 
 
Patient 2 ICU data-driven verification in the presence of VD: In the cases where some patient effort is present, e.g., 
VD, additional model parameters must be used to quantify and understand the patient-ventilator interaction. To 
show this, from patient 2’s data we randomly selected 133 breaths from the thousands of breaths observed. These 
breaths were selected from a several hours long time window where most of the breaths showed mild to severe VD. 
Two representative breaths for this case are shown in Fig. 6d-f along with the DILV model’s estimate of these 
breaths at the optimum parameter values (Supplementary Table S1). Histograms of the initial guesses and estimated 
parameters for these breaths are shown in the Supplementary Fig. S8a. 
 
PV loops for these breaths (Fig. 6f) suggest that lung compliance is increased prior to extubation compared to earlier 
in the ICU course. This qualitative observation is supported by the increased Av/Ap1 ratio (Supplementary Table 1) 
that is a measure of compliance. However, it is important to note that this compliance includes the additional effects 
of respiratory effort. To further demonstrate the importance of the DILV model, we compared the DILV model’s 
estimate of the breaths with the single-compartment model34 estimates for each breath. The single-compartment 
model estimates of the breaths have substantially higher MSE values for patient 2 compared to patient 1 (Fig. 6g-j) 
due to the presence of respiratory efforts. Accordingly, we expect large errors in the compliance values estimated 
with the single-compartment model (Supplementary Fig S8b,c). These results agree with the fact that the DILV 
model can estimate the volume and pressure waveform data more accurately, especially when the waveforms have 
high variability, as in the case of patient 2 with VD.  
 
The mouse data verification showed that the DILV model is able to estimate most of the parameters for individual 
breaths. It is also important to quantify uncertainty across many breaths and in different patients. Analyzing the 
variability in the estimated parameters over several breaths might capture the lung condition's heterogeneous nature, 
including many potentially different and differently damaging breaths that show VD. In the ICU, there are no 
controlled experiments, and patients simultaneously experience many types and severities of VD, different 
interventions, heterogeneous injurious insults, etc. We expect to see minor variability in parameter estimates when 
many breaths of a patient are approximately the same compared to large variability in the parameter estimates when 
breaths are heterogeneous. For example, we observed a low variability in all the volume model parameters over 
several breaths with the exception of Av for patient 1, indicating that the volume waveforms' characteristic shape 
remains the same at different time points except for variations in tidal volume. This contrasts with what we observed 
for patient 2 where VD drove heterogeneity and substantial deviations from more normal breaths (Supplementary 
Figs. S9, S10). More importantly, parameters associated with patient-ventilator dyssynchrony can be used to infer 
lung condition. For example, for patient 2, we observed that estimated distributions of β5, β6, Ap2 parameters across 
several breaths have higher values than patient 1 and indicating the VD known to be present in patient 2 
(Supplementary Figs. S9, S10).  
 
Overall, these results suggest that the DILV model can reproduce a wide variety of waveform data and is capable of 
extracting hypothesis-driven, clinically-relevant information from the waveforms that might facilitate a systematic 
interpretation of the dynamics of the injured lung.  
 
 
DISCUSSION  
 
We developed a damage-informed lung ventilator model that represents pressure and volume time-series data by 
reconstructing the waveforms from hypothesis-driven modular subcomponents. We demonstrated the efficacy of the 
model using simulations for qualitative validation and by estimating mouse and human data for quantitative 
verification. The model accurately estimated volume and pressure waveforms data and consistently distinguished 
healthy from injured lungs based on parameter estimation. Furthermore, we directly incorporate clinical and 
physiologic knowledge regarding important and observable features into the model that might be associated with the 
lung pathophysiology—the subcomponents of the model represent hypothesis-driven deviations from normal 
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breaths. We also analytically define lung compliance in terms of model parameters and demonstrate changes in 
compliance values that agree with the known lung condition.  
 
To demonstrate what is gained with this novel approach, we present a comprehensive comparison between the DILV 
model and the single-compartment model for a wide range of ventilator waveforms related to different lung 
conditions and patient-ventilator interactions. We include pressure- and volume-controlled ventilation in healthy and 
lung-injured mice and in humans in the absence and presence of respiratory effort. Through this comparison, we 
establish that the DILV model can reproduce all the features present in the waveform data and report lung 
compliance values that agree with lung condition (Fig. 5, 6 and Supplementary Fig. S5, S7-S10). This is primarily 
possible because of our unique waveform-based approach that enabled the model to have enough flexibility. At the 
same time, the model is limited using prior knowledge so as not to have the capability to estimate every possible 
variation in PV waveforms, but rather is constrained to estimate the features of the ventilator data that are the most 
clinically impactful. This approach lives between a machine learning approach, where the model is flexible enough 
to estimate every feature and must then discern which features are important through regularization to prevent 
overfitting, and the fully mechanistic lung modeling approach where the observed physiology must emerge from the 
proposed lung mechanics. It is possible that taking this middle path will help advance all approaches.  
 
The most direct application of the DILV modeling approach is to quantify the qualitative physiological 
interpretation of pressure and volume data. An experienced clinician or physiologist can infer the status of a patient, 
the safety of ongoing ventilation, the presence of ventilator dyssynchrony, and other important details from visual 
inspection. However, we currently do not yet have methods to identify all of these characteristics in ventilator data 
quantitatively. The entire waveform may be utilized and this provides a rich repository of data that is challenging 
and time-consuming to use for diagnosis and treatment. In contrast, summarizing the waveform data in scalar values 
for resistance and compliance may cast aside important details such as identifying dyssynchrony. Our approach may 
offer a methodology for condensing the pressure-volume data to track changes in injury severity over time, and 
estimate injury phenotypes (Supplementary Figs. S9, S10). A similar phenotype study on a large dataset could be 
used to categorize and understand lung injury, serve as outcome measures for interventions, and describe the 
impacts of VILI and dyssynchrony,38 and VILI. 1-7,60,61  
 
Lung injury diagnosis and decision-making are based in part on interpretation of the pressure, volume, and flow 
waveforms. However, different pathophysiologic mechanisms can lead to the same observed waveform features. For 
example, increased driving pressure could be a result of derecruitment (alveolar collapse) or alveolar flooding. 62,63 
In other words, the human-based inference using limited waveform data can be ill-posed. The DILV modeling and 
parameter estimation approach could allow to estimate a large number of breaths efficiently with unique solutions 
(Supplementary Figs. S9, S10). We could therefore use the DILV model to estimate over many similar but varied 
breaths, and might be to better triangulate the most probable pathophysiologic drivers because the primary driver of 
damage will likely be present, and significant, despite inter-breath variations. At the same time, more extraneous 
details will not be consistently expressed in every breath. 
 
Note that in the DILV model, an explicit coupling between pressure and volume signals is absent. We have 
intentionally taken this approach to preserve flexibility so that we can accurately recapitulate a wide variety of 
clinically and experimentally observed features in the pressure and volume signals, including the effects of 
ventilator dyssynchrony (Figs. 5f,g, and 6d-f). Such flexibility in the model outcome is not always possible with 
rigid coupling between pressure and volume data, as we have shown by comparing the DILV model response with 
the single-compartment model. This is not to say that pressure and volume are totally independent in the DILV 
model because we utilize the same respiratory rate for both. In addition, we show that the ratio of a volume and 
pressure model parameter (Av and Ap1) describes lung compliance. In future studies, we will link additional specific 
components of the pressure and volume waveforms through physiologically relevant parameters such as nonlinear 
lung elastance or inspiratory and expiratory flow resistance. Alternatively, compartment-based model could be used 
to incorporate the physiologic coupling between pressure and volume data by utilizing the outputs from the model 
presented here as inputs for compartment models. Moreover, if the DILV model is used to preprocess the data 
before analysis using a compartment model, it is possible to formulate the problem entirely of ordinary differential 
equations, opening up a range of more efficient inference machinery. 53-55 
 
Finally, our work here has several notable limitations. First, the DILV model quantitative verification was 
conducted using healthy and severely lung-injured mice as well as a limited human data set. This is sufficient for 
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proof in principle that the model can capture physiologic differences. However, establishing that the model can 
accurately differentiate more specifically defined phenotypes will require verification on much larger laboratory and 
clinical populations. Second, the human data in this study were collected using a specific ventilator (Hamilton G5) 
operated in a certain mode. For wider applicability of the model, additional data verification is required across 
different ventilators and modes. Third, we relied on the expert knowledge of a single critical care physician to 
determine the clinically important characteristics of the pressure and volume waveforms and it is likely that differing 
opinions will exist among intensivists. Collecting and synthesizing such information will require a different 
qualitative study. Moreover, there may be differing opinions regarding what should and should not be included in 
the model. This does not negate our methodology or the DILV model. Instead, it suggests future work is necessary 
to understand better and verify clinically important features. Alternatively, we may instead seek to link model 
features to patient outcomes, thus establishing the important characteristics of the model by linking those parameters 
to outcomes.  
 
In summary, we developed a physiologically anchored and data-driven lung ventilator model that can reproduce the 
important features pressures and volumes during mechanical ventilation. The performance of the model was verified 
with experimental and clinical data in healthy and injured lungs to demonstrate model efficacy in robustly 
estimating interpretable parameters. This methodology represents a departure from many lung modeling efforts, and 
suggests future directions of work that can provide another pathway for better understanding lung function during 
mechanical ventilation and can potentially form a bridge between experimental physiology and clinical practice.  
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