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Abstract 

Recent advances allowing the genomic analysis of individual cells from a bulk population have 
provided intriguing new insights into areas such as developmental processes and tumor 
heterogeneity. Most approaches to date, however, rely on the availability of fresh surgical 
specimens, thereby dramatically reducing the ability to profile particularly rare tissue types. 
Pediatric central nervous system tumors – the leading cause of childhood cancer deaths – 
represent one such example, where often only frozen rather than native material is available. Due 
to an increasing need for advanced techniques to understand the heterogeneity of these tumors, 
we optimized a method to isolate intact nuclei from long-term frozen pediatric glioma tissues. We 
performed a technical comparison between different single nucleus RNA-sequencing (snRNA-
seq) systems using a patient-derived xenograft model as a test sample. Further, we applied the 
established nucleus isolation method to analyze frozen primary tissue from two pediatric central 
nervous system tumors – one pilocytic astrocytoma and one glioblastoma – allowing the 
identification of distinct tumor cell populations and infiltrating microglia. The results show that 
our fast, simple and low-cost nuclear isolation protocol provides intact nuclei, which can be used 
in both droplet-based 3’ transcriptome amplification (10X Genomics) and plate-based whole 
transcriptome amplification (Fluidigm C1) single-cell sequencing platforms, thereby dramatically 
increasing the potential for application of such methods to rare entities.  
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Introduction 
 
Single-cell RNA sequencing (scRNA-seq) is an increasingly popular method for investigating 
properties of heterogeneous tissues, which cannot easily be addressed with conventional bulk 
tissue RNA sequencing. Specifically, it allows the assessment of tumor heterogeneity and the 
identification of diverse tumor and non-tumor cell populations in a tumor mass. Whole-cell 
extractions for traditional scRNA-seq, however, require viable fresh tissue, whereas often only 
frozen tumor biopsy samples are readily available. 
 The need for modern techniques that enable a thorough investigation and understanding of 
tumor biology is underlined by the clinical challenge presented by many tumor entities, such as 
childhood brain tumors. Central nervous system tumors are currently the leading cause of cancer-
related morbidity and mortality in children in spite of all therapeutic efforts1-4. While there have 
been several studies looking at single-cell analysis of pediatric brain tumors from viable whole 
cells5-8, application to frozen tissue (which would open up a wealth of possible samples) has been 
limited to date. We therefore sought to develop a robust method for profiling of single nuclei 
(snRNA-seq) extracted from long-term frozen samples of pediatric brain tumors. Previous reports 
have indicated the utility of frozen material for snRNA-seq9-11, but brain tissues are especially 
problematic as starting material due to their high neuron composition and thus increased 
sensitivity to enzymatic cell dissociation12. We therefore focused on using only mild enzymatic 
buffers and a mechanical cell dissociation. We compared a density gradient nucleus isolation 
protocol (modified from Spalding et al 200513 and Ernst et al 201414) to other previously reported 
nucleus isolation methods, such as Nuclei EZ Prep (Sigma-Aldrich, NUC101-1KT), Isolation of 
Nuclei for Single-Cell RNA Sequencing (10X Genomics)15 and OptiPrep™16. None of these, 
however, resulted in an adequate sample quality (defined by a high yield of intact nuclei with 
minimal cell debris) when using the frozen brain tumor samples as starting material.  

Here, we present a nuclear isolation protocol specifically optimized for long-term frozen brain 
tumor tissues and a possible workflow for identifying cell populations from snRNA-seq data. To 
study the usability of the nuclear preparations obtained with our protocol, we profiled the 
extracted nuclei using different snRNA-seq platforms: Chromium 10X Genomics17, Drop-seq 
(Macosko)18 and Fluidigm C1 System19. The resulting data were further analyzed 
computationally, showing the applicability of the derived data for identification of cellular 
subpopulations; assignment to cell types; copy number analysis and evaluation of lineage 
hierarchies. 
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RESULTS 

Systematic optimization of nuclear isolation protocol for frozen tissues yields intact nuclei 
We first tested the density gradient centrifugation method originally developed by Spalding et 
al13 and modified by Ernst et al14, and observed substantial cell debris and a low nuclear yield in 
the final preparation when using frozen human brain tumor tissues. In addition, we speculated 
that the extended processing time increased the risk of further RNA degradation during sample 
handling. In an attempt to improve nucleus yield and quality, we modified the respective buffers, 
optimized the extent of homogenization through douncing, added two filtering steps after the cell 
lysis and adapted the ultracentrifugation step. Despite these measures, we found that the sample 
purity was still insufficient (Fig. S1a). We therefore replaced the density gradient centrifugation 
with washing steps using lysis buffer without detergent, to avoid nuclear wall permeabilization. 
Although this clearly improved purity, the yield remained low. To overcome this, we tested 
several consumable plastics, coating buffers and buffer volumes and finally managed to increase 
the yield of nuclei (Fig. S1b; see Methods). The buffer volumes were adjusted based on the 
amount of starting material (here we present volumes suitable for about 20-50 mg of frozen 
glioma tissue).  

Our final protocol is fast (less than 30 minutes in total), low-cost, and simple to carry out. It 
consists of four steps: cutting the tissue in ice-cold lysis buffer with a scalpel, douncing the 
sample to open cell walls, filtering the cell debris and washing off the rest of the cell debris and 
free RNA (Fig. 1a). The sample can then be re-suspended in storage buffer and either applied 
directly for use with snRNA-seq platforms or frozen for a short period (maximally a few days) at 
-80�. Washing of the nuclei three times was found to be optimal for obtaining a debris-free 
supernatant (Fig. 1b), with further washing steps leading to damage of the nuclear walls. 
However, some nuclei are lost in each wash (Fig. 1c) and therefore two washes may be preferred 
if the amount of starting material is low. The protocol yields intact nuclei with undamaged 
nuclear walls in a debris-free supernatant (Fig. 1d). 

As a comparison, we also tested three commercial nuclear isolation methods: Nuclei EZ Prep 
(Sigma-Aldrich, NUC101-1KT), Isolation of Nuclei for Single-Cell RNA Sequencing (10X 
Genomics)15 and OptiPrep™16. The EZ prep resulted in a high yield, but also in a very high 
amount of debris in the supernatant (Fig. S1c), while the 10X Genomics protocol gave a clear 
supernatant but very low yield of nuclei (Fig. S1d). When replacing the washing step of our 
protocol with OptiPrepTM density gradient, we obtained similar results as when using our original 
sucrose cushion density gradient, but with a slightly lower yield (Fig. S1e). Our optimized 
protocol therefore provides a good balance between purity and yield, in addition to the benefits of 
its simplicity and cost-effectiveness. 

 

Comparison of snRNA-seq platforms 
A pediatric glioblastoma patient-derived xenograft (PDX) sample (Table S1) was analyzed using 
Chromium (10X Genomics)17, Drop-seq (according to Macosko et al.)18 and C1 (Fluidigm)19 
systems (Fig. S2a). As expected, the highest number of nuclei was detected with 10X Genomics, 
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with Drop-seq detecting only slightly less. The lower throughput design of the plate based 
Fluidigm C1 platform generally produces a reduced number of analyzed nuclei (Table S2). 
Separation of mouse and human nuclei was clear with both droplet-based as well as plate-based 
methods, with few mixed signals (Fig. 2a, Fig. S2b-c). Although the Fluidigm C1 analysis 
resulted in a much higher detection of genes overall (~6000) compared with the droplet-based 
methods (10X Genomics ~2000 and Drop-seq ~1000) (Fig. 2b, Fig. S2d, Table S2), the 
proportion of human nuclei detected in comparison with mouse nuclei was greatly reduced (Fig. 
S2e). This difference may derive from physical differences of healthy mouse nuclei in 
comparison to tumorous human nuclei, and/or differences in nucleus size affecting capture 
efficiency, resulting in a differential flow in the C1 chip (although the results are based on small 
numbers overall). The poorer human to mouse nuclei ratio is also reflected in the presence of 
total human genes (Fig. S2f). Despite this difference, however, the most highly expressed genes 
were still similar between 10X and C1 (Fig. 2c, Fig. S2g-h). When comparing our snRNA-seq 
data of the PDX material merged as a pseudo-bulk with whole-tissue Affymetrix gene expression 
array data from multiple different patient tumors, the highest similarity was with the matched 
sample from which the PDX was derived (Fig. 2d). The other closely similar tumors belonged to 
the same tumor entity (pediatric high-grade glioma), with unrelated pediatric brain tumors 
showing a lower overall similarity. The same result was seen with both the 10X Genomics and 
the Fluidigm C1 datasets (not shown).  

Notably, more mitochondrial genes were found in the Drop-seq data compared with the two 
commercial platforms (Fig. S2i). The Fluidigm C1 platform has an additional washing step 
included, which might result in an improved filtering of the mitochondria. A clear explanation for 
the difference between the two droplet-based methods was not apparent, but one hypothesis could 
be that the lysis buffer in the Drop-seq may lyse the mitochondrial wall more efficiently than the 
lysis buffer used in 10X Genomics. The processing time of the Drop-seq is also higher than that 
for the 10X Genomics system, which results in a longer incubation time of the sample in the lysis 
buffer and thus possibly enhanced lysis of mitochondrial walls.  

Although the inherent design differences of the two platforms means that more nuclei can be 
analyzed with 10X Genomics compared with Fluidigm C1, all of the identified cellular 
subpopulations were found in the data of both systems (Fig. 2e, Fig. S2j). Due to the clearer 
differences in cluster designation with increased nucleus number, however, all subsequent 
analyses were performed with data from the 10X platform.  

The original clustering of the PDX sample results in seven suggested clusters (Fig. S2k). 
When assigning a putative identity to these clusters based on known marker gene expression (Fig. 
S2l, Table S3a) 20, we found evidence for four different cell populations: cycling cells, proneural-
like (PN-like) cells, astrocyte-like (AC-like) cells, and oligodendrocyte precursor-like (OPC-like) 
cells (Fig. 2f). This assignment of the cell populations is further supported by analysis of enriched 
pathways (Fig. 2g, Table S4a). Pseudotime analysis of the nuclei data indicated three cellular 
states (Fig. S2m). Mapping of cellular identities onto the pseudotime trajectory based on 
expression of known marker genes (Fig. S2n), however, suggested a model in which a cycling 
subpopulation gives rise to an intermediate PN-like progenitor (consisting of mesenchymal-like 
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and neural progenitor-like cells) that can subsequently differentiate into AC-like or OPC-like 
daughter cells (Fig. 2h-i). The identified cell states comprised distinct clusters on the original 
tSNE plot, as visualized by the expression levels of respective marker genes (Fig. S2o).  

 
Single-nucleus RNA-seq allows detailed molecular analysis of frozen primary human brain 
tumor samples 
Nuclei from two long-term frozen primary pediatric glioma tissues (Table S1) were analyzed 
using the 10X snRNA-seq system, providing high-quality data with good confidence of 
transcriptome mapping (Table S2). The samples were sequenced on three different machines 
(Illumina NextSeq500, HiSeq4000 and NovaSeq6000), with the estimated number of nuclei 
detected not substantially differing between the platforms (Table S2). As expected based on their 
output, the sequencing saturation with NextSeq500 was lower than for the HiSeq and NovaSeq 
(estimated saturation of detected genes/nuclei was at approximately 100,000 reads per nucleus). 
This could be compensated for by reduced pooling of samples, and the proportion of reads 
mapped to the genome/transcriptome showed that the general performance was at least as good 
with the NextSeq500 as with the other two devices.  

The first tumor examined was a pediatric high-grade glioma (HGG), one of the most lethal 
forms of pediatric brain tumor with a typical survival of less than 2 years after diagnosis21. Our 
extraction protocol generated a high-yield of clean nuclei for sequencing from the frozen tissue 
specimen (Fig. 3a). Analysis of the single nuclei data suggested two predominant clusters. Based 
on previously reported marker genes for glioblastoma (GBM) tumor cell populations20, the major 
cluster in this sample (ICGC_GBM61, as reported in 22) seems to consist of neural progenitor 
cell-like (NPC-like) tumor cells (Fig. 3b). An additional second cluster was also observed. Based 
on CHETAH36 cell type classification using healthy brain cell types as reference, this cluster 
demonstrated high similarity to microglia (Fig. 3c). Further evaluation of marker genes for the 
tumor and microglial nuclei confirmed the discrete nature of the clusters (Fig. 3d-f).  
 Tools identifying tumor cell populations based on copy number variations (CNVs) have been 
developed for whole-transcriptome scRNA-seq methods such as the Fluidigm C1 or Smart-seq2 
approaches23,24. The 10X Genomics system, however, amplifies only the 3’ ends of transcripts 
during preparation of the cDNA library. The total number of transcripts detected is also typically 
lower, making expression-based estimates of genomic copy number challenging. There are, 
however, methods being developed that also appear to be applicable to 10X data. One such tool 
for assessing copy number changes in tumor cell clusters from 10X snRNA-seq, InferCNV8, gave 
promising results despite not being optimised for 3’ read data (Fig. 4a). The healthy microglia 
cluster of ICGC_GBM61 was used as an internal reference for comparison with the tumor 
clusters of the same sample, with clear indications for regions of copy number change observed. 
While the overlap with the bulk CNV plot of the same tumor was limited overall, combining the 
single nucleus CNV results into pseudo-bulk demonstrated a reasonable correspondence for 
certain regions (Fig. 4b). For example, the calling of loss of chromosome 16, gain on 
chromosome 6q and MYCN amplification could potentially be used as an additional confirmation 
to annotate any ambiguous clusters as representing either tumor or stromal cells.  
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We also profiled a pilocytic astrocytoma sample (PA, a WHO grade I tumor representing the 
most common childhood brain tumor) using snRNA-seq, again with multiple sequencing devices. 
The nuclei preparation was again of good quality, despite a tissue storage time of 6 years (Fig. 
5a).  Overall cluster detection was similar with each of the sequencers (Fig. S3a-c), with some 
minor differences in cluster assignment of individual nuclei between platforms (Fig. S3d). The 
clearest picture was obtained when combining all of the data, confirming that a sufficient overall 
sequencing depth is more important for the identification of distinct cell populations than the 
specific device used to generate the data (Fig. S3e). 

When looking in detail at this tumor (ICGC_PA56, harboring a KIAA1549:BRAF fusion – the 
most common genetic alteration in this entity25), a number of distinct cell types could be 
observed (Fig. 5b). Based on previously published marker genes for PAs28, the largest tumor cell 
cluster was found to express genes associated with an active MAPK pathway (Fig. 5b-d), 
confirming the key role of this pathway in PA26. The other major cell population in ICGC_PA56 
was identified to be AC-like tumor cells based on marker gene expression (Fig. 5e). These cells 
did not, however, resemble normal, healthy astrocytes based on CHETAH analysis or when 
looking at highly expressed genes (Table S3) using NeuroExpresso40 and Brain RNA-seq39 

database (Table S5c), thus indicating that they most likely represent a second (more 
differentiated) tumor cell subpopulation. When comparing with normal brain cells, many of the 
single tumor nuclei showed similarities with oligodendrocyte precursor cells (OPCs; Fig. 5f), 
which have previously been suggested to be the cells-of-origin of PA tumors27. This similarity 
was particularly notable in the MAPK subset, further supporting a key role for MAPK-activated, 
OPC-derived tumor cells as a main component of PAs. 

Two putative healthy cell populations were also identified within the PA sample (Fig. 5b). In 
contrast to the tumor cells, which often gave no clear match, these populations give a relatively 
uniform result when comparing with NeuroExpresso and the Brain RNA-seq database as 
matching to microglia (Table S5b-c). These tools thus proved valuable for confirming the identity 
of clusters that may be otherwise difficult to assign (Fig. 5g-h). When combining the snRNA-seq 
data of the low- and high-grade glioma samples, the non-tumor cells in common between the two 
were found to cluster more closely to each other than to other cells from the respective tumors, 
while the two tumor clusters were clearly distinct (Fig. S4a). This combined analysis suggested a 
small fraction of endothelial cells in the HGG sample, which was not identified in the single 
tumor analysis, and confirmed the presence of microglia in both tumors. Despite their overall 
similarities, however, the immune cells also showed some differences (Fig. S4b), possibly hinting 
at different types or activation states of the microglia present. Further examination of these 
differences in future may provide information on, for example, tumor-promoting versus tumor-
suppressing immune programs. 
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Discussion 
Here we have developed a method for extracting intact single nuclei from long-term frozen 
tissues. The method is simple, fast, low-cost, and is suitable for most typically equipped biology 
laboratories. The short processing time potentially reduces the risk of RNA degradation 
compared with some other protocols, and the method results in nuclei preparation with a good 
balance between purity and yield. 

We found that nuclei extracted with this method can be applied to different scRNA-seq 
platforms. Both, a full transcriptome amplification method (Fluidigm C1) and a 3’ amplification 
method (10X Genomics) proved suitable for the analysis of nuclei isolated from frozen glioma 
tissues, with minor differences in results deriving from general design characteristics of the 
platforms. The 3’ transcriptome amplification method, for example, detected fewer genes per 
nuclei (although this could also be partly linked to lower read-count per cell, and will likely 
improve with upcoming chemistry developments) but more nuclei in total, which lead to more 
distinct clustering and a more accurate distribution of human and mouse cell proportions. Due to 
the inherent design of the 3’ amplification method, genomic mutations could not be detected, but 
InferCNV analysis did allow a broad detection of copy number variations.  

Our study supports previous findings11,28,29 that nuclei from frozen tissues are a robust input 
material for single-cell omics analyses, thereby extending the range of suitable amenable to these 
high-resolution profiling techniques. This also removes need to sort for viable whole cells, which 
possibly reduces sources of technical variation in the analyzed tissues. A bias for certain cell 
populations based on differential sensitivity to the mechanical forces or lysis buffers applied in 
this protocol, however, cannot be excluded at present. Thus, it must be kept in mind that the 
detected nuclei populations might differ quantitatively (and possibly also qualitatively) from the 
original cell composition.  

Applying this method to pediatric brain tumor tissues also showed its potential for revealing 
biological insights. We were able to detect distinct tumor cell subpopulations in both a low- and 
high-grade glioma sample, and also identified an infiltrating microglia component in both tumors. 
The application to PDX samples may also be of interest in future, for example for unambiguously 
examining contributions of tumor (human) vs stromal (mouse) cell types to the overall signaling 
milieu in the bulk tissue. 

In summary, the possibility to extract and use nuclei from long-term frozen tissue material 
with a quick and simple protocol opens up enormous resources for the study of tumor 
heterogeneity and other questions of biological interest, expanding the utility of this rapidly 
developing method.  
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METHODS 

 
Optimized nuclear extraction from frozen brain tumor tissues 
All surfaces were cleaned with RNase Zap (Invitrogen AM9780) and PCR Clean wipes (Minerva 
Biolabs 15-2001) prior to sample processing, and equipment were cooled on ice and coated 
(0.1% Triton X-100 [Sigma-Aldrich 93443] in filtered PBS (Merck Millipore SLGS033SS and 
Gibco 14190-094). Only pipette tips of 1 ml (Biozym Low binding SafeSeal tips) and smaller 
were used to avoid losing the nuclei on the pipette tip walls. A fresh frozen human brain tumor 
tissue piece (20-50 mg) was placed on a Petri dish (Greiner Bio-One 628160) on a cooled metal 
block. It was mechanically dissociated using a scalpel in 1 ml of lysis buffer (0.32 M sucrose 
[Sigma-Aldrich 84097], 5 mM calcium dichloride [Sigma-Aldrich 21115], 3 mM magnesium 
acetate [Sigma-Aldrich 63052], 2.0 mM EDTA [Invitrogen 15575-038], 0.5 mM EGTA [Alfa 
Aesar J61721], 10 mM Tris-HCl, pH 8.0 [Invitrogen AM98556], 1 mM DTT [Sigma-Aldrich 
10197777001] and 0.1% Triton X-100 [Sigma-Aldrich 93443]). An additional 4ml of lysis buffer 
were added, and the tissue was dissociated further by pipetting and then transferred into a glass 
douncer (Sigma-Aldrich D9063). The cells were mechanically lysed by douncing 10 strokes with 
pestle A and then 10 strokes with pestle B. The lysate was directly filtered using a 100 µm filter 
(Greiner Bio-One 542000) followed by a 40 µm filter (Greiner Bio-One 542040) to remove the 
bigger cell membrane debris and then spun down to remove the lysis buffer (500 g, 5 min, 4�). 
The nuclei were re-suspended in 5 ml washing buffer (0.32 M sucrose [Sigma-Aldrich 84097], 5 
mM calcium dichloride [Sigma-Aldrich 21115], 3 mM magnesium acetate [Sigma-Aldrich 
63052], 2.0 mM EDTA [Invitrogen 15575-038], 0.5 mM EGTA [Alfa Aesar J61721] and 10 mM 
Tris-HCl, pH 8.0 [Invitrogen AM98556]) in a 50 ml tube (Corning 352070) (when having a 
frozen cell pellet as starting material, 3 ml of washing buffer and 15 ml tubes [Greiner Bio-One 
188-271] were used). The debris and leaking RNA were removed by centrifugation (500 g, 5 
min, 4�). The washing steps should be done optimally two to three times, or a maximum of four 
times if extensive debris is observed (more washing rounds result in broken nuclear membranes). 
After the washing steps the nuclear pellet was re-suspended in 1 ml of nuclei storage buffer (0.43 
M sucrose [Sigma-Aldrich 84097], 70 mM potassium chloride [ThermoFischer Scientific, 
AM9640G], 2 mM magnesium dichloride [ThermoFischer Scientific AM95306], 10 mM Tris-
HCl, pH 7.2 [Sigma-Aldrich T2069] and 5 mM EGTA [Alfa Aesar J61721]). The nuclei can be 
processed directly in snRNA-seq platforms in the storage buffer or frozen shortly (up to ~1 week) 
at -80�.  
 
Comparison to other nuclear extraction methods 
The final method was developed based on the density gradient centrifugation protocol originally 
developed by Spalding et al 200513 and modified by Ernst et al 201414. The optimized protocol 
was compared to three commercial methods in addition to the original density gradient 
centrifugation method mentioned above using 40 mg of a frozen pilocytic astrocytoma tissue in 
each (Fig. S1). The commercial methods were Nuclei EZ Prep (Sigma-Aldrich, NUC101-1KT), 
Isolation of Nuclei for Single-Cell RNA Sequencing (10X Genomics)15 and OptiPrep™16 and 
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were carried out following the manufacturer’s instructions. OptiPrep™ was used as an alternative 
density gradient centrifugation method and applied after cell lysis and filtering. The nuclear 
preparations were observed for quality using light microscopy. 
 
Nuclei staining experiments and microscopy 
To test the optimal number of washing steps, 37 mg each of three different frozen glioma samples 
were processed using the optimized nuclear isolation protocol. Each sample was washed four 
times after nuclear isolation. After each wash, the nuclear pellet was re-suspended in 1 ml of 
storage buffer and a 50 µl sample taken. A further 4ml of washing buffer was added before 
continuing to the next washing step. The nuclei were counted using an automated cell counter 
(Fig. 1c) and imaged using a light microscope (Zeiss Cell Observer) (Fig. 1b).  

To study the condition of the isolated nuclei and possible RNA leakage, the nuclei were 
stained using DNA, RNA and membrane stains. Nuclei were isolated from frozen pediatric 
pilocytic astrocytoma tumor tissue using the optimized protocol with three washing steps. The 
nuclei were stored at -80� overnight. On the next day, the nuclei were stained with RNA stain 
(SYTO™ RNASelect™ Green Fluorescent cell Stain [ThermoFischer Scientific, S32703]), DNA 
stain (Hoechst 33342 Solution [ThermoFischer Scientific,  62249]) and membrane stain 
(BODIPY™ TR Ceramide [ThermoFischer Scientific, D7540]) and imaged using a fluorescent 
microscope (Olympus IX71) (Fig. 1d).  
 
snRNA-seq experiments 
Libraries from single nuclei were generated using either Chromium 10X Genomics17, Fluidigm 
C119 or Drop-seq18 platforms according to the manufacturers’ instructions as described in 
Macosko et al18 and Bageritz et al30 (for Drop-seq). Nuclei were loaded in a concentration of 300 
nuclei/µl into 10X and C1 and 275 nuclei/µl into Drop-seq. For Drop-seq, nuclei concentration 
was adjusted to the smaller droplets to not show more than 5 % doublets. The PDX sample was 
loaded freshly after nuclear isolation into each snRNA-seq system, and the primary human tumor 
nuclei were frozen overnight at -80� prior to 10X experiments. Single Cell 3’ Reagent Kit v2 
was used for 10X while SMARTer Ultra Low RNA Kit for the Fluidigm C1 System (small-cell 
IFCs). After the cDNA library construction, all the 10X samples were sequenced on a HiSeq4000 
sequencer (Illumina), and some of the samples (Table S2) using NextSeq 500 (Illumina) or 
NovaSeq6000 (Illumina) (paired end 26+74 bp). The C1 libraries were sequenced on a 
HiSeq2000 (50 bp single-end dual index reads, 2x8 bp) and Drop-seq libraries on a HiSeq2500 
(paired end 20+180 bp, 8 bp index).  
 
Bulk sequencing experiments 
RNA from frozen tumor bulk tissues was used for Affymetrix gene expression array (Affymetrix 
Human Genome U133 Plus 2.0) and DNA in Infinium Methylation EPIC kit (Illumina).  
 
Ethical justification 
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The PDX mouse used in this study was handled in accordance with legal and ethical regulations 
and approved by the regional council (Regierungspräsidium Karlsruhe, Germany; G-64/14). 
Informed consent was obtained according to ICGC guidelines for all of the human tumor tissues 
used in this study. 
 
snRNA-seq data analysis 
The initial processing of sequencing reads was performed independently for each platform. For 
10X data the original CellRanger v2.1.0 pipeline was applied with an intron-including genome 
reference. Fluidigm C1 read alignment was performed with STAR v2.5.2b31 to the genome 
reference combined with ERCC and gene expression counts computed using featureCounts 
v1.4.632. Drop-seq reads were processed using Drop-seq tools v1.12 18. For the alignment of PDX 
samples, combined hg19/mm10 reference was used, while tumor sample processing was 
performed with hg19 only. For PDX samples the differentiation between human and mouse cells 
was performed based on the comparison of transcript counts per species. The filtering cut limit 
for each platform was selected based on computation of the mean proportion of human genes per 
cell.  

Quality control was performed for each sample using Scater package v1.8.033. The cell 
clustering for 10X data was generated using the Seurat v2.3.2 package34. The integration of 10X 
and C1 data for the PDX sample was performed using Canonical Correlation Analysis (CCA) 
from Seurat. Trajectory reconstruction was achieved from the application of Monocle v2.8.035 on 
the adjusted result from Seurat. Correspondence of the cell types to specific pathways was 
computed using hyper geometric test applied on functional gene lists from the MSigDB 
collection36. Combined visualization of cluster similarity between platforms was performed using 
GoogleVis R package with assignment based on a positive correlation limit of 0.3. 

CHEETAH v1.0.4 R package37 was applied for the comparison of our single nucleus data to 
other reference datasets. A reference for healthy brain cell types was acquired from the study of 
Darmanis et al38 while the reference data set for the tumor cells (H3K27M mutated pediatric high 
grade glioma) was from the study of Filbin et al7. Default confidence threshold (0.1) was used in 
the analysis. Copy number profiling was performed from the usage of inferCNV v1.3.2 of the 
Trinity CTAT Project as previously described5. In addition, two online databases, Brain RNA-
Seq39 and NeuroExpresso40, were used for studying the differentially expressed genes in each 
cluster. Gene expression levels per nucleus were visualized using a custom analysis script kindly 
made available by Dr. Murat Iskar (unpublished). 

 
Affymetrix data integration 
The Affymetrix PDX data was collected from Brabetz et al. 41. Mean values between probes per 
gene were computed to generate a full normalized expression matrix. PDX single nucleus profiles 
(10X and C1) were combined into bulk datasets and normalized via RPKM for the comparison 
with Affymetrix data. Correlation was computed based on the selection of the top 500 most 
highly variable genes in common between the snSeq sample and the Affymetrix matrix.  
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Figure legends 

Figure 1. Isolation of intact nuclei from long-term frozen pediatric glioma tissue. 
(a) Schematic figure showing sample preparation steps. (b) Representative images showing the 
effect of an increasing number of washing steps on nuclei yield/integrity and amount of debris 
(scale bar 10 µm). (c) Nuclei yield decreases with increasing number of washes. (d) Staining for 
nuclear membrane, DNA and RNA reveals intact nuclei, with no leakage of nucleic acids (scale 
bars 5 µm). Nuclei originate from a pediatric pilocytic astrocytoma tissue frozen for seven years 
prior to nuclear extraction. 
 
Figure 2. Chromium 10X Genomics is optimal for studying tumor heterogeneity using 
patient-derived xenografts. 
(a) Variance between the numbers of human and mouse transcripts per nuclei from 10X snRNA-
seq data of a glioma PDX sample. (b) Number of genes per cell and (c) gene expression levels 
between 10X and C1 platforms. (d) Comparison of 10X PDX snRNA-seq data combined into 
pseudo-bulk to bulk microarray data from a group of PDX samples based on correlation, the 
same glioma PDX sample is marked with an arrow. (e) t-distributed stochastic neighbour 
embedding (t-SNE) representation of combined 10X and C1 scRNA-seq datasets. (f) t-SNE 
representation of 10X PDX dataset. (g) Heatmap of pathways enriched among 10X PDX cell 
types. Colors represent confidence level –log10 (p-val). (h) Pseudotime trajectory analysis of 
10X PDX cells. (i) Schematic representation of the identified tumor cell populations.  
 
Figure 3. snRNA-seq of ICGC_GBM61 reveals distinct tumor and healthy cell populations. 
(a) Brightfield image showing intact isolated nuclei loaded to the 10X system (scale bar 10 µm). 
(b) t-SNE representation of ICGC_GBM61 snRNA-seq data. Neural progenitor cell-like (NPC-
like) tumor cells and microglia form separate clusters. (c) CHEETAH confirms the identity of a 
distinct microglia cluster. (d) The most highly expressed marker genes show differential 
expression across assigned cell types. Expression of (e) LAPTM5 representing microglia and (f) 
PLAGL1 in tumor cells. 
 
Figure 4. Copy number variation analysis supports tumor cell detection from 10X snRNA-
seq data. 
(a) Copy number variations (CNVs) of single nuclei from 10X snRNA-seq data of 
ICGC_GBM61 analyzed by inferCNV. (b) A bulk CNV profile of the same tumor derived from 
Infinium HumanMethylation450 array analysis compared to pseudo-bulk extraction of CNV 
profiles from 10X data of ICGC_GBM61 using mean values across the cells.  
 
Figure 5. Combining several tools helps to assign an identity to unknown cell populations. 
(a) Representative image of the isolated nuclei from ICGC_PA56 (scale bar 10 µm). (b) t-SNE 
representation of the PA dataset. (c) Representation of highly expressed marker genes within the 
cell clusters representing AC-like tumor cells, MAPK program expressing tumor cells, microglia 
and endothelial cells. Expression of genes representing (d) MAPK pathway activation and (e) 
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AC-like cells. (f) CHEETAH analysis using a healthy brain reference reveals OPC-like cells in 
the tumor cell cluster of ICGC_PA56. (g) NeuroExpresso and (h) Brain RNA-Seq databases 
confirm the identity of the putative microglia cluster.  
 
Supplementary Figure 1. Comparison of the optimized nuclei isolation protocol to other 
protocols. 
Brightfield image of nuclei extracted from a pilocytic astrocytoma tissue using (a) sucrose 
cushion density gradient, (b) our optimized protocol, (c) Nuclei EZ Prep, (d) Isolation of Nuclei 
for Single-Cell RNA Sequencing (10X Genomics) and (e) OptiPrep™ (scale bar 10 µm).  
 
Supplementary Figure 2. Comparison of 10X Genomics, Fluidigm C1 and Drop-seq using a 
patient-derived xenograft sample shows advantage for 10X Genomics due to high number 
of nuclei detected. 
(a) Proportions of covered reference types from reads alignment of three different snRNA-seq 
platforms are fairly similar, with the exception of ERCC spike-ins with Fluidigm C1 data. (b,c) 
The numbers of human and mouse transcripts per nuclei from of a glioma PDX sample for (b) 
Fluidigm C1 and (c) Drop-seq data. (d) Boxplot represents numbers of total genes per nuclei 
between 10X, Drop-seq and C1 platforms. (e) The violin plot represents proprotions of human 
materials per nuclei among platforms. Proprotions are computed as a ratio between numbers of 
human only and total transcripts in a nuclei. (f) Effect of the minimum proprotion of human 
genes cut limit to assign nuclei as valid (not mixed or from mice). Most highly expressed genes 
were similar in (g) 10X and (h) C1. (i) Proportions of mitochondrial genes per nuclei between 
10X, Drop-seq and C1. (j) Correlation-based comparison of detected clusters between 10X and 
10X+C1 combined. (k) t-SNE representation of 10X PDX dateset, original clusters are marked in 
color. (l) Heatmap of four main assigned cell type specific differentially expressed genes. (m) 
Original pseudotime trajectory plot before assigning the populations based on (n) high expression 
of known marker genes (Fig. 2h). (o) Visualization of the assigned cell type marker gene 
expression in t-SNE representation of 10X PDX.  
 
Supplementary Figure 3. HiSeq4000, NextSeq500 and NovaSeq6000 provide corresponding 
cluster detection.  
t-SNE representation of ICGC_PA56 10X snRNA-seq data sequenced with (a) NextSeq500, (b) 
HiSeq4000 and (c) NovaSeq6000 resulting. (d) Assocations between the cell clusters of platforms 
based on positive correlation limit 0.3 (e) t-SNE representation of ICGC_PA56 snRNA-seq 
dataset combined  from all platforms. 
  
Supplementary Figure 4. Tumor cell populations from different snRNA-seq tumors cluster 
more distinctly, while healthy populations are more proximal to each other. 
(a) ICGC_PA56 and ICGC_GBM61 10X snRNA-seq populations cluster separately as observed 
in a t-SNE plot. (b) Healthy normal microglia cells (marked in color) from both tumors cluster 
close to each other. 
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Supplementary Tables 

Supplementary Table 1. Clinical chacteristics and sample processing information of the 
pediatric glioma tissues studied by snRNA-seq. 

Supplementary Table 2. Quality control information of the pediatric glioma tissues and the 
PDX model studied by snRNA-seq. 

Supplementary Table 3. Upregulated genes per each cluster  

Supplementary Table 4. Enrichment analysis of specific upregulated DEGs based on GSEA 
MSigDB 7.0 database using hypergeometric test. 

Supplementary Table 5. 10 most gighly upregulated genes per each cluster assigned to cell 
types based on NeuroExpresso and Brain-RNA-seq databases.  
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