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Abstract 23 

The majority of seizures recorded in humans and experimental animal models can be 24 
described by a generic phenomenological mathematical model, The Epileptor. In this model, 25 
seizure-like events (SLEs) are driven by a slow variable and occur via saddle node (SN) and 26 
homoclinic bifurcations at seizure onset and offset, respectively. Here we investigated SLEs 27 
at the single cell level using a biophysically relevant neuron model including a slow/fast system 28 
of four equations. The two equations for the slow subsystem describe ion concentration 29 
variations and the two equations of the fast subsystem delineate the electrophysiological 30 
activities of the neuron. Using extracellular K+ as a slow variable, we report that SLEs with 31 
SN/homoclinic bifurcations can readily occur at the single cell level when extracellular K+ 32 
reaches a critical value. In patients and experimental models, seizures can also evolve into 33 
sustained ictal activity (SIA) and, depolarization block (DB), activities which are also parts of 34 
the dynamic repertoire of the Epileptor. Increasing extracellular concentration of K+ in the 35 
model to values found during experimental status epilepticus and DB, we show that SIA and 36 
DB can also occur at the single cell level. Thus, seizures, SIA and DB, which have been first 37 
identified as network events, can exist in a unified framework of a biophysical model at the 38 
single neuron level and exhibit similar dynamics as observed in the Epileptor. 39 

 40 

Author Summary 41 

Epilepsy is a neurological disorder characterized by the occurrence of seizures. Seizures have 42 

been characterized in patients in experimental models at both macroscopic and microscopic 43 

scales using electrophysiological recordings. Experimental works allowed the establishment 44 

of a detailed taxonomy of seizures, which can be described by mathematical models. We can 45 

distinguish two main types of models. Phenomenological (generic) models have few 46 

parameters and variables and permit detailed dynamical studies often capturing a majority of 47 

activities observed in experimental conditions. But they also have abstract parameters, making 48 

biological interpretation difficult. Biophysical models, on the other hand, use a large number of 49 

variables and parameters due to the complexity of the biological systems they represent. 50 

Because of the multiplicity of solutions, it is difficult to extract general dynamical rules. In the 51 

present work, we integrate both approaches and reduce a detailed biophysical model to 52 

sufficiently low-dimensional equations, and thus maintaining the advantages of a generic 53 

model. We propose, at the single cell level, a unified framework of different pathological 54 

activities that are seizures, depolarization block, and sustained ictal activity. 55 

 56 
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Introduction 57 

Seizures are part of the repertoire of built-in activities of neuronal networks as they can 58 

be triggered in most brain regions from most species (Jirsa et al. 2014). Several conceptual 59 

frameworks have been proposed to explain seizure dynamics (Naze 2015; Naze et al. 2015; 60 

Soltesz and Staley 2008; Staley 2015; Stefanescu et al. 2012; Y. Wang et al. 2017; Wendling 61 

et al. 2016). The predominant framework assumes that the majority of seizure onsets and 62 

offsets correspond to bifurcations in the electrophysical variables (Jirsa et al. 2014; Saggio et 63 

al. 2017), although there exist other non-bifurcation types (Blenkinsop et al. 2012). This 64 

framework has been generalized by Saggio and colleagues (Saggio et al. 2017, 2020). A 65 

phenomenological mathematical model, called The Epileptor, describes the dynamics of a 66 

majority of seizures recorded in drug-resistant patients, and most seizures recorded in 67 

experimental models (Jirsa et al. 2014; Saggio et al. 2020). A qualitative analysis of the 68 

Epileptor reveals that seizures, SIA and DB co-exist, and that multiple types of transitions from 69 

one type of activity to the other are possible, as verified experimentally (El Houssaini et al. 70 

2015; Houssaini et al. 2020; Saggio et al. 2017). Since it is phenomenological, the Epileptor 71 

model does not provide direct insight regarding underlying biophysical mechanisms. The 72 

phenomenological model imposes strong constrains in terms of dynamics. Numerous neuronal 73 

network models, including biophysically realistic ones, have been developed to study seizures, 74 

SIA or DB mechanisms (Holt and Netoff 2013; V.K. Jirsa et al. 2017; Kim and Nykamp 2017; 75 

Krishnan et al. 2015; Lytton 2008; Naze 2015; Proix et al. 2014; Stefanescu et al. 2012; Traub 76 

and Wong 1982). These models contain too many parameters and variables to perform a 77 

detailed bifurcation analysis, thus preventing bridging the gap between phenomenological and 78 

biophysical approaches. However, with the guidance of phenomenological modeling, design 79 

of neuronal spiking network including several biophysical features has been performed (Naze 80 

et al. 2015). In this work, transitions between states of the neuronal network are ensured by 81 

slow variable representing extracellular environmental fluctuation.  82 
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Although seizures and DB are generally observed at the neuronal network scale, their 83 

dynamical equivalence can be found at the single cell level (Bikson et al. 2003; Bragin et al. 84 

1997; Chizhov et al. 2018; Cressman et al. 2009; Hübel and Dahlem 2014; Kager et al. 2000; 85 

Lietsche et al. 2016; McCormick and Contreras 2001), which can be used to study human 86 

epilepsy (Merricks et al. 2015; Tankus 2016; Truccolo et al. 2011). Moreover, previous works 87 

(Viktor K. Jirsa and Stefanescu 2011; Montbrió et al. 2015; Naze et al. 2015) show that 88 

dynamical features are preserved when going from the weakly coupled network to the single 89 

cell level. It therefore seems appropriate to consider a biophysical model at the single cell scale 90 

exhibiting dynamic properties identified in the generic model and in which the transitions 91 

between the different states are provided by a slow variable describing the variations within 92 

the extracellular milieu. Bursting activity in neurons can be described in terms of bifurcations 93 

(E. Izhikevich 2007; E. M. Izhikevich 2000), and different single cell biophysical models have 94 

been proposed, which can model SLE and DB, but not SIA (Barreto and Cressman 2011; 95 

Chizhov et al. 2018; Cressman et al. 2009; Hübel and Dahlem 2014; Kager et al. 2000; 96 

Øyehaug et al. 2012; Ullah and Schiff 2010; Y Wei et al. 2014; Yina Wei, Ullah, Ingram, et al. 97 

2014), although, to the best of our knowledge, these activities have not been observed 98 

experimentally in isolated neurons. They are slow/fast systems, where a slow subsystem 99 

drives the fast subsystem between different states. In such models, the studied fast subsystem 100 

delineates the neuronal membrane electrophysiological activities. The slow subsystem can be 101 

represented by variations of different slow variables including ion concentration (Barreto and 102 

Cressman 2011; Chizhov et al. 2018; Cressman et al. 2009; Hübel and Dahlem 2014; Kager 103 

et al. 2000; Øyehaug et al. 2012; Y Wei et al. 2014; Yina Wei, Ullah, Ingram, et al. 2014), 104 

oxygen level (Yina Wei, Ullah, and Schiff 2014; Yina Wei, Ullah, Ingram, et al. 2014), volume 105 

(Øyehaug et al. 2012; Y Wei et al. 2014) and interaction with glial cells (Hübel and Dahlem 106 

2014; Øyehaug et al. 2012). These models provide mechanistic insights, in particular how the 107 

slow variable influences neuronal activity, including the transitions from “healthy” regimes to 108 

“pathological” ones like SLEs and DB. However, none of these models, including the 109 

extracellular slow variations, could be reduced to four variables, while presenting a bursting 110 
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pattern corresponding to the most common ones encountered at the network level, i.e. the 111 

SN/homoclinic pair (Jirsa et al. 2014). The reduction of a model to a small number of 112 

dimensions while maintaining the link with physical quantities, makes it possible to establish a 113 

direct link between biophysics and a simple dynamical description. Since SLEs, SIA and DB 114 

pertain to the dynamic repertoire of The Epileptor and of biological neuronal networks (El 115 

Houssaini et al. 2015; Saggio et al. 2017), biophysical models should be able to reproduce all 116 

three types of activities. The goal of the present study is to identify candidate mechanisms from 117 

physiology robustly leading to the time scale separation and trajectories in SLEs. We will take 118 

guidance from the careful dynamic analyses performed in previous works. 119 

In generic models, the dynamics is well understood (Jirsa et al. 2014; Saggio et al. 2017) but 120 

these models rarely offer direct biophysical insight as they use abstract parameters. Important 121 

works have been done to understand the link between phenomenological and biophysical 122 

models (Bernard et al. 2014; Naze et al. 2015). In order to explore the dynamics repertoire, 123 

the high dimensionality of detailed biophysical models must be reduced. A minimal model of 124 

interictal and SLEs has been introduced as Epileptor-2, using increase in [K]o to trigger burst 125 

discharges and restoration of the K+ gradient via the sodium-potassium pump to stop SLEs 126 

(Chizhov et al. 2018). The work of Saggio et al. (Saggio et al. 2017) is a generalization of the 127 

dynamics found in Epileptor and Epileptor-2. However, Epileptor-2 does not produce the 128 

SN/homoclinic bifurcation consistently found experimentally, and the model does not generate 129 

SIA or DB. Moreover, when the fast discharges stop, the slow variables of Epileptor-2 continue 130 

oscillating, whereas that of Epileptor 1 do not. This can be understood on the basis of the 131 

results of Saggio et al.(Saggio et al. 2017). In the present reduction, we used a Hodgkin-132 

Huxley-like single cell model, and we imposed several constraints: SLE, SIA and DB (El 133 

Houssaini et al. 2015), as well as the SN/homoclinic bifurcation must be present. We have thus 134 

generated a reduced slow/fast system preserving biophysical representation and satisfying 135 

these constraints. A variable acting on a slow time scale is necessary to drive the system 136 

through different activities (e.g. from SLE to DB). In a cell, numerous processes can occur on 137 
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a slow time scale and act as a slow variable, including changes in ion concentration, 138 

metabolism, phosphorylation levels, and transcription. Ion homeostasis regulation is critical to 139 

maintaining neuron function, and many sub-cellular mechanisms are involved in this process 140 

(Dubyak 2004). Fluctuations of ion concentrations in the extracellular space modulate the 141 

electrophysiological activity of a single neuron (Cressman et al. 2009; Yina Wei, Ullah, and 142 

Schiff 2014). The present work focuses on extracellular potassium ([K]o) concentration 143 

because it increases during seizures (de Curtis et al. 2018; Fisher et al. 1976; Fröhlich et al. 144 

2008; Lux et al. 1986; L. Wang et al. 2016), even in the absence of synaptic activities (de 145 

Almeida et al. 2008; Jefferys and Haas 1982). Augmentation of [K]o is also observed in head 146 

injury (Katayama et al. 1990; Reinert et al. 2000), which can be a starting point for epilepsy 147 

(Lowenstein 2009). Computational simulations show that potassium could be responsible for 148 

local synchronization (Durand et al. 2010) and is an important parameter in neural dynamics 149 

(Barreto and Cressman 2011; Cressman et al. 2009; Ullah and Schiff 2010; Yina Wei, Ullah, 150 

and Schiff 2014). In addition, in experimental models, the transition to DB correlates with a 151 

much larger increase of [K]o as compared to SLEs (El Houssaini et al. 2015; Gloveli et al. 152 

1995). We here consider the slow modulatory effects of [K]o variations. In our model, the slow 153 

sub-system describes ionic concentration variations. The fast subsystem characterizes the 154 

dynamics of trans-membrane ion flows through voltage-gated and the sodium-potassium 155 

pump, and so allows tracing the membrane potential. We report that this single cell model 156 

accounts for the SN/homoclinic bifurcation pair and that it reproduces SLEs, SIA and DB, 157 

reproducing patterns found in single neurons recorded experimentally during seizures. 158 

Results 159 

Our goal was to construct a biophysical  model at single neuron level that can reproduce 160 

the different firing patterns recorded when extracellular potassium is experimentally increased, 161 

while keeping it sufficiently simple to allow a bifurcation analysis. The model is schematized in 162 

Fig.1 (see methods section for the equations). It is a simplification of the classical Hodgkin-163 
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Huxley formalism, which also includes close surrounding environment thanks to a description 164 

of three compartments (external bath, extracellular space, intracellular space).  165 

 166 

 167 

 168 

 169 

 170 

 171 

 172 

 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 

 181 

 182 

Figure 1: Diagram of characteristics and mechanisms described by the model. Three 183 
compartments are represented. A passive diffusion of potassium exists between the external 184 
bath and the extracellular space. Na+, K+ and Cl- ions can be exchanged between the 185 
extracellular and intracellular compartments via the Na/K-pump and voltage-gated channels. 186 
This model can reproduce the typical patterns of the membrane potential Vm, shown in the 187 
bottom left subplot, including tonic firing, bursting, seizure like events (SLE), sustained ictal 188 
activity (SIA) and depolarization block (DB).  189 

 190 

Numerous experiments show that seizures and SLEs are associated with an increase 191 

in [K]o (Fisher et al. 1976; Fröhlich et al. 2008) and that increasing of external [K] can trigger 192 

SLEs (S. F. Traynelis and Dingledine 1988; Stephen F. Traynelis and Dingledine 1989). The 193 

model presented here takes into account the regulation of potassium, via the possible diffusion 194 

towards the external bath compartment and its associated potassium concentration [K]bath. 195 
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Changing [K]bath parameter will strongly influence the regulation of extracellular potassium by 196 

allowing or not the removal of excess potassium from the extracellular compartment. When 197 

[K]bath is low, the bath compartment can pump out the extracellular potassium; but it fails to do 198 

so when it is saturated by potassium. We thus explored the response of the model as the 199 

concentration of [K]bath was increased. The gradual increase in potassium led to 7 sequential 200 

qualitative firing patterns: Resting State (RS), Spike Train (ST), Tonic Spiking (TS), Bursting, 201 

Seizure-like events (SLE), Sustained Ictal Activity (SIA), and Depolarization Block (DB) (Note 202 

that what is called here Spike Train also corresponds to another type of burster from a 203 

dynamical point of view (E. Izhikevich 2007; Saggio et al. 2017)). The corresponding changes 204 

of membrane potential for all these patterns are shown in Fig.2.  205 

The number of firing patterns is higher than in the original Hodgkin-Huxley model. This 206 

is due to the fact that the model takes into account the variations of concentration, as 207 

evidenced by the variation of the Nernst potentials. The changes in Nernst potentials for 208 

sodium and potassium ion species are shown in Fig.2. The simulations are initialized with 209 

values observed in a "healthy" resting situation, it is therefore possible to observe the transition 210 

linked to the increase in the parameter [K]bath. In some cases, the Nernst potentials display a 211 

transient change before reaching a sustain low amplitude oscillations following action 212 

potentials, as observed during RS, TS, SIA and DB. During periodic events, (ST, Bursting, 213 

SLE), larger oscillations are observed in Nernst potentials. These oscillations are directly linked 214 

to the observed oscillations in the slow variables of the model (Eq.(3) and Eq.(4)) describing 215 

concentration changes. The rate of oscillation of the slow variables thus explain the duration 216 

of periodic events, in line with the assumed essential role of ionic homeostatic regulation.  217 

Each of the firing patterns can be associated to a different behavior, observable 218 

experimentally at different scales. The correspondence is established on the basis of their 219 

shape and their order of appearance as [K]bath is increased. Tonic and bursting patterns are 220 

prototypical. We consider the activity shown on Fig. 2d as SLE at the neuronal scale, as it is 221 

similar to the activity typically recorded in individual neurons (Haglund and Schwartzkroin 222 
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1990), in particular the transient episode of depolarization block, in different experimental 223 

preparations during SLEs at the network scale (e.g. Fig. 6 in (Uva et al. 2013); Fig. 1 in (Bikson 224 

et al. 2003) or Fig. 8 in (Jirsa et al. 2014)). Although it is possible to generate SIA in vitro 225 

(Quilichini et al. 2002), the corresponding intracellular activity is not known, however the 226 

sustained firing pattern in the model cell resembles the regular field activity recorded during 227 

status epilepticus like events in vitro (Quilichini et al. 2002). The sustained DB at the single cell 228 

level corresponds to what is observed experimentally during network spreading depolarization 229 

when [K]o reaches high levels (G G Somjen 2001).  230 

 Increasing [K]bath leads to different regimes of variation of external potassium (Fig.3). 231 

These different regimes are associated with a specific dynamic (i.e. type of bifurcation) of the 232 

excitability of the membrane. It is therefore possible to link the membrane potential to the 233 

variations in extracellular potassium, because of exchanges existing between compartments 234 

(i.e. via the slow variable), as shown in Fig.4. In the next subsection, we detailed these 235 

dynamical interactions for the different patterns of activity, following the order of appearance 236 

when [K]bath increase. 237 

 238 

 239 

 240 

 241 

 242 

 243 
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 244 

Figure 2: qualitative mode of behavior of the membrane potential and Nernst potentials. 245 
In blue: time series of the membrane potential Vm for the following patterns of activity: (a) Spike 246 
train, (b) Tonic spiking (TS), (c) Bursting, (d) Seizure-like event (SLE), (e) sustained ictal 247 
activity, (f) Depolarization Block (DB). In red: Nernst potential of sodium, in green: Nernst 248 
potential of potassium with specific Y axis on the right side. If the value of [K]bath stays below 6 249 
mM, the system remains in resting state around -72 mV. Specific patterns of activities start to 250 
appear with a diminution of the Nernst potential of sodium and an increase of the Nernst 251 
potential of potassium. When periodic events are occurring (panels c and d), oscillations can 252 
also be observed in the Nernst potential of both ions.  253 

 254 

 255 

 256 
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Resting states, spike train and tonic spiking in low [K]bath 257 

Resting state is found when [K]bath is around the normal value of [K]o (called [K]0,o , see 258 

Methods section). If [K]bath is smaller than [K]0,o the membrane potential slowly hyperpolarizes, 259 

due to a diffusion of potassium in the direction of the external bath. When [K]bath slightly 260 

increases (> 7 mM), ST appears through a SNIC bifurcation. The offset is also a SNIC 261 

bifurcation. In this case, the onset and offset bifurcations can be easily identified by their 262 

characteristic features (Saggio et al. 2017), and confirmed by numerical methods (using 263 

SymPy (Meurer et al. 2017) and SciPy (Millman and Aivazis 2011) libraries). With higher value 264 

of [K]bath (> 8 mM), TS occurs. In this condition, [K]o stabilizes (Fig.3), and the neuron fires at a 265 

constant frequency (Fig. 2b). The occurrence of regular spiking due to an increase of [K]o 266 

through diffusion from the bath is consistent with experiments [29]. 267 

Figure 3: Variation of extracellular potassium concentration as a function of [K]bath. 268 
Minimal and maximal external potassium [K]o and mean (dash line) concentration observed 269 
during simulations done for different values of the parameter [K]bath. Due to diffusion from the 270 
external bath, increasing [K]bath leads to variations in [K]o. Different patterns are observed for 271 
each range of [K]bath: (a) resting state, (b) spike train, (c) regular spiking, (d) burst, (e) seizure 272 
like event, (f) sustained ictal activity, (g) depolarization block. The periodic events (spike train, 273 
burst and seizure-like event) correspond to the range of [K]bath where [K]o periodically oscillates.  274 

 275 
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Bursting and Seizure-like events 276 

Bi-stable behavior occurs when the slow system starts to oscillate when [K]bath is further 277 

increased. The model (with parameters listed in Table 1) displays bursting and SLE, 278 

successively. Bursts are square-wave bursts (SN/Homoclinic bifurcations) and SLEs also 279 

show SN and Homoclinic bifurcations at onset and offset, respectively (See supplementary 280 

information: S1, S2, S3, S4). Here, the slow subsystem oscillates in a self-sustained manner 281 

(Fig. 4a-f), generating recurrent bursting or SLEs, with important variations of [K]o, due to 282 

oscillations in the slow subsystem. The combined effects of oscillations of ∆[K]I and [K]g explain 283 

the changes in the Nernst potential of potassium (and sodium, which is linked to potassium in 284 

the model), thus changing neural excitability. During spiking activity, voltage-gated potassium 285 

channels open increasing potassium current IK. The influence of IK in the equation of ∆[K]I 286 

(eq.3), explains the decrease of ∆[K]I, hence the increase of [K]o through equations (eq.16) and 287 

(eq.20). This is consistent with the observations described in (Fisher et al. 1976). The increase 288 

in [K]o starts with the occurrence of burst and SLEs. Thus, it is not the cause of the event but 289 

a consequence of homeostasis dysregulation (i.e. augmentation of [K]bath). 290 
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Figure 4: Time series of membrane potential, ∆[K]i, [K]g, and [K]o. obtained thanks to 292 
numerical methods using SciPy library (Millman and Aivazis 2011), x-axis in millisecond. (a) 293 
spike train with [K]bath = 7.5 mM, (b) spike train with [K]bath = 7.5 mM and γ = 0.04, ε= 0.002, (c) 294 
Burst with [K]bath = 12.5 mM, (d) Burst with [K]bath = 12.5 mM, and γ = 0.06, ε = 0.002, (e) SLE 295 
with [K]bath = 16 mM, (f) SLE with [K]bath = 16 mM and γ = 0.08, ε = 0.0008, (g) SIA with [K]bath 296 
= 17.5 mM, (h) DB with [K]bath = 20 mM. If not specified, the parameter values used here are 297 
the reference parameters described in the method section. Variations of ∆[K]I and [K]g induce 298 
different patterns of activity. The combined effects lead to the observed variations in [K]o. The 299 
time scale of the slow variables γ and ε influence the shape of Vm allowing the system to exhibit 300 
SN or SNIC bifurcation at the onset of the events. 301 

 302 

Steady states, SIA events and DB, in high [K]bath conditions 303 

SIA events (Fig. 2g) appears for [K]bath around 17.5 mM (Figs. 3 & 4), i.e. above the 304 

threshold value for SLEs as reported experimentally (El Houssaini et al. 2015). If no other 305 

mechanisms act to stop it, these oscillations remain constant (analogous to refractory status 306 

epilepticus). Permanent DB occurs for even higher values of [K]bath (> 18.0 mM, Fig. 3) as also 307 

reported experimentally (El Houssaini et al. 2015). In these cases, after a peak value (Fig. 4h), 308 

[K]o stabilizes, explaining the short range of variation (Fig. 3). These steady-states start like a 309 

SLEs (Fig. 4e-f), then the slow variables stabilize and [K]o remains constant at a high value 310 

(Figs. 4g-h).  311 

We conclude that the model behaves as expected from the biological observations, 312 

when experimentally increasing of [K]bath. These simulations were obtained when using a 313 

“healthy” situation, i.e. as if recording a “control” neuron. In the next section, we model a 314 

"pathological" situation for which where the regulatory mechanisms of neuronal homeostasis 315 

are affected. 316 

Influence of other parameters 317 

We then aimed to identify relevant parameters that could describe “healthy” and 318 

“pathological” states. Experimental data show that impairment in potassium buffering by glial 319 

cells leads to pathological behavior (Coulter and Steinhäuser 2015; Hubbard and Binder n.d.; 320 

Rangroo Thrane et al. 2013; Scholl et al. 2009). Three model parameters correspond to 321 

homeostasis regulation, involving two mechanisms: the ion exchange capacity between 322 
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compartments (ε and γ parameters in the model), and the maximum capacity of the Na/K pump 323 

(ρ in the model). A variation of ε corresponds to a degradation of the interaction with glial cells 324 

(Coulter and Steinhäuser 2015; Kofuji and Newman 2004; Olsen et al. 2015; Walz 2000) which 325 

normally ensures the regulation of the extracellular concentration of K+. Homeostasis of 326 

intracellular ions is also critical, and a variation of γ corresponds to an impairment of such 327 

mechanisms, not detailed in this model, such as co-transporters and exchangers (Hille 2001; 328 

Kandel, Eric R., Schwartz James H., Jessell Thomas M. n.d.). Changes in both parameters 329 

can also be considered. In the model, they are equivalent to a change in volume while keeping 330 

the β ratio constant. Varying the time constants of the slow subsystem (ε and γ), leads to 331 

different bi-stable behaviors. Two examples are shown in Fig. 4, (b) with γ = 0.04, ε= 0.002, 332 

(d) γ = 0.06, ε = 0.002, and (f) γ = 0.08, ε = 0.0008, in these situations the shape of the 333 

oscillations of potassium concentration are affected leading to a change in the duration of the 334 

events. For burst and SLE shown in Fig4. d and f, the model exhibits a different class of onset 335 

bifurcation. For both, a saddle-node on invariant cycle (SNIC) bifurcation at the onset and 336 

homoclinic bifurcation at the offset can be identified, thanks to their specific dynamics and 337 

resulting shapes (E. Izhikevich 2007; Saggio et al. 2017).  338 

The other key parameter to consider is the pump rate ρ. The Na/K-ATPase is described 339 

by Eq. (8) in the model. In a biological neuron, the pump depends on ATP and during status 340 

epilepticus, the ATP concentration augments due to high needs and then decreases (Lietsche 341 

et al. 2016). The ATP concentration is not taken into account in the model, but the maximal 342 

Na/K-pump rate is modulated by the parameter ρ. This parameter also influences the shape 343 

of Ipump response as a function of [Na]i and [K]o (Fig.5a). For large values of ρ, the pump is 344 

activated for lower value of [Na]i and [K]o (Fig. 5a). We find that burst duration changes with ρ 345 

for a fixed [K]bath (Fig. 5b), where a faster activation (higher ρ) leads to shorter bursts. The 346 

augmentation of ρ does not necessary lead to an increase of Ipump; it affects the general 347 

dynamics of the whole system (Fig. 5c).  348 
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 349 

 350 

Figure 5: Influence of the activity of the Na/K-pump. (a) Ipump function for ρ= 25 (green), ρ= 351 
1000 (orange), ρ= 2500 (blue). The initial slope when the system moves away from the 352 
concentrations at rest is affected, explaining the modification of the influence of Ipump in the 353 
dynamic of the system. (b) Burst duration as a function of ρ for [K]bath = 14.0 mM. Bursts have 354 
shorter durations for higher value of ρ. (c) Minimal and maximal pump current, Ipump, observed 355 
during simulation done with [K]bath = 14.0 mM. The range of Ipump decreases for higher ρ values.   356 

 357 

All these observations show that the model presents a behavior consistent with experimental 358 

observations. Importantly, the biophysical model is able to reproduce general patterns of 359 

activities (i.e. periodic events) as generated by the phenomenological model (El Houssaini et 360 

al. 2015). Phenomenological models, which present a minimal number of variables and 361 

parameters, allow an exhaustive study of the dynamics. The biophysical model used here 362 

contains too many parameters for an exhaustive study of the dynamics, but reducing the 363 
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number of variables will allow a comparison with the generic model. In the next section, we 364 

analyze the dynamics of the model. 365 

Dynamical observations 366 

The model can be divided into the fast (V, n, respectively Eq.1 and Eq.2) and the slow 367 

subsystems (∆[K]i, [K]g, respectively Eq.3 and Eq.3). The slow system can oscillate and drive 368 

the fast system between different behaviors, in particular switching between resting state and 369 

fast oscillations to obtain bursting-like activity. This type of phenomenon, corresponding to slow 370 

fast systems, has been extensively studied from a theoretical point of view, in particular for 371 

neural activity (E. Izhikevich 2007; Saggio et al. 2017). In this subsection, to allow a better 372 

correspondence with the theoretical framework, we call burster a system allowing these 373 

periodic events. To create the oscillation in the slow subsystem, theoretical works show that 374 

two mechanisms are possible (E. Izhikevich 2007; Saggio et al. 2017): Slow-Wave (SW) 375 

burster, where the slow subsystem is made of two equations, independent of the fast system, 376 

or Hysteresis-Loop (HL) burster where the slow subsystem is made of only one equation that 377 

depends on the fast system. Each has typical onset/offset bifurcation pairs. These specific 378 

paths for bursting have been identified in the generic model (Saggio et al. 2017), and are 379 

reproduced in fig.6a.  We first verified if the relations between the equations of the slow and 380 

fast systems allow the existence of the mechanisms described previously. In our model, two 381 

equations describe the slow subsystem (Eq.(3), (4)). Because IK (Eq.(6)) depends on V and n, 382 

the Eq.(3), depends on the fast system. This corresponds to a relation that exists in an HL 383 

burster. The second equation of the slow subsystem, Eq.(4), also depends on the Eq.(3), 384 

through the Eq. (20). Thus, there exists a relation between the two equations of the slow 385 

system, enabling oscillation such as in a SW burster. These relations between the variables of 386 

our model allow obtaining the two types of bursters previously described.  387 

We therefore tested for possible correspondences between our model and the generic 388 

model. We were able to identify the regions in the generic model capturing the dynamics 389 

reproduced by our model in Fig.6a. The center of the region of interest has been marked with 390 
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a yellow star in fig. 6a. for the generic model and its correspondence in the bifurcation diagram 391 

of our model in Fig. 6b. In this bifurcation diagram we show two possible paths of our model, 392 

for burst behavior (Fig. 6b, top) and for SLE (Fig. 6b, bottom). It crosses regions of stable 393 

resting state (in white), depolarized (red), and bistable (light red). It is therefore possible to 394 

establish a non-exhaustive list of the correspondences between the paths of the two models. 395 

The paths for the periodic events have been listed in Fig. 6c. The spike train, Bursting and SLE 396 

behaviors correspond to paths, c5, c2 and c10, respectively. The bursting behavior with 397 

changes in ε and γ (Fig. 4b) that represents the SNIC/SH bifurcation corresponds to the path 398 

c6. The model proposed here, consistent with biophysics, fits into the framework of the generic 399 

model.  400 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 17, 2021. ; https://doi.org/10.1101/2020.10.23.352021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352021


19 

 

Figure 6: Comparison with the generic model. (a) Paths for bursting activity of the generic 401 
model proposed by Saggio et al. adapted with authorization from (Saggio et al. 2017), for 402 
hysteresis-loop burster (left) and slow-wave burster (right), the yellow star corresponds to the 403 
center of the region captured by our model. (b) Bifurcation diagram of our model, where the 404 
white area corresponds to ‘resting state only’ region, the dark red corresponds to a depolarized 405 
region, and the light-red region is the region of bi-stability. The yellow star corresponds to the 406 
point also found in the generic model, where the SH, SNIC and SN bifurcations intersect. In 407 
the top diagram, the green line corresponds to the path taken by the burster, in the bottom one 408 
to the path taken by the SLE. (c) Classes of bursters found in the model, and the corresponding 409 
path in the generic model.  410 

 411 
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Since our biophysical model reproduces the bifurcations of the generic model for 412 

different types of network activities, it becomes possible to investigate the ionic mechanisms 413 

underlying the onset/offset bifurcations. The fast subsystem can be described fixing all 414 

parameters (tables 1 and 2) and considering the two slow variables as parameters. Fixed 415 

points can thus be found for different values of ∆[K]i and [K]g as shown in Fig. 7. Importantly, 416 

some parameter values allow a bi-stable behavior. It is thus possible to understand the direct 417 

relationship between the biophysical variations in potassium concentration and the type of 418 

bifurcations by observing the trajectory of the membrane potential in this space for periodic 419 

events identified previously. During periodic oscillatory behavior, the neuron is initially in 420 

resting state (blue plane). The membrane potential slowly increases due to the rise in 421 

extracellular potassium, until it reaches a SN (green plane) and then encounters a limit cycle. 422 

The slow subsystem then drives it to a negative value of ∆[K]i, were the limit cycle meets a SN 423 

producing homoclinic bifurcation. These bifurcations are observed at the onset and offset of 424 

bursting and SLE behaviors in the model. To have a better understanding of these trajectories, 425 

animations with the dynamics of the fast subsystem are available in supplementary material 426 

(Fig. S1, S2, S3, S4). We therefore have here a means of bringing together the biophysical 427 

aspects, described previously, with the phenomenological vision of dynamical systems 428 

approach. 429 

 430 
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Figure 7: Fixed points of the fast subsystem. Fixed point of the fast subsystem (Vm) 431 
considering the variables from the slow subsystem as parameters. We used a numerical 432 
methods with SymPy (Meurer et al. 2017) and SciPy (Millman and Aivazis 2011) libraries, to 433 
find the roots and the eigenvalues of the Jacobians of the 2D fast subsystem, and thus the 434 
stability considering the existence and the sign of real and imaginary parts of the eigenvalues 435 
of the Jacobians. Blue: stable node, green: saddle node, cyan: stable focus, magenta: unstable 436 
focus, red: unstable node. Two different angles of view are presented, illustrating the manifold 437 
that permits bi-stability. 438 

 439 

Discussion 440 

The aim of this work is to develop a minimal biophysical model at single neuron level 441 

based on time scale separation, where the system is able reproduce the dynamics which have 442 

been identified in experiments (Bikson et al. 2003; Jirsa et al. 2014; Quilichini et al. 2002; 443 

George G. Somjen 2001; Uva et al. 2013) and described by generic models (Jirsa et al. 2014; 444 

Saggio et al. 2017) . For this purpose, we developed a three-compartment model: a cell 445 

equipped with voltage-gated channels to generate action potentials, and Na+/K+ pump to 446 

maintain stable ion concentration, an extracellular space surrounding the cell and an external 447 

bath that can uptake/release potassium from/to extracellular space. We managed to describe 448 

the interaction between these compartments using a system of four differential equations 449 

describing two fast and two slow variables. The fast variables delineate excitability while the 450 

slow ones, outline potassium changes from the first and third compartments. The sodium 451 

concentration changes are not excluded from our model but are linked to potassium through 452 

the electroneutrality principle. We have shown that despite its simplicity the model was able to 453 
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mimic six electrophysiological behaviors classically recorded in neurons and neuronal 454 

networks, via the variation of only one parameter. All parameter values were within biophysical 455 

ranges (Table1) (Hille 2001; Kandel, Eric R., Schwartz James H., Jessell Thomas M. n.d.). 456 

The model has two main limitations. The fast system describes only intrinsic excitability and 457 

does not include synaptic currents. And, the slow system is based (only) on potassium 458 

concentration. Introducing synaptic inputs would increase the dimension of the system. We 459 

propose that synaptic inputs would act as a noise generator increasing the probability to reach 460 

the bifurcation as demonstrated experimentally (Jirsa et al. 2014); including them should not 461 

change the general behavior of the model. Furthermore, ion homeostasis is not reduced solely 462 

to potassium. Potassium is just one candidate among many others for the slow system. 463 

Numerous studies have reported large changes in concentration of Ca2+ (Heinemann et al. 464 

1986), Cl- (Miles et al. 2012; Raimondo et al. 2015) and neurotransmitters during seizures 465 

(Chapman et al. 1984; During and Spencer 1993). Likewise, decreasing extracellular Ca2+ 466 

leads to seizures (Jefferys and Haas 1982), which are characterized by SN/homoclinic 467 

bifurcations (Jirsa et al. 2014). Since it is possible to trigger similar SLEs via totally different 468 

biophysical mechanisms (Jirsa et al. 2014), we propose that the K+-dependent mechanism we 469 

describe, is one among many the possible paths leading to the same end point. In our model, 470 

changes in potassium constitute the causal factor driving the neuron through different types of 471 

activities. Although similar changes in potassium are measured experimentally when networks 472 

(and not cells) undergo such transitions, causality has not been demonstrated experimentally, 473 

only correlation. Another limitation exists due to the formalism used. If [K]bath tends to zero then 474 

membrane potential hyperpolarize until the Nernst potential are no longer defined due to 475 

division by zero. We reach here the limit of the conductance-based model from Hodgkin-476 

Huxley formalism. Due to the expression of the Nernst potential, if the ratio [K]o/[K]i approaches 477 

zero, then the IK current increases towards infinity, which is not physiologically plausible. 478 

Another factor to consider is that the dynamics of the single cell is driven by slow changes of 479 

extracellular variables, which, in a biological system, is shared with neighboring cells. So, these 480 

slow variables can also be responsible for the genesis of network activity (Naze et al. 2015). 481 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 17, 2021. ; https://doi.org/10.1101/2020.10.23.352021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352021


23 

 

As these mechanisms exist both at the network and single neuron level, it would be simplistic 482 

to conclude that a seizure at the network level is due to the combined expression of seizures 483 

at the single cell level. Since a neuronal network can be seen as a complex system of many 484 

components, coupled in a non-linear manner, seizures may just be an emergent property, 485 

perhaps taking advantage of the fact that they are already encoded at the single cell level. The 486 

same consideration applies to other pathological activities such as SIA and DB, which 487 

corresponding pattern have been found in dynamics of our model.   488 

However, we only studied the dynamics for variations of few chosen parameters based 489 

on physiological observations identified in previous works. The parameters explored here show 490 

that the model can produce different combinations of onset/offset bifurcations. Numerous 491 

studies used ion concentration variations in biophysical models to generate various types of 492 

activity (Barreto and Cressman 2011; Bernard et al. 2014; Cressman et al. 2009; Florence et 493 

al. 2009; Krishnan et al. 2015; Øyehaug et al. 2012; Yina Wei, Ullah, and Schiff 2014; Yina 494 

Wei, Ullah, Ingram, et al. 2014). Descriptions of ion concentration dynamics for bursting have 495 

been done by Barreto et al. (Barreto and Cressman 2011), based on a slow/fast system. In 496 

this work, the bifurcations for SLEs are SNIC and Hopf. This approach, based on ion 497 

concentration dynamics, permits the unification of spike, seizure and spreading depression 498 

proposed by Wei and al. (Y Wei et al. 2014). As different models can lead to similar dynamics 499 

(Prinz et al. 2004), this may suggest that different minimalist models are possible to obtain a 500 

unified framework. In our work, we proposed a conductance-based model of the neuronal 501 

membrane, exhibiting an extended repertoire of behavior and introducing sustained ictal 502 

activity in a unified framework. Another difference with previous work is that our model can 503 

exhibit bi-stable modes saddle-node/homoclinic bifurcations, which are the most commonly 504 

observed in recordings from patients and experimental animal models (Jirsa et al. 2014). Our 505 

model does not take into account variation of volume or oxygen homeostasis as in (Y Wei et 506 

al. 2014) but, only variations of ion concentrations, driven by diffusion of potassium from EB. 507 

It seems intuitive that other biological variables could be considered as slow variables to drive 508 
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the fast subsystem in a reduced biophysical model. The work of Øyehauget al.(Øyehaug et al. 509 

2012) presents interesting dynamical features with saddle-node/homoclinic bifurcations for 510 

SLEs. However, this model is much more complex as it describes numerous biological features 511 

and mechanisms. In comparison to previous works (Barreto and Cressman 2011; Krishnan et 512 

al. 2015; Øyehaug et al. 2012; Yina Wei, Ullah, Ingram, et al. 2014), our model is reduced to 513 

only four equations. We sought to include only a minimal number of mechanisms necessary 514 

to reproduce neural dynamics. Chizhov et al. (Chizhov et al. 2018) proposed a biophysical 515 

model (Epileptor-2) of ictal activities based on the Epileptor (Jirsa et al. 2014), using different 516 

differential equations. In high potassium conditions, Epileptor-2 produces bursts of bursts, 517 

described as ictal-like discharges. However, the most common form of seizure belongs to the 518 

saddle-node/homoclinic form, which starts with low voltage fast activity, and ends with bursts 519 

slowing down in a logarithmic fashion. The latter was reproduced in the present model, 520 

including the period during which neurons stop firing (depolarization block) after seizure onset. 521 

Another difference lies in K+ dynamics. In Epileptor-2, neuronal firing ends when extracellular 522 

K+ returns to baseline level (see Fig 10. in (Chizhov et al. 2018)), whereas in the present model, 523 

there is a delay, as consistently found experimentally, as a result of glial cell action. This 524 

phenomenon in our model can be visualized by observing the evolution of [K]o in Fig. 4.  525 

Although the Epileptor-2 is not an “intrinsic” Slow/Fast dynamical system, indeed, this model 526 

does not describe an independent node as it takes in account the external influence from 527 

synaptic inputs from neuronal population. In our model, the observed dynamics, is only due to 528 

internal interactions between three compartments. 529 

In conclusion, we developed a biophysical model of a single neuron that, despite its 530 

simplicity, is able to generate, in a unified framework, many patterns of neuronal network 531 

activity found in experimental recording as well as in generic mathematical models. We show 532 

that transition from physiological to paroxysmal activity can be obtained by variation of model 533 

parameters relating to ion homeostasis while excitability parameters remained constant. Thus, 534 

we proposed a simple biophysical model comparable to generic models (El Houssaini et al. 535 
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2015; Jirsa et al. 2014; Saggio et al. 2017), offering the possibility of a biological interpretation 536 

of observed dynamics. Neuronal networks increase in complexity from flies to humans, but the 537 

basic properties of neurons are roughly conserved. The present study shows that acting on an 538 

external variable allows single neurons to go through various patterns of activities, which are 539 

also found at the network level in the form of seizures, sustained ictal activity and 540 

depolarization block (Cunliffe et al. 2015; Jirsa et al. 2014). We propose that they constitute 541 

one of the most primitive forms of activities, appearing as soon as neurons are present. 542 

 543 

Materials and Methods 544 

In this project we aim to build a minimal biophysical model that describes different 545 

electrophysiological states of a single neuron, the model is schematized in Fig.1. The model 546 

describes three compartments: the intracellular space (ICS), the extracellular (ECS) space and 547 

the external bath (EB). Parameters chosen correspond to values observed in whole cell 548 

recording. The ion exchange between the ICS and the ECS is carried out by the current flowing 549 

through the sodium, potassium, and chloride voltage-gated channels (eq.(5),(6) and (7)), and 550 

by the sodium-potassium pump generated current (eq.(8)). Parameters values for these 551 

currents have identified in (Hamada et al. 2003; Hille 2001; Läuger 1991) and the membrane 552 

capacitance in (Golowasch et al. 2009). Passive diffusion of potassium exists (eq.(4)), between 553 

EB and ECS. The EB is mimicking the K+ buffering of vasculature/astrocytes. In ICS and ECS 554 

actualization of potassium and sodium concentrations are done (eq.(14)-(20)). The γ 555 

parameter has the same unit as the inverse of the Faraday constant, and it is a scaling 556 

parameter that permit to include all the mechanisms not detailed in this model which affect the 557 

concentration variations (such as co-transporter, exchangers). The values of all the 558 

parameters used are given in table 1 and physiological reference and initial values are given 559 

in table 2 and table 3.  560 

 561 
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Table 1. Parameters values 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

Table 2. Physiological reference values 572 

 Ion Concentration 

External bath [K]bath [2-30] mM 

Extracellular [K]0,o 4.8 mM 

[Na]0,o 138 mM 

[Cl]0,o 112 mM 

Intracellular [K]0,i 140 mM 

[Na]0,i 16 mM 

[Cl]0,i 5 mM 

 573 

 574 

Table 3. Initial values 575 

 576 

 577 

 578 

 579 

 580 

Parameters Symbol Value 

Membrane capacitance Cm 1 nF 

Gating time constant τn 0.25 ms 

Chloride conductance gCl 7.5 nS 

Maximal potassium conductance gK 22 nS 

Maximal sodium conductance gNa 40 nS 

Potassium leak conductance gK,l 0.12 nS 

Sodium leak conductance gNa,l 0.02 nS 

Intracellular volume ωi 2160 µm3 

Extracellular volume ωo 720 µm3 

Intra/extra cellular volume ratio β=ωi/ωo 3 

Conversion factor  γ 0.04 mmole/C.µm3  

Diffusion time constant ε 0.001 ms-1 

Maximal Na/K pump current ρ 250 pA 

Variable  Initial value 

[K]o [K]0,o 

[Na]o [Na]0,o 

[Cl]o [Cl]0,o 

[K]i [K]0,i 

[Na]i [Na]0,i 

[Cl,i [Cl]0,i 

Δ[K]i 0 

[Kg] 0 

V -70 mV 

n 𝑛∞(-70) 
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 581 

The model is a slow-fast dynamical system based on 4 equations. The fast system 582 

describes the membrane potential eq.(1) and potassium conductance gating variable eq.(2). 583 

The slow system describes intracellular potassium concentration variation eq.(3) and 584 

extracellular potassium buffering by external bath eq.(4). 585 

(1) 
dV

dt
=  −

1

Cm
(ICl +  INa +  IK +  Ipump) 586 

(2) 
dn

dt
=

n∞(V)− n

τn
 587 

(3) 
d∆[K]i

dt
= −

γ

ωi
  (IK −  2 Ipump) 588 

(4) 
𝑑[𝐾]𝑔

𝑑𝑡
= 𝜀([K]bath − [K]o)  589 

 590 

With currents:  591 

(5)               𝐼𝑁𝑎 = (𝑔𝑁𝑎,𝑙 + 𝑔𝑁𝑎𝑚∞(𝑉)ℎ(𝑛))(𝑉 − 26.64 log(
[𝑁𝑎]𝑜

[𝑁𝑎]𝑖
))  592 

(6)                   𝐼𝐾 = (𝑔𝐾,𝑙 + 𝑔𝐾𝑛)(𝑉 − 26.64 log(
[𝐾]𝑜

[𝐾]𝑖
)) 593 

(7)                    𝐼𝐶𝑙 = 𝑔𝐶𝑙(𝑉 + 26.64 log(
[𝐶𝑙]𝑜

[𝐶𝑙]𝑖
)) 594 

(8)               𝐼𝑝𝑢𝑚𝑝 = 𝜌
1

1+exp (
1

2
(21−[𝑁𝑎]𝑖))

1

1+exp (5.5−[𝐾]𝑜)
 595 

And conductance variables:  596 

(9)𝑛∞(V) =
1

1+exp (
1

18
(−19−V))

 597 

(10)𝑚∞(V) =
1

1+exp (
1

12
(−24−V))

 598 

(11) ℎ(n) = 1.1 −
1

1+exp (−8(n−0.4))
 599 
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The fast subsystem of the model, (eq. (1)&(2)), is a reduction and simplification of 600 

conductance-based models, first describe by Hodgkin–Huxley (HH). From the original 601 

publication (Hodgkin, A. L., Huxley 1952) the activation variable of K+ channels is determined 602 

by the equation (eq.12): 603 

(12)                  
dn

dt
=  αn(1 − n) − βnn 604 

Where β(V) and α(V) are the voltage-dependent rate constants determining the probability of 605 

transitions between, respectively, opened and closed state of the ion channel. To simplify the 606 

model, we propose to describe the variable n, through the voltage-dependent parameter ninf(V) 607 

and a constant parameter τn. In our model, ninf(V) is the probability to find a channel at open 608 

state at a given membrane potential while τn is the fixed time constant that described the speed 609 

for channels to respond to the change of membrane potential. Based on available data in the 610 

literature (Bekkers 2000; Hodgkin, A. L., Huxley 1952), and considering that the mean number 611 

of channels opened at a given potential is constant, we could qualitatively estimate this 612 

relationship (eq.9). In the HH model, the time constant is dependent on the membrane potential 613 

due to the formalism used (eq.12). The HH model has been build thanks to experiments done 614 

on the squid giant axon, which present differences from on recording of mammalians neurons. 615 

We compare the ninf(V) of our model and 1/τ(V), and ninf(V) of the HH model in Fig. 8(a). The 616 

shape has been kept from the HH model but starts to increase for lower values of membrane 617 

potential. For the voltage-gated sodium channels, variables for opening, m, and for closing, h, 618 

have been described(Hodgkin, A. L., Huxley 1952). With the same logic, we can consider the 619 

percentage of all population of channels opened. But because this is a very fast mechanism 620 

(Hille 2001), it can be considered as an instantaneous function of V (E. Izhikevich 2007) 621 

(eq.10). Krinskii and Kokoz (Krinskii,V.I. , Kokoz 1973) showed that n(t)+h(t) is almost constant, 622 

so h can be considered as a function of n. Because of the previous modification, we adapted 623 

this fitting to obtain the equation of h(n) (eq.11). Due to these simplifications, the 624 

interdependence of gating variables makes the spiking rate dependent on τ, as shown in 625 

Fig.8(b).  626 
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 627 

 628 

Figure 8: modification in gating variables. (a) ninf of our model in blue, and ninf and 1/τ of the 629 
Hodgkin-Huxley model respectively in dash blue and red, function of the membrane potential. 630 
(b) Response of the fast subsystem of our model to step current stimulation (red) with three 631 
different values of τ (0.1, 0.25, 0.5 ms). The value of τ influence the frequency rate spike for a 632 
same injected current.  633 

 634 

To be able to take into account concentration variation limiting the number of equations we 635 

applied reductions. Inspired by the work of Hübel (Hübel 2015; Hübel and Dahlem 2014), 636 

electroneutrality permits the Eq.(13), and so to the Eq.(14). The ratio (Cm γ)/ωi is very small 637 

(<10-5) and so, the right-hand side of Eq.(14) could be considered to be zero. The chloride 638 

concentration changes are assumed to be small and regulated by mechanisms which are not 639 

described in our model (Doyon et al. 2016). So, in our model, the chloride concentration 640 

remains constant. 641 

(13)
𝑑𝑉

𝑑𝑡
=

ωi

Cmγ
 (

d∆[K]i

dt
 +

d∆[N a]i

dt
+

d∆[Cl]i

dt
)  642 

(14)∆[K]i +  ∆[N a]i  +  ∆[Cl]i  =
Cmγ

ωi
 (V – V0)  643 

 644 

 645 

 646 

 647 

 648 
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Thanks to these reductions, concentration variations are calculated as follow:  649 

(15)∆[N a]i  =  −∆[K]i 650 

(16)∆[N a]o  =  −β∆[N a]i 651 

(17)∆[K]o  =  −β∆[K]i 652 

(18)[K]i =  [K]0,i  +  ∆[K]i 653 

(19)[N a]i =  [N a]0,i  +  ∆[N a]i 654 

(20)[N a]o =  [N a]0,o  +  ∆[N a]o 655 

(20)[K]o  =  [K]0,o  + ∆[K]o  + [K]g 656 

 657 
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Supporting information 948 

S1 Animation.  Dynamics of the membrane potential during burst. Considering the two 949 

slow variables as parameters of the fast subsystem, fixed point has been found: blue: stable 950 

node, green: saddle node, cyan: stable focus, magenta: unstable focus, red: unstable node. 951 

The system starts at a stable fixed point and is slowly driven to cross a saddle-node and then 952 

follow a limit cycle, until it cross again a saddle-node (creating the Homoclinic bifurcation), and 953 

go back to a stable fixed point.  954 

S2 Animation. Dynamic during Burst observed in the phase plane.  The n nullcline (blue 955 

line) and the V nullcline (blue points) solved numerically. The system starts at a stable fixed 956 

point and is slowly driven to cross a saddle-node and then follow a limit cycle, until it cross 957 

again a saddle-node (creating the Homoclinic bifurcation), and go back to a stable fixed point.  958 

S3 Animation.  Dynamics of the membrane potential during SLEs.  Considering the two 959 

slow variables as parameters of the fast subsystem, fixed point has been found: blue: stable 960 

node, green: saddle node, cyan: stable focus, magenta: unstable focus, red: unstable node. 961 

The system starts at a stable fixed point and is slowly driven to cross a saddle-node and then 962 

follow a limit cycle, it cross successively two Hopf bifurcations to come back to a limit cycle 963 

until it cross again a saddle-node (creating the Homoclinic bifurcation), and go back to a stable 964 

fixed point.  965 

S4 Animation. Dynamic during SLEs observed in the phase plane.  The n nullcline (blue 966 

line) and the V nullcline (blue points) solved numerically the system start at a stable fixed point 967 

and is slowly driven to cross a saddle-node and then follow a limit cycle, it cross successively 968 

two Hopf bifurcations to come back to a limit cycle until it cross again a saddle-node (creating 969 

the Homoclinic bifurcation), and go back to a stable fixed point. 970 
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