










(a) r2 vs. D2 (b) α = 1 vs. α = 0

Figure 1: Genome-wide comparison of LD Scores in the European samples (N =
489) in the 1000 Genomes Project. (a) shows the distribution of LD Scores
obtained from the r2 (x-axis) and D2 (y-axis) estimators. In (b) we show
the normalized LD Scores from the D2 estimator but computed according to
different models of SNP heritability (α = 1 on the x-axis and the α = 0 on the
y-axis). Points are colored by the focal SNP’s minor allele frequency (MAF).

criterion when choosing α than statistical convenience. For the remainder of
the discussion in the main text, we will use the L̂jk,D estimator.

Next, we sought to highlight the influence of model assumptions on the
LD scores computed from the 1000 Genomes data. For clarity of exposition,
we focus on the univariate case where the LDSC model can be written as:
E[χ2

j ] ≈ Nτ0`(j, 0) + 1 and the LD score is simply the sum of the generalized
LD measures Ljk(α). To qualitatively compare the LD scores with different
values of α in a consistent manner, we normalize them such that the slope of
the univariate regression becomes N

M h2SNP , where h2SNP is the total heritability
(see Appendix C.1).

As expected, Figure 1(b) shows that common variants have higher LD scores
under the α = 0 model compared to the α = 1 model, and the opposite trend is
observed for rare variants. This effect is less stark for intermediate values of α
(Supplementary Figure 2). In practical terms, the choice of α determines which
categories of SNPs will have higher weight in the LDSC regression and, as has
been documented before [18], this will in turn influence the global estimates of
SNP heritability.

3.2 Estimates of SNP-heritability and Confounding for 47
GWAS Traits

To understand the implications of choosing different values of α on global esti-
mates of SNP heritability and confounding, we applied the LD Score regression
framework to a total of 47 GWAS traits (41 independent traits), for which sum-
mary statistics have been previously analyzed [8, 11] (Supplementary Table S1,
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(a) Estimated SNP-heritability h2
g

(b) Estimated confounding (Intercept - 1)

Figure 2: Estimates of SNP heritability and confounding for 15 GWAS traits us-
ing 4 different models of heritability. Dashed bars show estimates for univariate
models. Solid bars show estimates for stratified models. Error bars correspond
to jackknife standard errors. Color code: turquoise (α = 1), red (α = 0).
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see Web Resources). We confirmed that the choice of statistical estimator has
a modest impact on estimates of global heritability and confounding (Supple-
mentary Table S7): for example, the L̂jk,D estimator in the α = 1 stratified

model gave lower estimates of heritability than the L̂jk,r estimator for all 47
traits, but the relative differences were always smaller than 6% (Supplementary
Table S3), and always smaller than twice the block-jackknife standard error of
the estimator. By contrast, the choice of α can produce large differences.

For the univariate models (θ = 0), we find that estimates of heritability
with α = 0 are different by more than two standard errors to the α = 1 esti-
mate for 29 out of the 47 traits considered (Figure 2, Supplementary Figure 6,
Supplementary Tables S5-6). In general, we observe that the univariate models
with α = 0 produce heritability estimates that are closer to the estimates from
the stratified models for 44 out of 47 traits (Figure 2(a), Supplementary Tables
S2-4), which is consistent with previous estimates of α values that are closer
to zero (α ≈ 0.38, [25, 15]). This trend is reversed for the intercept, with the
α = 1 model producing estimates that are closer to the stratified models for
most traits. Supplementary Figure 6(b) shows that intermediate values of α,
such as α = 0.25, produce estimates of confounding and global heritability that
are closer to the stratified models than both α = 0 and α = 1.

In the case of the stratified models (θ = 1), the differences are more subtle.
Out of the 47 traits analyzed, none showed a significant difference in the global
estimates of SNP heritability across the models with α = 0 and α = 1 (Supple-
mentary Tables S2-4). At the same time, small but significant differences are
observed in the estimates of the intercept for 3 of the traits analyzed (Eosinophil
Count, Tanning, and White Blood Cell Count) (Supplementary Tables S2-4).
Overall, our analysis confirms that the stratified models (with the MAF decile
bins included) successfully counteract the bias induced by an arbitrary choice
of α, producing global estimates of SNP heritability and confounding that are
largely concordant across different choices of α (Figure 2, Supplementary Figure
7).

3.3 Examining Estimates of Coefficients and Functional
Enrichment

The preceding analyses showed that the stratified models generally produce
concordant estimates of global parameters such as SNP heritability and con-
founding, with the choice of α having only a minor impact. However, as has
been noted above, different choices of α can still result in different estimates
for quantities associated with partitioned heritability, such as standardized her-
itability coefficients and functional enrichment. To examine the influence of α
on these partitioned heritability metrics, we first focus on the per-standardized
annotation coefficients, as defined by Gazal et al. (2017) [6]:

τ∗c =
M · sd(ac)

h2g
τ̂c (5)
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(a) Estimated τ∗(w) (b) Heritability enrichment

Figure 3: Comparison of meta-analyzed standardized coefficients and functional
enrichment across different models of SNP heritability (α = 1 on the x-axis
and α = 0 on the y-axis). The estimates are meta-analyzed over 47 GWAS
traits using a random-effects model. Estimates are shown with standard errors.
(a) shows standardized coefficients τ∗(w) and (b) shows estimated heritability
enrichment.

The quantity τ∗c is defined as additive change in per-SNP heritability associ-
ated to a 1 standard deviation increase in the value of the annotation (sd(ac)),
normalized by the average per-SNP heritability over all SNPs for the trait
(h2SNP /M). Despite its usefulness for examining contributions to heritability
across traits, the τ∗ metric as defined above is not suitable for comparing mod-
els with different values of α, since the τ̂c in these models are on different scales
(see Appendix B). Here, we propose a modified metric that captures the con-
tributions of the different annotations to heritability as well as the influence of
α:

τ∗(w) =
M · sd(Var(X)1−αac)

h2g
τ̂c (6)

The modified metric τ∗(w) has the same overall interpretation as the metric
proposed by Gazal et al. (2017) [6], with the main difference being that we mul-
tiply the value of the annotation by the variance in allele frequency Var(X)1−α

when computing its standard deviation.
Figure 3(a) shows the estimates for the standardized coefficients for all the

functional annotations that we analyzed, meta-analyzed across the 47 GWAS
traits. We find that, in general, models with α = 0 and α = 1 produce compa-
rable estimates of τ∗(w), with some notable exceptions (Supplementary Table
S8). In particular, the models tend to diverge in the significance they assign
to annotations associated with QTLs (e.g. the set of MaxCPP annotations in-
troduced in [10], with the α = 0 models often failing to reach the Bonferroni
significance threshold for those annotations (3(a), Supplementary Table S8).
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Comparable differences between the models are also observed for some of the
LD-related annotations (e.g. CpG Content and Recombination Rate) that were
introduced by Gazal et al. (2017) [6] (Figure 3(c), Supplementary Table S8).
Note that some of these differences persist for intermediate values of α, though
at a much smaller scale (Supplementary Figures 8-9). Thus the choice of α can
influence the predicted biological relevance of different annotations even when
frequency bins are used to model frequency-dependent effects.

Figure 3(a) also has a slope higher than one, indicating that the choice α = 0
leads to stronger estimates of enrichment for highly enriched categories. We see
a similar effect when examining heritability enrichment, a measure of enrich-
ment commonly-used for binary annotations. [5] (Figure 3(b), Supplementary
Table S9). Heritability enrichment is the ratio of the proportion of heritability
explained by SNPs in a given functional category to the proportion of SNPs in
that category. As expected, intermediate values of α produce less systematic
shift in the estimates of enrichment for both statistics (Supplementary Figure
10).

To test the significance of the enrichment estimates, we compute p-values
using the differential enrichment metric as defined by Hujoel et al. (2019) [11]
(see Appendix B). Even though α = 0 produce higher enrichment results for
strongly enriched categories, two functional categories that are deemed highly
significant under the α = 1 model fail to reach the significance threshold under
the α = 0 model (Enhancer (Hoffman) and TSS (Hoffman), Supplementary
Table S9). For example, Enhancer (Hoffman) has unadjusted p-values of 0.229
under α = 0 and 0.0005 under α = 1. The opposite effect is observed for the
Weak Enhancer (Hoffman) functional category, where the α = 0 model reports it
to be highly significant (Supplementary Table S9). These results again highlight
the important role that the α parameter plays in the stratified LDSC framework,
with different values of α potentially leading to different interpretations about
the genetic architecture of complex traits.

3.4 The influence of α on models of SNP heritability

To explain the systematic shifts in enrichment as a function of α in the stratified
models, here we empirically explore predicted mean squared effect size Var(βj)
and corresponding association statistic χ2

j as a function of allele frequency under
the LDSC models.

In the standard univariate model (θ = 0, α = 1), rare variants are predicted
to have very large effect relative to common variants (Figure 4(a)). As a result,
the model tends to strongly overestimate the chi-square statistics for rare vari-
ants, and underestimate them for common variants (Figure 4(b)). This effect
is more pronounced for α = 1 than for any other choice of α (Figure 4(b)) and
it helps explain the general trend of the standard univariate model producing
downwardly biased estimates of SNP heritability [18]: to avoid having large
squared errors for rare variants in the regression, the model must underestimate
the effect sizes of common variants, thereby underestimating the total heritabil-
ity. This bias can be reduced by choosing a more biologically plausible value of
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(a) Predicted Var(β) (θ = 0) (b) Weighted Mean Error (θ = 0)

(c) Predicted Var(β) (θ = 1) (d) Weighted Mean Error (θ = 1)

(e) Predicted Var(β)

(θ = 1, HEC SNPs)
(f) Weighted Mean Error

(θ = 1, HEC SNPs)

Figure 4: The predicted mean squared effect size and the mean error between
predicted and observed χ2 for SNPs in different MAF bins with different values
of α. Estimates are averaged across 47 GWAS traits. (a, c) show predicted
mean squared effect size for SNPs under (a) univariate models and (c) stratified
models. (b, d) show mean error between predicted and observed χ2 for SNPs
under (b) univariate and (d) stratified models. Panels (e, f) show predicted
mean squared effect size and mean error for SNPs in the top 10 Highly Enriched
Categories (HECs) under the stratified models.
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α, or by using stratified regression.
We expect the stratified models to better describe the relationship between

allele frequency and effect size, since these models have the freedom to assign
arbitrary mean predicted effect sizes for each frequency bin. Indeed, all strat-
ified models correctly overcome the bias in predicting the χ2 statistic (Figure
4(d)). However, they do so while predicting different effect sizes for rare and
common variants (Figure 4(c)). Consequently, the weight of rare variants in the
heritability of a trait can vary even in stratified models that agree on estimates
of overall heritability. This, in turn, implies that the choice of α would lead to
different proportions of heritability explained by each frequency bin and thus
impact the predicted functional enrichment of variants in those bins (Figure
5(a)).

To explain the systematic differences in enrichment affecting highly enriched
annotations, we now focus on the SNPs in the top 10 highly enriched functional
categories (HECs, Supplementary Table S11), which comprise roughly 7% of
all SNPs. The predicted mean effect size for rare functional variants is again
very high for rare variants when α = 1 (Figure 4(e)). And, as in the univariate
models, this results in correspondingly high weighted mean errors in estimating
the χ2s for those SNPs (Figure 4(f)). This makes sense given the linear model
for Var(β): for variants in strongly enriched categories, the annotation term
overwhelms the frequency corrections and the distribution of effect sizes again
follows the implicit assumptions induced by our choice of α (Figure 4(e)). Be-
cause the frequency bins fail to capture the frequency dependence for variants
in highly enriched categories, the LDSC model for these variants is similar to a
univariate model in that frequency effects are dictated by the choice of α. As
in the univariate case, effects of rare variants are overestimated and, as argued
above, the heritability contributed by these SNPs is underestimated. Figure 4
(b), (d) , and (f) also show that in all cases, intermediate α produce less bi-
ased predicted chi-squared, as measures by the weighted mean error, than either
α = 0 and α = 1.

Finally, the choice of α also has a large impact on the inferred architecture
of complex traits as measured by the proportion of heritability attributed to
common and rare variants. Figure 5(a) shows markedly different estimates of
the heritability enrichment metric among rare variants. Figure 5(a) also shows
that heritability enrichment should not be used as a proxy for functional en-
richment: Even though common variants have lower per-allele effect size (e.g.,
Figure 4c), they are highly enriched for heritability relative to expectations un-
der the (unrealistic) α = 1 model (Figure 5(a)). A better measure of functional
enrichment would be measuring contributions to heritability relative to expec-
tation under a constant per-allele effect size (α = 0) model (see Appendix B).
Figure 5(b) shows the estimated functional enrichment across frequency bins,
revealing the expected behaviour of slight depletion for common variants and
slight enrichment for rare variants, with substantial differences depending on
α. The 0th bin shows the largest difference across choices of α, and also an
unexpected functional depletion for the rarest variants and α = 0. This 0th bin,
which includes variants with allele frequency less than 5%, is often excluded
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(a) Heritability enrichment

(b) Functional enrichment

Figure 5: Estimates of enrichment for the MAF bins for stratified LDSC model
with five different values of α. Estimates are averaged across 47 GWAS traits.
(a) shows the predicted heritability enrichment metric for 11 MAF bins and
(b) shows the functional enrichment metric for the same categories.
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from heritability estimates because of sensitivity to model assumptions and of
other technical reasons [4].

4 Discussion

In this work, we proposed a reformulation of the LD Score Regression framework
that replaces the r2 measure of LD with the D2 statistic, leveraging recently-
proposed unbiased estimators [14]. The reformulation highlighted the implicit
assumptions about the relationship between a variant’s minor allele frequency
and its effect size in commonly-used stratified LDSC models. This relationship,
characterized by the parameter α, has been the subject of recent work on the
frequency-dependent architecture of complex traits [18, 25, 15, 20].

In the initial LDSC model, this parameter was set to α = 1 for mathematical
convenience. Over the years, this assumption has been shown to be biologically
implausible and to introduce biases in heritability estimates [18]. These biases
have been primarily addressed in the literature through stratified LDSC, giving
the model more parameters and thus more flexibility to overcome the unrealistic
assumption. Despite the additional parameters, we have shown that the choice
of α still has a substantial effect on partitioned heritability metrics, such as
standardized heritability coefficients and functional enrichment.

These biases exist because the choice of α = 1 implies rigid assumptions
about the relationship between allele frequencies and effect sizes for variants in
highly enriched categories. Under genome-wide empirical estimates of α = 0.38
[15], the expected squared effect size of an uncommon variant at frequency
f = 0.05 is 88% higher than a common variant at f = 0.5. Under the α = 1
model, and for variants in highly enriched categories, the expected squared effect
size of the uncommon variant is 526% that of common variant.

Even though such a synergistic effect is possible in theory, the analyses
presented above and recent empirical estimates [20] suggest that values in the
range α = 0.2 − 0.5 are much more plausible across all functional annotations.
Even though uncertainty remains about the ‘best’ choice for α, we find much
more modest differences in inference results if α is chosen within this range.
Therefore, to avoid letting the best be the enemy of the good, we recommend
using the genome-wide average α = 0.38 as a starting point for most stratified
analyses.
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Appendix A Derivation of LD Score Regression
with the D2 Statistic

Our re-formulation of the LD Score Regression model starts with a standard
polygenic model where the phenotype of N individuals is assumed to linearly
depend on M SNPs:

Y = Xβ + ε (7)

In this context, we assume that Y is a standardized vector of measured
phenotypes and X is a N ×M mean-centered (but not variance-normalized)
genotype matrix. Following the derivation in Finucane et al. (2015) [5], we
express the Ordinary Least Squares (OLS) solution for the marginal statistic of
SNP j as a function of Y :

β̂j =
X>j Y

X>j Xj
=

1

X>j Xj
X>j

(
Xβ + ε

)
β̂j =

1

X>j Xj

(∑
k

(X>j Xk)βk +X>j ε
)

β̂j =
1

X>j Xj

(
2N
∑
k

Djkβk +X>j ε
) (8)

Where the third line follows from the definition of the D statistic (Djk :=
1

2NX
>
j Xk). If we define the χ2 association statistic for SNP j as χ2

j := N
(
X>j Xj

)
β̂2
j

and take the expectation over all the random components, we obtain:

E[χ2
j ] =

4N2

X>j Xj

∑
k

D2
jk E[β2

k] + σ2
ε (9)

Under this model, the total narrow-sense SNP heritability is defined as
h2SNP =

∑
k Var(Xk) Var(βk). Given this, coupled with the assumption that

h2g + σ2
ε = 1, we obtain our general model for LD Score Regression with the D2

statistic:

E[χ2
j ] =

4N

Var(Xj)

∑
k

Var(βk)
(
D2
jk −

Var(Xk) Var(Xj)

4N

)
+ 1 (10)

Assuming a large sample size for GWAS, this can be approximated by:

E[χ2
j ] ≈

4N

Var(Xj)

∑
k

Var(βk)D2
jk + 1. (11)

Finally, using the SNP heritability models outlined in Equation (2), the
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expression above can be equivalently formulated in terms of LD scores:

E[χ2
j ] ≈ N

[
τ0`(j, 0) + θ

96∑
c=1

τc`(j, c)
]

+ 1

`(j, c) :=
4

Var(Xj)

∑
k

D2
jk Var(Xk)−αac(k).

(12)

Appendix B Definitions of SNP Heritability and
Functional Enrichment

B.1 SNP Heritability

SNP heritability quantifies the amount of phenotypic variance explained by a
set of SNPs, genotyped or imputed [23]. If we assume that the phenotype
is standardized and the genotype matrix is mean-centered (but not variance-
normalized), we can write our model of SNP heritability as:

h2SNP =
∑
k

Var(Xk) Var(βk) (13)

Using the above formulation, the models of SNP heritability outlined in Equa-
tion (2) can be expressed as:

h2SNP =
∑
k

Var(Xk)1−α
(
τ0 + θ

96∑
c=1

τcac(k)
)

(14)

From the above expression, we can see that the relationship between partitioned
heritability coefficients τc and the total SNP heritability h2SNP depends on α.
For instance, in the univariate case (θ = 0), the coefficient τ0 is proportional to
per-SNP heritability and is related to the total SNP heritability as

τ0 =
h2SNP∑

k Var(Xk)1−α
(15)

When α = 1, we recover the original LDSC formulation where the per-SNP
heritability was assumed to be proportional to 1/M [4]. On the other hand,
when α = 0 the per-SNP heritability is inversely proportional to the average
allele frequency variance across all SNPs.

B.2 Heritability and Functional Enrichment

Heritability enrichment is defined as the ratio of the proportion of heritability
explained by SNPs in a given category c relative to the proportion of SNPs in
that category [5]:

Heritability Enrichment(c) =
h2SNP (c)/h2SNP

M(c)/M
(16)
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Where h2SNP (c) is the heritability explained by SNPs in category c and M(c)
is the number of SNPs in that category. To test for significance of the functional
enrichment metric, we use the differential enrichment metric as defined in Hujoel
et al. (2019) [11]:

Differential Enrichment(c) =
h2SNP (c)

M(c)
− h2SNP − h2SNP (c)

M −M(c)
(17)

As outlined in the main text (Section 2.5), a better measure of functional
enrichment would be measuring contributions to heritability relative to expec-
tation under a constant per-allele effect size (α = 0) model. This implies that
instead of dividing by the proportion of SNPs, we divide by the proportion of
genotypic variances:

Functional Enrichment(c) =
h2SNP (c)/h2SNP∑

j∈c V ar(Xj)/
∑
j V ar(Xj)

(18)

Appendix C Analysis Procedures and Evalua-
tion Metrics

C.1 Computing and Comparing LD Scores from 1000 Genomes
Data

To conduct the analyses discussed in this paper, we computed LD scores using
three different estimators of LD (naive r2, corrected r2 [4, 24] and D2 [14]) for
α ∈ {0.0, 0.25, 0.5, 0.75, 1.0} and for 3 of the super populations in Phase III of
the 1000 Genomes Project (Africans, Asians, and Europeans) [1, 21], excluding
the sets of closely related individuals identified in [9]. We followed the same
quality control procedures as in the original LDSC software documentation [4]
(e.g. discarding singleton SNPs). All of these quality control steps were run
with PLINK v1.9 [13].

To qualitatively compare LD Scores from the univariate model with different
values of α, we normalized them such that the slope of the univariate regression
becomes N

M h2SNP instead of Nτ0. Given our definition of τ0 in terms of h2SNP
in Equation (15), we see that this can be achieved by dividing the LD score for
each model by the following quantity:

1

M

∑
k

Var(Xk)1−α

By construction, when α = 1, as in the standard LDSC models, the normal-
ization factor is 1. When α = 0, the normalization factor becomes the average
genome-wide variance in allele frequency.
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C.2 Parameter Estimation and Meta-analysis

To estimate the parameters of the various heritability models, we used the Iter-
atively re-weighted least squares (IRLS) jackknife estimator from Bulik-Sullivan
et al. (2015) [4] with some modifications to account for differences in the heri-
tability models. Primarily, since our general model starts with an unnormalized
genotype matrix, the total SNP heritability is given by:

h2SNP = τ0
∑
k

Var(Xk)1−α + θ
96∑
c=1

τc
∑
k

Var(Xk)1−αac(k)

Once the coefficients τ̂c have been estimated by the ldsc software, to ob-
tain the total heritability, we have to multiply them by different factors. For
example, in the case of the α = 1 models, we multiply by the sum of the anno-
tations

∑
j ac(k), whereas for the α = 0 models, we multiply by the sum of the

annotations weighted by MAF:
∑
k Var(Xk)ac(k).

To meta-analyze the coefficients as well as measures of functional enrichment
across the 47 GWAS traits, we used a random effects model as implemented in
the R package meta[2].

C.3 Empirical Evaluation of SNP heritability models

To empirically evaluate the stratified SNP heritability models as in Section 2.5,
we fit each model to the summary statistics from 47 GWAS traits (Supplemen-
tary Table S1) using the ldsc software [4] with standard configurations. For
each trait and model, we obtained the mean parameter estimates τ̂c and used
them to compute the predicted E[χ̂2

j ] for all SNPs that were used in the regres-
sion. Then, for each MAF bin, we computed the weighted mean error using the
following equation:

Weighted Mean Error =
1∑

j∈MAFbin wj

∑
j∈MAFbin

wj(E[χ̂2
j ]− χ2

j ) (19)

Where the E[χ̂2
j ] is the predicted association statistic under the model and

χ2
j is the observed statistic. The weight wj is simply the LD score weight that

we employed in the regression [4]. This strategy of weighing the performance
statistics by the LD score weights has been explored in previous work [20]. Since,
in our case, each model has its own set of LD score weights that match its α
value, here we used the LD score weights for the α = 1 model throughout. The
weighted mean errors per MAF bin that we report in the main text are averaged
across the 47 GWAS traits.
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Supplemental Data

Supplemental Data include ten figures (Supplementary Figures S1-10) and eleven
tables (Supplementary Tables S1-11).
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Web Resources

Baseline-LD model version 2.2,
data.broadinstitute.org/alkesgroup/LDSCORE/

Summary statistics for 47 GWAS traits,
data.broadinstitute.org/alkesgroup/LDSCORE/independent sumstats/

Data and Code Availability

Code to compute the LD scores with the unbiased estimator of D2 and carry
out the analyses discussed in this paper is available on github:
https://github.com/shz9/unbiased-ldsc.
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Bentley, Aravinda Chakravarti, Andrew G. Clark, Francis S. Collins, Fran-
cisco M. De La Vega, Peter Donnelly, Michael Egholm, et al. “A map of
human genome variation from population-scale sequencing”. In: Nature
(2010). issn: 14764687. doi: 10.1038/nature09534.
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