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Abstract

Sparse coding is an important method for unsupervised learning of task-independent
features in theoretical neuroscience models of neural coding. While a number of
algorithms exist to learn these representations from the statistics of a dataset, they
largely ignore the information bottlenecks present in fiber pathways connecting cor-
tical areas. For example, the visual pathway has many fewer neurons transmitting
visual information to cortex than the number of photoreceptors. Both empirical
and analytic results have recently shown that sparse representations can be learned
effectively after performing dimensionality reduction with randomized linear op-
erators, producing latent coefficients that preserve information. Unfortunately,
current proposals for sparse coding in the compressed space require a centralized
compression process (i.e., dense random matrix) that is biologically unrealistic due
to local wiring constraints observed in neural circuits. The main contribution of
this paper is to leverage recent results on structured random matrices to propose a
theoretical neuroscience model of randomized projections for communication be-
tween cortical areas that is consistent with the local wiring constraints observed in
neuroanatomy. We show analytically and empirically that unsupervised learning of
sparse representations can be performed in the compressed space despite significant
local wiring constraints in compression matrices of varying forms (corresponding
to different local wiring patterns). Our analysis verifies that even with significant
local wiring constraints, the learned representations remain qualitatively similar,
have similar quantitative performance in both training and generalization error, and
are consistent across many measures with measured macaque V1 receptive fields.

1 Introduction

Sensory nervous systems have long been championed for their ability to learn effective representations
of natural scene statistics [66]. In fact, this ability has been one of the broad motivations behind
work in artificial neural networks underlying significant recent advances in machine learning systems.
While it is less understood than the supervised learning frameworks common in machine learning,
unsupervised learning of task-independent representations is especially important in models of
biological sensory systems where supervisory signals are less prevalent. In particular, learning
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a dictionary that admits a sparse latent representation of data (called sparse coding) [49, 50] has
become one important theoretical neuroscience model of unsupervised (i.e., self-supervised or auto-
encoding [33]) learning in sensory systems. Sparse coding models have successfully explained
response properties in sensory cortical areas [60, 73, 71, 72, 38, 67, 12] with biologically plausible
implementations [60, 63, 73], as well as playing an important role in machine learning algorithms [1,
25, 46, 55, 45, 9, 57, 58].

While a number of detailed models have been proposed to learn such representations from natural
scene statistics in a sparse coding framework (with varying levels of biological plausibility) [49,
73, 60], these models of sensory cortices largely ignore the fact that cortical regions are generally
connected by very limited fiber projections. Specifically, there are often information bottlenecks
where fewer fibers connect cortical areas than the number of neurons encoding the representation in
each area [65], meaning that plausible learning algorithms must account for the fact that the sensory
data has undergone some type of compression. For example, despite the original formulation of sparse
coding for images nominally constituting a model of neural coding in primary visual cortex [49, 51],
the pathway carrying that information from retina to cortex (via the lateral geniculate nucleus of the
thalamus) has already undergone a significant reduction in the number of neurons carrying visual
information transduced by the retinal photoreceptors [68].

Recently, a theoretical model of these information bottlenecks has been proposed based on randomized
linear dimensionality reduction (sometimes called compressed sensing [3]) [35, 16, 32]. In this
approach, the sparse coding model is learned in the compressed space, producing latent coefficients
that capture the same information as if learning had been performed on the raw data. While this
approach is counterintuitive because the learned dictionary has randomized structure when inspected,
the key insight is that the receptive fields estimated from this model still resemble primary visual
cortex (V1) simple cell receptive fields [35, 16]. Randomized dimensionality reduction has appeal as
a neural modeling framework for several reasons [5, 26], including the fact that exact wiring patterns
between areas are unlikely to be genetically defined [70] and fiber projections can be specified in this
framework with coarse chemical gradients to guide randomized fiber growth during development.

Unfortunately, the current proposals for sparse coding in the compressed space [35, 16] are biolog-
ically implausible because the compression operator used is a dense random matrix that violates
local wiring constraints observed in many neural pathways. For example, in the early visual pathway,
a dense compression matrix corresponds to each retinal ganglion cell (RGC) receiving input from
every photoreceptor despite neuroanatomical evidence [68] that RGCs receive inputs from a localized
region in visual space. It is currently unknown if a randomized linear dimensionality reduction model
for fiber projections in neural systems is feasible under biologically plausible local wiring constraints.

The main contribution of this paper is to leverage recent results on structured random matrices to
propose a theoretical neuroscience model of randomized projections for communication between
cortical areas that is consistent with the local wiring constraints observed in neuroanatomy. We
show that unsupervised learning of sparse representations can be performed in the compressed space
despite significant local wiring constraints in compression matrices of varying forms (corresponding
to different local wiring patterns). Specifically, we provide both an analytic guarantee on the ability to
infer unique sparse representations in this model as well as empirical studies on natural images. Our
analysis verifies that even with significant local wiring constraints, the learned representations remain
qualitatively similar, have similar quantitative performance in both training and generalization error,
and are consistent across many measures with measured macaque V1 receptive fields. Taken together,
these results constitute one of the few applications of compressed sensing theory to a specific neural
coding model [26], showing that biologically plausible randomized encodings can play a significant
role in learning structured representations that capture complex natural image statistics.

2 Background and Related Work

2.1 Sparse coding

In conventional sparse coding (SC), unlabeled training data is used to learn a representation of the
statistics of a dataset through a combination of inference (i.e., estimating the latent variables for
a data point in a fixed representation) and learning (i.e., adapting the representation). Concretely,
assume that a vector x ∈ RN is k-sparse in an N × P dictionary matrix Ψ such that x = Ψa where
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Figure 1: Models of sparse coding on compressed data with with local wiring constraints. We consider
two models captured in M ×N random matrices with localization factor L: block diagonal matrices
(BDM) and banded random matrices (BRM). Sparse coding is performed on compressed data to learn
the dictionary Θ and the recovered matrix ΨRM is captured by correlating the coefficients b with the
inputs (akin to receptive field estimation). These models reflect the information bottleneck of the
early visual pathway, where retinal ganglion cells receive input from a localized set of photoreceptors
(adapted from [6]).

a has at most k nonzero entries.2 We follow a common and simple iterative approach to sparse
coding [49, 50] using `1 regularization that defines an energy function:

E(x,Ψ, a) = ‖x−Ψa‖22 + λ‖a‖1. (1)

Given a fixed dictionary Ψ, inference for a given datapoint x proceeds by minimizing this energy
function with respect to a to get the coefficient estimate â and data estimate x̂ = Ψâ. Given inferred
coefficients for a batch of datapoints, learning is performed by taking a gradient descent step on this
energy function with respect to Ψ. While SC constitutes a non-convex joint optimization, in practice
this approach often converges to reasonable solutions in many natural signal modalities and recent
theoretical work has begun to provide recovery guarantees [30, 36, 28, 56, 32, 27]

2.2 Randomized linear dimensionality reduction

While there are many approaches to data compression, we concentrate here on randomized linear
dimensionality reduction approaches (often appearing in the literature as compressed sensing or
compressive sensing [21, 3, 62, 10, 11]) due to the simplicity of biophysical implementation and
strong analytic guarantees. This is an established precedent, where previous work with sparse
measurement matrices [53] and frame theory [39, 40] have been applied to the recovery of sparse
representations of a signal. In these cases, instead of observing x directly we get the output y ∈ RM
after applying a randomized compression matrix Φ of sizeM×N : y = ΦΨa+w where w represents
Gaussian noise. To recover the sparse representation of the original signal, we solve a similar `1
minimization:

â(y) = arg min
a
‖y− ΦΨa‖22 + λ‖a‖1. (2)

Despite the challenging nature of the above problem, analytic guarantees can be made on the recovery.
For example, when the matrix ΦΨ has properties guaranteeing preservation of information in k-
sparse signals (e.g., near isometries for signal families, etc.), strong asymptotic recovery guarantees
can be made [10]. While it is difficult to deterministically specify or verify matrices that satisfy
the necessary conditions for recovery, one can typically prove that Φ matrices generated randomly
from many independent distributions (e.g., Gaussian, Bernoulli) work with high probability for any
dictionary Ψ when M = O(k logN) [59]. These extremely favorable scaling laws and universality
properties (i.e., working with any Ψ) are due to such independent dense random matrices having

2Many results in the literature generalize gracefully in the case that data is only approximately k-sparse.
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many degrees of freedom and global data aggregation (i.e., every element of x is used to form
each element of y). In cases where the matrix Φ is structured, such recovery guarantees often
require slightly more measurements (i.e., polylog in N ) and they are no longer universal because
the performance changes depending on Ψ [41, 31, 2, 64]. Of special interest for this paper are
recent results detailing the properties of random Block Diagonal Matrices (BDM) [52, 23] and
Banded Random Matrices (BRM) [13], which are structured sparse matrices requiring only local
data aggregation for compression. In the context of sparse coding, this means that the codes inferred
for signals compressed with certain matrices will almost surely be equivalent to codes inferred for
the uncompressed signals. Recent research has proposed a dynamical systems model for the visual
pathway based on these types of random linear projections, but not in the context of learned sensory
representations [5].

2.3 Dictionary learning from compressed data

In standard compressed sensing formulations, the matrices Φ and Ψ are considered known. When
the dictionary Ψ is unknown, recovering it exactly from compressed measurements is in general an
ill-posed problem known as blind compressed sensing [29]. In the case of interest for this paper, the
primary concern is the recovery of latent variables a for use in inference tasks and the matrices Ψ and
Φ are both unknown to the downstream cortical area receiving the compressed data.

Previous work [35, 16] proposed that the sparse representations be learned by performing dictionary
learning directly on the compressed data (see Figure 1). Specifically, the energy function is given by

E(y,Θ, b) = ‖y−Θb‖22 + λ‖b‖1, (3)

where Θ = ΦΨ. In this approach, dictionary learning directly on y is performed according to the
alternating minimization procedure outlined earlier by first inferring b and then taking gradient
descent steps with respect to Θ. Recent analytic results [32] have also guaranteed that the optimal
representation of the data can be unique (up to a permutation and a scaling).

While SC in the data space produces dictionary elements that visually resemble V1 receptive fields [49,
50], Θ appears to have random structure after learning because it is learned in the compressed
space. While this initially may appear to conflict with observed biology, the key insight of previous
work [35, 16] is that electrophysiology experiments do not measure the synaptic wiring patterns
(corresponding to the dictionary elements) but rather measures receptive fields corresponding the
the stimulus that most activates a neuron. Using a randomized representation (encoded in synaptic
weights) does not preclude structured receptive fields as observed in biology. Indeed, by cross
correlating the coefficients b to the original inputs x (akin to electrophysiologists finding the receptive
field of a cell; see Figure 1), previous work shows that it is possible to recover the dictionary Ψ
with familiar Gabor wavelet structure and use it for reconstructing the data [35, 16]. Specifically,
given access to a subset of data where the uncompressed signals are available, a “reconstruction
matrix” (RM) is recovered using ΨRM = CsrC

−1
rr , where Csr is the cross-correlation matrix 〈xbT 〉

and Crr is 〈bbT 〉. Here 〈〉 represents the empirical mean with respect to given set of data. As a
check to recover the sparse representation of original signal, we can estimate a signal reconstruction
x̂ = ΨRM b̂ by solving the original optimization with ΨRM in place of the dictionary:

b̂ = arg min
b
‖y− ΦΨRMb‖22 + λt‖b‖1. (4)

3 Learning from compressed data with local wiring

3.1 Biologically plausible local wiring constraints in random matrices

In this paper we propose a sparse coding paradigm where learning is performed after compression
with a random matrix having biologically plausible local wiring constraints. Wiring minimization
has been proposed as constraint faced generally by neural systems throughout development [14, 15].
Given the prevalence of the visual system as inspiration for sparse coding models, we will focus here
on the localized wiring patterns observed in the retina as the basis for our theoretical models.

The retina transforms a high-dimensional visual stimulus to a much lower-dimensional neural rep-
resentation at the optic nerve, with roughly 150 million photoreceptors mapping down to only 1.5
million optic nerve fibers [4]. After photoreceptor transduction, a variety of cell types (bipolar,
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amacrine and horizontal cells) process inputs to drive the retinal ganglion cells (RGC) that are the
retinal outputs [47]. The simplified schematic in 1 demonstrates that the retina accomplishes this in-
formation compression primarily through the pooling of information from nearby photoreceptors [20].
Spatially, RGCs respond to a finite region in the visual field due to the localized wiring in the mapping
from the photoreceptors. When examining how visual space is represented at the optic nerve, it can
be seen that collectively representations in RGCs cover the full visual space, with each RGC partially
overlapping with the representations of its neighbors [20]. In summary, retinal anatomy generally
shows a spatially localized pooling of inputs from photoreceptors to neural representation at the level
of RGCs. (See appendix, section 6.1 for further discussion of the statistics of retinal connectivity.)

Given what is known about retinal anatomy, we will use two different structured random matrices
as theoretical models of compression with biologically plausible local wiring. The first is a block
diagonal matrix (BDM), composed of independently randomized sub-blocks along the matrix [52, 23].
The BDM represents a group of RGCs receiving input from a group of photoreceptors, capturing
local wiring in a structure that admits strong analysis but potentially exaggerating the partitioning of
RGCs into subgroups. The second is a banded random matrix (BRM), composed of independently
randomized rows with a compact support that shifts (with overlap) on each row [13]. The BRM
represents a model where each subsequent RGC receives input from a limited set of photoreceptors
that has partial overlap with the photoreceptors driving neighboring RGCs.

Specifically, each compression matrix is M × N with M < N and will be characterized by a
localization parameter L ∈ (0, 1] that describes the fraction of each row that has non-zero entries.
Each row of a matrix will have bh = LN non-zero entries. In a BDM, the matrix is composed of
(1/L) blocks along the diagonal, consisting of bv = LM non-zero entries in each column. In a
BRM, each row has the non-zero support set shifted to the right by bs ∈ [1, bh] indices relative to the
previous row. Up to nominal edge effects, these shifts are constructed so that the last row ends in the
lower right of the matrix (or as close as possible), implying that Mbs = (N − bh). Note that the bs
parameter is not needed for the BDM. For both matrix types, the number of non-zeros in the matrix is
given by Mbh = LMN and we take the limit of L = 1 to be a fully dense matrix. Non-zero entries
are drawn from an i.i.d Gaussian distribution of N (0, 1/M), and this is easily generalized to other
sub-Gaussian distributions or normalizations. Note that this model aggregates measurements from
across the image (with each measurement formed from a local region), but this is fundamentally
different from the common practice of learning a dictionary on individual patches.

Images must be reshaped into a data vector x in a way that is consistent with the local wiring observed
in the retina. For this application, we “unwrap” the 2D image so that nearby neighboring pixels have
nearby indices in the 1D x. While there are many possible methods for performing this unwrapping,
we use a space-filling curve (the psuedo-Hilbert curve) through the image as the index in x [37]. As a
result, local structure in the compression matrix Phi corresponds approximately to localized regions
of 2D image space, much like the spatially localized receptive fields of RGCs. (See appendix section
6.2 for supporting explanation.)

3.2 Analytic recovery guarantee

Using recent results on the properties of structured random matrices and recovery conditions for sparse
dictionary learning, we can make the following analytic guarantee for when equivalent representations
are inferred in the compressed space with a compression process having either of the local wiring
structures (BDM or BRM) described above. While the subsequent empirical results will not be
limited to specific sparsity dictionaries, for simplicity of exposition, the unified analytic result below
is specific to the case where the sparsity dictionary Ψ is an orthonormal Fourier basis (i.e., a standard
DFT matrix). This is a reasonable candidate case given the empirical success of JPEG compression,
and these results have some extensions to other sparsity bases (as discussed below).

Theorem 1 Let Φ be constructed as either a BDM or BRMM×N matrix with localization parameter
L as described above and fixed. Let Ψ be a Fourier orthobasis and generate a dataset yi = ΦΨai
with ai chosen randomly to be k-sparse with k > 1 (i.e., uniformly choose the support set of k
nonzeros in bi followed by choosing coefficient values uniformly from (0, 1]) and i = 1, . . . , D for
D = (k + 1)

(
N
k

)
. If

M ≥ Ck log2 k log2N (5)
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(a) Uncompressed (b) Dense (c) BDM (d) BRM

Figure 2: Recovered dictionaries (ΨRM ) learned on natural images. (a) Learned on uncompressed
patches (conventional SC). (b) Learned after compression with a dense random matrix (L = 1). (c)
Learned after compression with a block diagonal matrix (BDM) having L = 1/16. (d) Learned after
compression with a banded random matrix (BRM) having L = 1/16. Recovered dictionaries are
qualitatively similar despite learning after compression under significant local wiring constraints.

for a constant C, then with high probability (tending to 1 in the limit of the problem size), any
k-sparse encoding of the dataset {yi} is equivalent up to an arbitrary permutation and scaling of the
columns of ΦΨ and the coefficients {bi}.

The proof of Theorem 1 is in the appendix, section 6.3. A few comments and observations about
this result are warranted. First, note that the above theorem gives conditions for which the ideal
coefficients b for the compressed data are equivalent (up to permutation) to the ideal coefficients a for
the uncompressed data. This implies that the system will learn the same representations in the sense
that their measured receptive fields will also be equivalent (again, up to permutation). While there is
no guarantee that realistic numerical algorithms will find these ideal solutions, our empirical results
show that they can learn representations that are very close to those learned in the uncompressed case
despite having some conditions of the theorem (e.g., orthogonal bases) not strictly met.

Second, note that the statement of the theorem doesn’t explicitly depend on the degree of localization
L or the matrix type. While the recovery guarantee doesn’t depend on L, it is possible that the
embedding quality (reflected in the isometry constant δ or scaling constants) could vary with L. While
we have unified the result for simple exposition, the result is not tight for BRMs [13] and polylog
factors could be reduced. Third, while we have presented the results above to keep the exposition
as simple as possible, the theorem above could be generalized to characterize the uniqueness and
stablilty of the recovery with respect to measurement and modeling error [27].

Finally, given the structured nature of these random matrices, performance will depend on the sparsity
basis. In particular, as discussed [52, 23], matrices with localized measurements require a diversity
condition that prevents all energy in the image from concentrating in localized blocks. For BDM,
Theorem 1 can be extended trivially to any sparsity basis, with performance depending on the
incoherence of the basis with the canonical basis (Fourier has optimal incoherence). While general
BRM results have not been derived [13], it is likely that similar general results could be shown.
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Figure 3: Coding performance of learned representations. (a) Sparse coding objective (2) for com-
pressed patches using the compressed dictionaries. Unlearned dictionary is equivalent to random
initialization before learning, demonstrating that learning improves coding even for randomly com-
pressed data. (b) Generalization error computed with sparse coding objective (1) on patches from
hold-out data-set with reconstructed dictionaries ΨRM . (c) Redundancy reduction, as measured
through joint entropy, per learning strategy. Uncompressed dictionary is learned with uncompressed
patches (i.e. conventional sparse coding). Despite learning with significant compression and wiring
constraints, training and generalization is comparable to conventional sparse coding.

4 Experimental results

To test the proposed model, we conduct a number of learning experiments using whitened natural
image patches compressed with the BDMs and BRMs with varying degrees of localization (L) and
compression ratio M = 0.5N (other compression ratios did not qualitativly change results, shown
in the appendix). Specifically, in our experiments we used 80, 000 16× 16 patches extracted from
8 whitened natural images for training. This was broken into batches of size 100, iterated over 150
epochs with decaying step-size on the learning gradient step. To infer coefficients we used λ = 5e−2,
chosen experimentally as a value that produces stable learning convergence. These hyper-parameters
were held constant across all experiments. We kept 10% of the training data-set uncompressed for
correlation in recovering ΨRM .

Figure 2 shows the results from learning on natural images with different compression matrices and
degrees of localization. This includes uncompressed learning (i.e., conventional SC), and L = 1,
corresponding to the unconstrained compression performed in [35, 16]. The plotted dictionaries for
the compressed methods correspond to ΨRM recovered from correlating uncompressed patches as in
[35, 16]. Qualitatively, the recovered dictionaries appear visually similar to conventional SC even
with compression and significant levels of localization, demonstrating that biologically plausible
local wiring constraints can still yield receptive fields similar to those observed in V1 simple cells.

For quantitative evaluation on the effect of localization, we examine the ability of the learned
representations to minimize the coding objectives. This objective is computed in both the compressed
space, as well as generalization performance in the (uncompressed) data space. First, Figure 3(a)
shows the value of the coding objective in the compressed space (2) evaluated on the training data-
set. Figure 3(b) uses the corresponding recovered dictionaries, ΨRM , to compute the data space
objective (1) on a validation data-set for different degrees of localization. The validation data-set was
built from 20, 000 patches extracted from 2 images not used in training. Note that although these
objectives are similar, the compressed space has reduced dimensionality, meaning fewer pixels need
to be estimated, thus leading to lower error. Notice that in both measures, there is little change in
the objective due to compression or due to the degree of localization. Note also that we plot the
training error of an unlearned dictionary, demonstrating that there is significant value to learning
the representation even when the data has been subjected to randomized compression. In addition,
Figure 3(c) follows previous methods [8, 24] in depicting the redundancy reduction in all learned
dictionaries (with small additional reductions when learned in the compressed space, and further
small reductions when wiring is localized).
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Figure 4: Comparing receptive field characteristics between learned models and macaque V1 mea-
surements [61]. (a, top) This row shows distribution of height and width of gabor wavelet receptive
field fits for macaque V1 (magenta) compared to a variety of learned models, including uncompressed,
dense matrix (L = 1), block diagonal (L = 1/16) and banded (L = 1/16). Distribution centroids are
marked with triangles for dictionary learning and squares for centroid of V1 neural data. Learning
in the compressed space results in receptive field shapes which are qualitatively similar to observed
neural data, even for high degrees of localization (L=1/16). (b, below) Box-plot representation of
distribution of asymmetry wherein the boundaries of the box represent 25th and 75th percentile of
the data as well as the median. Receptive field asymmetry for BRM dictionaries is significantly
lower than that of uncompressed matrices (P < 0.05), and asymmetry measured from neural data is
significantly lower than the uncompressed, dense and BDM models (P < 0.05).

Finally, we evaluate the recovered representation by comparing the statistical distribution of learned
receptive field shapes to those recovered from electrophysiology experiments in macaque V1 [61].
Following [60] and similar to [61], we fit each recovered dictionary element in ΨRM with a 2D Gabor

function A exp

[
−
(

u′
√
2σu′

)2
−
(

v′√
2σv′

)2]
cos(2πfu′+φ), where u′ and v′ are transformed image

coordinates, widths of the Gaussian envelopes are given by σu′ and σv′ , and f is the spatial frequency
[22]. Note that envelope width is given by W = σu′f and envelope height (referred to as envelope
length in [60]) is given by H = σv′f , measuring the extent of the element relative to the number
of spatial frequency cycles it spans. Asymmetry is calculated via the normalized difference of the
integral on each side of the v′ midline as in [60]. Eccentricity, defined as | log(H/W ))|, measures
the aspect ratio of the Gabor envelope. Eccentricity is 0 for circularly symmetric receptive fields and
larger for more elongated elliptical receptive fields.

Figure 4 quantitatively compares the statistics of the learned dictionary elements. Data from [61],
(magenta points in figure 4 (a)) show that neural receptive fields cover a wide range of shapes.
Previously, it was shown that sparse coding produces a better match than Independent Component
Analysis (ICA) [7] to observed cortical receptive fields in macaque V1 [61]. Here we see that a
similar distribution of receptive fields characteristics (broadly matching experimentally observed
receptive fields) are recapitulated during dictionary learning with a variety of compression strategies,
including the significant local wiring constraints of our biologically plausible model.

While the distribution of receptive field widths and heights recovered using the approaches presented
here are generally smaller than those recovered from neural data (see also appendix figure 9), a
precise match to receptive field size was not a primary goal of this work. A better match to observed
neural data might be achievable with a more overcomplete dictionary or by incorporating a nonlinear
output stage.
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Due to the importance of asymmetry, used to distinguish learned representations in past research [61],
we performed Kruskal-Wallis analysis of variance on the asymmetry to assess whether the learned
representations shown in figure 4 (a) all come from the same distribution. We found evidence to
reject this null hypothesis with P < 10−5. However, with further multiple comparisons tests, we
saw that receptive field asymmetry for BRM was significantly lower than receptive fields recovered
with uncompressed matrices (Figure 4(b), P < 0.05). Moreover, receptive fields recovered from V1
electrophysiology data were less asymmetric (Figure 4(b)), than those recovered with each method
other than BRM (each P < 0.05). Taken together, these results demonstrate that the proposed model
learns representations that fit experimental data at least as well as the conventional SC model, with the
BRM model potentially fitting experimental data better than learning with uncompressed matrices.

5 Conclusions

We have shown for the first time that unsupervised learning of sparse representations can be performed
on data compressed using random matrices with biologically plausible local wiring constraints. Using
a variety of structure random matrix models, we provide an analytic recovery guarantee as well as
empirical characterization showing that the proposed model learns a representation that is at least as
good of a fit to visual cortex electrophysiology data as the conventional sparse coding model. These
results lead us to conclude that randomized compression with biologically plausible local wiring
constraints is a compelling model for information bottlenecks in fiber projections, and the statistics
of natural images are highly amenable to unsupervised learning in the proposed model.
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Broader Impact

This paper presents a theoretical neuroscience model that aims to help improve our understanding of
neural coding in biological sensory systems. While this may eventually have secondary effects as
inspiration for machine learning systems, the current result is general and theoretical enough that
we do not foresee particular applications or negative societal consequences. The images used in the
experiments of this paper were the same as those used in previous work on sparse coding [50].
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6 Appendix

6.1 Statistics of retinal wiring

One key goal of this work is to introduce an approach to sparse coding which respects the spatially
localized connectivity present in the early visual pathway (from images projected onto the retina,
to representations in the retinal ganglion cells). In the visual system, each RGC is connected to a
subset of photoreceptors which gather light from a contiguous, roughly circular region of an image
termed its receptive field. It has been shown that the receptive fields of individual RGCs partially
overlap with those of neighboring RGCs. In summary the connectivity of the visual system is sparse
and spatially localized. Our intention is to capture the essence of local wiring in the retina, as such
support of each row of Φ are restricted to a small range. However neither the block/band size nor the
degree of overlap are intended to be a direct fit to levels of localization and overlap in the biological
retina. Instead we focus on characterizing a range of levels of localization to better understand the
theoretical and empirical implications of this approach.

The properties of the retina are highly non-uniform in space, with a central fovea containing a high
density of cones (∼ 50kcells/mm2) and an outer periphery of relatively higher density of rods
(at peak, ∼ 150kcells/mm2) [18, 42]. The density of RGCs peaks at an intermediate distance
(∼ 30kcells/mm2) and decreases further out [17, 44]. From this, we can infer that the ratio of
photoreceptors to RGCs varies between close to 2:1 or 1:1 near the fovea, up to 100s of rods:1 RGC
in the periphery. Including the pooling of photoreceptors introduced by horizontal and amacrine cells
each RGC may pool up anywhere from 1 to 1000 nearby photoreceptors [19] depending on cell-type
and location in the retina. In summary, retinal anatomy generally shows a spatially localized pooling
of inputs from photoreceptors to neural representation at the level of RGCs.

6.2 Spatially-localized image pre-processing

As part of the sparse coding approach we transform a 2D image into a 1D vector x. In order to
emulate the local connectivity constraints of the retina, we would like neighboring pixels in 2D
image-space to map to neighboring pixels in 1D vector-space. To accomplish this we borrow the
Hilbert curve (figure 5), because of its simple construction and locality-preserving property. This step
involves generating a space-filling curve which traces a path through the pixels of the image, then
assigning indices in the 1D vector according to their position along the curve [37].

It has been shown that using Hilbert curves, nearby indices in 1D dimension are mapped to nearby
pixels in 2D. While the converse is not always guaranteed (that neighboring pixels in 2D must map to
neighboring elements of their 1D vector) it has been shown that the Hilbert curve approach maintains
locality better than several alternatives [48]. As such, it has been applied to various applications
from image compression [69, 43] to storing geographic coordinates in contiguous segments of a 1D
memory address register [54].

Because the vector x uses a spatially contiguous representation of the image, and because of the
local structure present in the compression matrix Φ, local regions of image space also correspond to
localized segments of y. This is further illustrated in figure 6 where we show smoothly varying 2D
images map to qualitatively smooth 1D vectors.

6.3 Proof of Theorem 1

Draw a random matrix according to the construction specified in section 3.2 and fix it. Under the
conditions of the theorem, we first establish that for either random matrix construction, the combined
matrix ΦΨ satisfies a Restricted Isometry Property (RIP)

(1− δ)||a||22 ≤ ||ΦΨa||22 ≤ (1 + δ)||a||22 (6)

for all a that are 2k-sparse (i.e., ‖a‖0 ≤ 2k) with 0 ≤ δ < 1.

First we consider BDM matrices. Theorem 1 in [23] establishes that BDM matrices satisfy the
RIP with isometry constant 0 < δ < 1 for M ≥ Ck log2 k log2N with C that depends on δ and
with probability greater than O(1 − N− logN log2 k). Note that Theorem 1 in [23] depends on the
incoherence of the sparsity dictionary with the canonical basis (denoted µ̃ in Theorem 1 of [23]),
which is established as µ̃ = 1 for the Fourier basis in [23]. We also observe that this result is
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Figure 5: Procedure for preserving locality in models of sparse coding with wiring constraints. While
images are represented as values in 2D space, the sparse coding approach presented here operates
on 1D vectors. In order to map pixel locations to vector indices, a Hilbert curve is drawn through
the image. Positions along the curve correspond to indices in the vector which can be thought
of as unwrapping the curve into a line. By combining this unwrapping with compressed sensing
matrices, representations in this method maintain locality from 2D image space, to the compressed
representation.

modifiable in a straightforward way for other sparsity bases with known incoherence. Finally, we
also note that the failure probably goes to zero as N →∞.

Next we consider BRM martices, with the same discarding of edge effects in the BRM matrix as
done in [13]. Theorem 2 in [13] establishes that BRM matrices satisfy the RIP with isometry constant
0 < δ < 1 for M ≥ Ck (log(N/k) + 1) with C that depends on δ and with probability greater than
1− 2e−CMδ2 . Examining these conditions, we see that

k (log(N/k) + 1) = k (log(N)− log(k) + 1)

< τk (log2(N)) < τ̃k
(
log2(N) log2(k)

)
,

where the second line follows as long as k > 1, with τ and τ̃ constants due to a change of log base.
The final quantity establishes that the conditions of the present theorem ensure that the conditions of
Theorem 2 in [13] hold. While we have presented one unified result for both matrix types, note that
this result is not tight for the BRM matrices and a much more aggressive compression (i.e., lower M )
is permissible, but at the expense of generality to other type of sparsity bases. Finally, we also note
that the failure probably goes to zero as M →∞, which is necessary as N →∞.

When RIP holds, for any pair of k-sparse vectors a1 and a2, ΦΨ(a1 − a2) = 0 implies that a1 = a2.
This can be restated as

ΦΨa1 = ΦΨa2 =⇒ a1 = a2,

which is known as the spark condition that characterizes the linear dependence structure of the
columns of ΦΨ. Given the spark condition satisfied for ΦΨ, Corollary 2 in [32] establishes that with
probability one, for D = (k + 1)

(
N
k

)
datapoints drawn randomly (i.e., uniformly choose the support

set of nonzeros in a followed by choosing coefficient values uniformly from (0, 1]), any k-sparse
encoding of the dataset is equivalent up to an arbitrary permutation and scaling of the columns of ΦΨ
and coefficients bi. �
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(a) (b) (c)

(d) (e)

Figure 6: Illustration of preserved image features after unwrapping. (a) smoothly-varying pixel
values for a 16x16 image (b) The Hilbert curve method involves assigning an order to pixels based
on the curve’s path shown in black. (c) Using the curve’s ordering, pixels in 2D space are arranged
or unraveled into a 256x1 vector. Pixel values are seen to relate to their spatial neighbors in a
smoothly-varying fashion qualitatively similar to the original 2D image. (d) An alternative approach
would be to simply stack the columns to reshape the image. The equivalent path through 2D space is
again visualized in black. (e) As a result of the discontinuities between columns, the image flattened
with this approach exhibits periodic jumps in pixel intensity not present in the original 2D image.

6.4 Result of changing compression

Additional tests were run to determine the effect of the compression ratio on the generalization error.
This error was computed with the sparse coding objective in the data space (as in (1)), with patches
not used in training. With a constant localization L = 1/4 for the BDM and BRM matrices, we tested
compression ratios of 1/2, 3/8, and 1/4. The results can be seen in Figure 7, where we see a small
increase in generalization error with more compression. Note that as the compression ratio increases,
the measurement function has fewer parameters to support gathering information for learning and
more of the training data is discarded. It can also be seen that the generalization error is only slightly
higher for localized matrices at each compression ratio.

6.5 Gabor feature quantification

To understand the characteristics of receptive fields estimated through our technique, we quantified
width, height, asymmetry and eccentricity of the receptive fields (see experimental results, figure 4).
Figure 8 compares the two dimensional distribution of asymmetry and eccentricity between receptive
fields learned through the methods presented here, to those fit to neural visual system data. The
distributions cover a similar range across methods.

In figure 9 we show the one-dimensional distribution of each of these features and compare across
methods. Width and height occupy a similar range across all conditions except the macaque neural
data which has larger Gabor envelopes.

In testing for significant differences in Gabor features across methods, we performed a multiple
comparisons test. This extends the Kruskal-Wallis analysis shown in the main text, for which the null
hypothesis is that all groups of data come from the same underlying distribution. From this analysis,
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Figure 7: Coding performance of learned representations with varying degrees of compression and
localization held constant to L = 1/4. Tested on 20, 000 validation patches not used in training.

Figure 8: Comparing receptive field asymmetry and eccentricity between learned models and macaque
V1 measurements [61]. Asymmetry is calculated from the normalized difference in intensity above
and below the midline of the wavelet. Eccentricity is measured as abs(log10(H/W )). Distribution
centroids are marked with triangles for dictionary learning and squares for centroid of V1 neural data.
Learning in the compressed space results in receptive field shapes which are qualitatively similar to
observed neural data, even for high degrees of localization (L=1/16).

we have evidence to reject the null hypothesis at a significance level α = 0.05 with P = 3.6 ∗ 10−6.
In this multiple comparisons test, we look at pairs of groups (i.e. uncompressed versus BRM) and
calculate P-values shown in table 1. For these tests, the null hypothesis is that data from the two
groups comes from the same distribution. As such, these P-values represent an upper bound on the
probability of falsely identifying significant differences between groups [34].

dense BDM BRM neural
uncompressed 0.298 0.226 0.040 9.11e-06

dense 0.999 0.906 0.025
BDM " 0.951 0.038
BRM " " 0.221

Table 1: P-values from comparing asymmetry across pairs of conditions through Kruskal-Wallis
analysis of variance. BDM, BRM are shown for localization L = 1/16. P-values less than a
significance level of α = 0.05 are highlighted in bold. The null hypothesis that the medians of all
groups are equal can be rejected with P = 3.6 ∗ 10−6
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Figure 9: Comparing 1D distribution of receptive field characteristics between learned models and
macaque V1 measurements [61]. Box plots shows distributions of Gabor features across conditions.
Median, 25th, and 75th percentile shown as box boundaries. BDM, BRM are shown for localization
L = 1/16
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