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Abstract  

HIV-1 infection is initiated by the viral glycoprotein Env, which, after interaction with 

cellular coreceptors, adopts a transient conformation known as the pre-hairpin intermediate (PHI). 

The N-heptad repeat (NHR) is a highly conserved region of gp41 exposed in the PHI; it is the 

target of the FDA-approved drug enfuvirtide and of neutralizing monoclonal antibodies (mAbs). 

However, to date these mAbs have only been weakly effective against tier-1 HIV-1 strains, which 

are most sensitive to neutralizing antibodies. Here, we engineered and tested 11 IgG variants of 

D5, an anti-NHR mAb, by recombining previously described mutations in four of D5’s six 

antibody complementarity-determining regions. One variant, D5_AR, demonstrated 6-fold 

enhancement in ID50 against lentivirus pseudotyped with HXB2 Env. Importantly, D5_AR 

exhibited weak cross-clade neutralizing activity against a diverse set of tier-2 HIV-1 viruses, which 

are less sensitive to neutralizing antibodies than tier-1 viruses and are the target of current 

antibody-based vaccine efforts. In addition, the neutralization potency of D5_AR IgG was greatly 

enhanced in target cells expressing FcγRI with ID50 values below 0.1 μg/mL; this immunoglobulin 

receptor is expressed on macrophages and dendritic cells, which are implicated in the early stages 

of HIV-1 infection of mucosal surfaces. D5 and D5_AR have equivalent neutralization potency in 

IgG, Fab, and scFv formats, indicating that neutralization is not impacted by steric hindrance. 

Taken together, these results provide support for vaccine strategies that target the PHI by eliciting 

antibodies against the gp41 NHR.  
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Importance 

Despite advances in anti-retroviral therapy, HIV remains a global epidemic and has claimed 

more than 32 million lives. Accordingly, developing an effective vaccine remains an urgent public 

health need. The gp41 N-heptad repeat (NHR) of the HIV-1 pre-hairpin intermediate (PHI) is 

highly conserved (>90%) and is inhibited by the FDA-approved drug enfuvirtide, making it an 

attractive vaccine target. However, to date NHR antibodies have not been potent. Here, we 

engineered D5_AR, a more potent variant of the anti-NHR antibody D5, and established its ability 

to inhibit HIV-1 strains that are more difficult to neutralize and are more representative of 

circulating strains (tier-2 strains). The neutralizing activity of D5_AR was greatly potentiated in 

cells expressing FcγRI; FcγRI is expressed on cells that are implicated at the earliest stages of 

sexual HIV-1 transmission. Taken together, these results bolster efforts to target the gp41 NHR 

and the PHI for vaccine development.   

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.10.23.352526doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352526
http://creativecommons.org/licenses/by-nc/4.0/


   

 4 

Introduction 

Over 35 million people currently live with HIV/AIDS globally (1); despite the promise of 

anti-retroviral therapy, a preventative HIV-1 vaccine remains an urgent global health need. 

Identifying and characterizing broadly neutralizing antibodies (bnAbs) is essential to informing 

the design of vaccine antigens that could elicit such antibodies in vivo (2–4). A major challenge to 

eliciting bnAbs is the high sequence variability of the viral glycoprotein Env; accordingly, 

significant efforts have been made to develop immunogens to focus the antibody response toward 

a handful of highly conserved regions that correspond to bnAb epitopes (5–8). In contrast to these 

bnAb epitopes on the native conformation of Env, one highly conserved region of HIV-1 gp41, 

the N-heptad repeat (NHR), is only transiently exposed during viral entry. Upon binding cellular 

receptors, Env undergoes substantial conformational changes to form the pre-hairpin intermediate 

(PHI), in which the NHR and C-heptad repeat (CHR) regions are exposed before the cellular and 

viral membranes come together for membrane fusion (9–11). 

Due to its high sequence conservation (~93%) (12) and critical role in viral entry (9), the 

NHR is a promising target for blocking HIV-1 infection. Several inhibitors of the NHR have been 

identified, most notably the FDA-approved fusion inhibitor enfuvirtide (13–15), validating the 

NHR as a therapeutic target in humans. In addition, cyclic D-peptides that bind the NHR disrupt 

the fusion process and inhibit HIV-1 infection (16, 17). Of relevance for vaccine applications, 

several characterized monoclonal antibodies (mAbs) target the NHR (18–20). The first of these 

mAbs was D5 (18), which was isolated from a human B cell-derived phage display library using 

two synthetic mimetics of the gp41 PHI: 5-Helix (21) and IZN36 (22). D5 exhibits weak—but 

broad—neutralizing potency against laboratory-adapted and primary clinical isolates of HIV-1 by 

binding a conserved hydrophobic pocket of the NHR and preventing the fusion of the viral and 
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cellular membranes (18). X-ray crystallography revealed that complementarity-determining region 

(CDR) loops in the antibody variable regions of both the heavy and light chains (VH and VL, 

respectively) contribute to the binding of D5 to the NHR (23). Informed by this insight, 

Montgomery et al. (24) sought to increase the neutralization potency of D5 by randomizing 

residues in five of the six CDRs (VH CDR 1, 2, 3 and VL CDR 1 and 3). Four D5 IgG variants, 

each with only one CDR mutated, had slightly increased neutralization potency (24). 

Here we hypothesized that combining multiple CDR mutations from these D5 variants 

would create a more potent mAb against HIV-1. To test this hypothesis, we evaluated a panel of 

16 variants: wild-type D5, four previously described CDR variants (24), and 11 recombined CDR 

variants (Figure 1). The 11 recombined CDR variants are composed of combinations of the CDR 

sequences found in the four enhanced D5 variants. We determined that D5_AR, the most potent 

recombined variant, has increased neutralization efficacy in all tier-1 and tier-2 HIV-1 viruses 

tested compared to D5. As recently reported for D5 (25), and as previously characterized for 

membrane proximal external region (MPER) mAbs (26, 27), the neutralization potency of D5_AR 

was enhanced at least 1,000-fold in target TZM-bl cells expressing the high-affinity 

immunoglobulin receptor FcγRI (TZM-bl/FcγRI cells). Although not expressed on CD4+ T cells, 

FcγRI is expressed on macrophages and dendritic cells (28), which are thought to be important in 

the early sexual transmission of HIV-1 at mucosal surfaces (29–36). D5_AR demonstrates 

cross-clade tier-2 HIV-1 neutralizing activity and extremely potent activity when measured in cells 

expressing FcγRI, suggesting that the PHI may be a promising vaccine target for eliciting 

neutralizing antibodies with broad heterologous neutralization potency. 
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Results 

D5_AR, a recombined CDR mutant of D5, has enhanced neutralization potency against 

HIV-1 in vitro 

To assess the impact on neutralization after the introduction of multiple mutated CDRs, we 

recombinantly expressed and purified wild-type D5 IgG and 15 D5 IgG variants (Figure 1). The 

variants were designated D5_HXXX_LX (Figure 1C), with each X replaced by either 0 

(representing the wild-type sequence) or 1 (representing the mutated CDR sequence) in the heavy 

(CDR 1, 2, and 3) or light (CDR3) chain (Figure 1A), reported by Montgomery et al. (24). These 

four CDRs form critical points of contact at the D5 epitope of the NHR (Figure 1B). The full amino 

acid sequences for the heavy and light chain variable regions of each mutant are provided in 

Supplemental Figures 1 and 2. Using single-round infectivity assays in TZM-bl cells, each D5 IgG 

variant was screened for neutralization potency against lentivirus pseudotyped with HIV-1 HXB2 

Env (37–41). Neutralization potency was reported as the 50% inhibitory dose (ID50). We 

confirmed that the four single-CDR mutants previously described by Montgomery et al. (24) 

(D5_H100_L0, D5_H010_L0, D5_H001_L0, and D5_H000_L1) displayed enhanced 

neutralization versus the parent D5 (Supplemental Table 1). 

Next, we screened 11 additional D5 variants with lentivirus pseudotyped with HIV-1 

HXB2 Env for neutralization potency using a single-round infectivity assay. Several recombinant 

D5 variants had little effect or even diminished the neutralization potency compared to D5 (Table 

1). Nevertheless, we identified six D5 variants that modestly enhanced (>2.0-fold) the 

neutralization potency of D5 (Table 1). Among these, D5_H011_L0, in which both CDR2 and 

CDR3 of the heavy chain are mutated, demonstrated the greatest enhancement (4-fold) in ID50 

(Table 1). We renamed this most potent D5 variant D5_AR for further characterization. 
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Our initial neutralization screen utilized antibody purified via Protein A affinity 

chromatography (Materials and Methods). During subsequent antibody purification, we removed 

aggregates through an additional size exclusion chromatography (SEC) step; comparison of 

neutralization potencies revealed that the presence of aggregates reduced the neutralization 

potencies of D5 and D5_AR (Supplementary Information, Supplemental Figure 3). Experiments 

in Table 1 and Supplemental Table 1 were the only experiments reported here that used 

non-SEC-purified antibody preparations, which accounts for the difference in ID50 values for 

HXB2 reported in Table 1 and Figure 3. 

 
Figure 1: Recombination of known beneficial CDR sequences to engineer novel D5 variants. 
(A) Mutated CDR sequences of four highlighted D5 variants reported by Montgomery et al. (24) 
aligned with the wild-type (WT) sequence. These mutated CDR sequences were recombined to 
engineer the 11 recombined variants. (B) Left: paratope map of the binding sites for D5 Fab with 
its antigen, 5-Helix. NHR, yellow; CHR, light blue. Areas of contact with the D5 CDR loops are 
represented as: VH CDR1 (red), VH CDR2 (green), VH CDR3 (magenta), and VL CDR3 (blue). 
Right: X-ray crystal structure of D5 in complex with 5-Helix (PDB: 2CMR) (23). (C) Schematic 
of D5 variants engineered and tested. The identity of each of the four CDR loops are represented 
by 0 (WT) or 1 (mutant). 
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Table 1: Neutralization profiles of D5 variants. 
The ID50 (half maximal inhibitory dose) of each D5 variant is represented by the geometric mean 
and standard error of the mean of replicate experiments. For each infection assay, the fold 
enhancement versus D5 was calculated (ID50, D5 / ID50, D5 variant); reported fold enhancement is the 
geometric mean and standard error from replicate experiments. Fold enhancement >1 corresponds 
to enhanced neutralization potency (reduced ID50). 
 

D5 and D5_AR neutralize with similar potency as an scFv, Fab, and IgG 

In the first description of D5, the IgG (~150 kD) and scFv (~25 kD) constructs neutralized 

similarly to one another (18). However, more recent studies reported that D5 scFv is more potent 

than D5 Fab (~50 kD), and that both were more potent than D5 IgG (20, 23, 24, 42); in addition,  

there are reports that increasing the size of NHR inhibitors reduces neutralization potency (20, 24, 

42–44). These size-dependent findings would imply steric hindrance in accessing the PHI. Given 

our finding that SEC purification could impact the neutralization potency of D5 and D5_AR IgG 

(Supplemental Figure 3A), we decided to reinvestigate the question of size-dependent 
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neutralization for D5 using antibody preparations free of aggregates. Notably, in agreement with 

the initial report (18) and in contrast to the previous reports (20, 23, 24, 42), we found that D5 as 

an IgG, Fab, and scFv (all SEC-purified) did not exhibit a size-dependent pattern of neutralization 

(Figure 2A). Additionally, we detected comparable neutralization potency for D5_AR as an scFv, 

Fab, and IgG (Figure 2B). These results demonstrate that neither D5 nor D5_AR are impacted by 

steric hindrance and suggest the presence of protein aggregates could explain previous reports of 

size-dependent neutralization for D5 scFv, Fab, and IgG. 

 
Figure 2: D5 and D5_AR neutralize HIV-1 in vitro in a size-independent manner. 
scFv, Fab, and IgG constructs of (A) D5 and (B) D5_AR are similarly effective in vitro at 
neutralizing lentivirus pseudotyped with HIV-1 HXB2. Data points and error bars are the mean 
percent infection and standard error of the mean, respectively (n=2).  Antibody construct images 
used in this figure were generated with BioRender. 
 
D5_AR exhibits more potent cross-clade tier-2 neutralization of HIV-1 viruses than D5 

We next investigated the potency of D5_AR IgG in neutralizing a diverse panel of 19 tier-1 

and tier-2 pseudotyped viruses across eight viral clades (A, AC, B, C, G, CRF01, CRF02, and 

CRF07) (40, 45–60). Ten of these strains originated from a 12-virus panel designed to capture the 

sequence diversity of the HIV-1 epidemic globally (40). Tier 1A and tier 1B contain viruses that 

are most sensitive to neutralization by antibodies, whereas tier-2 viruses have modest sensitivity 

to neutralizing antibodies (52). D5_AR IgG neutralized virus more effectively than D5 IgG across  
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Figure 3: D5_AR IgG has higher neutralization potency than D5 across tiers and clades of 
HIV-1. 
(A) D5_AR IgG has an enhanced neutralization profile versus D5 IgG, as indicated by ID50 values 
(geometric mean ± standard error of the mean) against a panel of tier-1 and tier-2 HIV-1 viruses 
from multiple clades. (B) D5_AR IgG neutralizes a greater percentage of HIV-1 viruses than D5 
IgG within the <10 μg/mL and 10-50 μg/mL ID50 ranges. 
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all tiers and clades (Figure 3A). Notably, D5_AR neutralizes more viruses with an ID50 of <50 

μg/mL (63%) than D5 (11%) (Figure 3B). 

 

D5_AR neutralization potency is enhanced >1,000-fold in FcγRI-expressing cells 

Recently, we reported the neutralization potency of D5 IgG to be greatly increased in 

TZM-bl cells expressing the cell-surface receptor FcγRI (TZM-bl/FcγRI cells) (25). FcγRI is the 

only known high-affinity IgG receptor in humans, capable of binding monomeric IgG (61). To 

determine whether D5_AR IgG is similarly potentiated, we tested its neutralization of an additional 

panel of tier-2 HIV-1 viruses and SHIV challenge viruses in TZM-bl/FcγRI cells (Figure 4). 

Indeed, neutralization by D5_AR IgG was potentiated ~1,000-fold in TZM-bl/FcγRI cells versus 

TZM-bl cells (Figure 4A and 4B). In the presence of FcγRI, D5_AR had potent neutralization 

activity against a panel of tier-2 HIV-1 viruses, with ID50 values <0.1 μg/mL (Figure 4C and 4D). 

Consistent with an Fc-dependent mechanism, the Fab form of D5_AR did not exhibit potentiation 

(Figure 5A). This observed potentiation was specific to FcγRI: enhanced neutralization was 

minimal or not observed in cell lines expressing other Fc receptors (FcγRIIa, FcγRIIb, and 

FcγRIIIa; Figure 5B). It is noteworthy that the ID50 values of D5_AR IgG in TZM-bl cells were 

approximately linearly related to the ID50 values in TZM-bl/FcγRI cells (Figure 6).  
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Figure 4: The neutralization potencies of D5_AR IgG against tier-2 HIV-1 viruses are 
substantially higher in TZM-bl cells expressing FcγRI.  
(A) Neutralization curves demonstrating the enhanced potency of D5_AR IgG against lentivirus 
pseudotyped with HIV-1 HXB2 (tier 1B) and 25710 (tier 2) in TZM-bl cells expressing FcγRI 
versus TZM-bl cells without FcγRI. Data points and error bars are mean and standard error of the 
mean (n=2), respectively. (B) ID50 values and fold enhancement of neutralization potency of 
D5_AR IgG against lentivirus pseudotyped with HIV-1 HXB2 (tier 1B) and 25710 (tier 2) in 
TZM-bl cells versus TZM-bl/FcγRI cells. D5_AR is potentiated approximately 1,000-fold in 
TZM-bl/FcγRI cells. (C) ID50 values for D5_AR against a panel of tier-2 HIV-1 viruses in 
TZM-bl/FcγRI cells. Many of the viruses had ID50 values below the limit of detection (0.023 
μg/mL). (D) ID50 values for D5_AR against another panel of tier-2 and SHIV challenge viruses in 
TZM-bl/FcγRI cells but with a lower limit of detection. 
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Figure 5: D5_AR is not potentiated as a Fab and shows minimal or no potentiation in the 
presence of other Fc receptors.  
(A) Neutralization curves for D5_AR Fab against lentivirus pseudotyped with HIV-1 HXB2 show 
no neutralization enhancement between TZM-bl cells and TZM-bl/FcγRI cells. Data points and 
error bars are the mean and standard error of the mean (n=2), respectively. (B) The degree of 
observed neutralization enhancement is FcγRI-specific, as demonstrated by the neutralization 
potency of D5 AR IgG against lentivirus pseudotyped with HIV-1 HXB2 in TZM-bl cells 
expressing various Fc receptors. Data points and error bars are the mean and standard error of the 
mean (n=3), respectively. 
 

 

Figure 6: Comparison of HIV-1 neutralizing activity of D5 AR IgG in TZM-bl versus 
TZM-bl/FcγRI cells.  
The ID50 values of D5 AR IgG in TZM-bl and TZM-bl/FcγRI cells are approximately linearly 
related in a panel of tier-2 HIV-1 viruses from multiple clades. ID50 values represented in this 
figure were reported previously in Figure 3 and 4. 
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Discussion 

The PHI of HIV-1 is a validated drug target in humans (13–15), and antibodies that bind 

the NHR of gp41 that is exposed in the PHI can inhibit HIV-1 infection in vitro (18–20). The first 

of these NHR-binding antibodies, D5, has weak neutralization potency against tier-1 HIV-1 strains 

(18). Here we engineered and characterized a more potent D5 derivative, D5_AR, which exhibited 

enhanced neutralization of tier-1 strains and weak cross-clade neutralization of tier-2 HIV-1 

viruses (Figure 3). Using ten global HIV-1 reference strains, we determined that at modest 

concentrations (1-50 μg/mL), D5_AR neutralizes the majority of tier-1 and tier-2 HIV-1 strains 

tested from a variety of clades (Figure 3). Taken together with the high sequence conservation of 

the NHR (12), these results support future vaccine design efforts to elicit neutralizing antibodies 

against the PHI. 

Several previous reports had suggested that access to the D5 epitope was impacted by steric 

hindrance, as smaller antibody constructs were more potent than full-length IgG (20, 23, 24, 42). 

We reinvestigated this issue using antibody preparations that were free of observed protein 

aggregates (Supplementary Information; Supplemental Figure 3). In contrast to earlier reports (20, 

23, 24, 42), here we confirm (18) that D5 and D5_AR are similarly potent when tested in 

neutralization assays in scFv, Fab, and IgG formats (Figure 2). We hypothesize that the presence 

of higher-order protein aggregates (that can be removed by SEC) may explain the previous reports 

of size-dependent neutralization by D5. Given these findings for D5 and D5_AR, we conclude that 

steric hindrance is not an obstacle for at least some anti-PHI antibodies. 

Previous work on antibodies targeting another epitope of gp41, the MPER, found that 

neutralization activity was potentiated as much as 5,000-fold in cells expressing FcγRI, an integral 

membrane protein that interacts with the Fc portion of γ immunoglobulins (26–28). Since the 
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MPER is not fully exposed until after Env engages with cellular receptors (62, 63), these results 

suggest that by binding the Fc region of MPER mAbs, FcγRI provides a local concentration 

advantage at the cell surface that enhances neutralization (26, 27). Because the PHI, like the 

MPER, is fully exposed only during viral membrane fusion, we previously investigated the effect 

of FcγRI on D5 and found neutralization by this anti-PHI mAb is also enhanced ~5,000-fold (25). 

Like D5, D5_AR IgG displayed ~1,000-fold enhancement in neutralization potency in 

TZM-bl/FcγRI cells (Figure 4A and 4B). Notably, this enhancement makes D5_AR IgG an 

extremely potent neutralizing antibody of tier-2 HIV-1 viruses in the TZM-bl/FcγRI cell line, with 

ID50 values below 0.1 μg/mL (Figure 4C and 4D).  

TZM-bl/FcγRI cells enable sensitive detection of neutralization activity from anti-NHR 

antibodies and could be used, in conjunction with TZM-bl cells, to monitor progress toward 

eliciting neutralizing antisera. We hypothesize that neutralizing activity detected by TZM-bl/FcγRI 

cells could be used as an indicator of low-affinity antibody precursors in serum that have the 

potential to mature to high-affinity neutralizing activity independent of FcγRI. This hypothesis is 

supported by our findings that the neutralizing activity of D5_AR in FcγRI-expressing cells were 

approximately linearly related to the neutralizing activity of D5_AR in cells without FcγRI (Figure 

6). 

Although not normally expressed on CD4+ T cells, FcγRI receptors are expressed on some 

cells at mucosal surfaces where sexual HIV-1 transmission occurs, such as macrophages and 

dendritic cells (28). Mucosal macrophages and dendritic cells can be productively infected by 

HIV-1 (29–32) and can then mediate viral transmission to CD4+ T cells (33–36). Importantly, 

studies of intravaginal inoculation of simian immunodeficiency virus  (SIV) of non-human 

primates demonstrated that intraepithelial and submucosal dendritic cells are infected in the 
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earliest stages (18-48 hours) of SIV infection (64–67). More recent work has shown that at 48 

hours post-inoculation, 25% of infected cells are dendritic cells and macrophages, with the 

remainder comprising CD4+ T cells, primarily of the Th17 type (68, 69). Thus, it is plausible that 

inhibiting HIV-1 infection of these FcγRI-expressing cells at the mucosal surfaces could decrease 

the likelihood of sexual HIV-1 transmission.  

Indeed, in a vaginal challenge with SHIV in rhesus macaques, an MPER mAb (2F5) 

afforded dose-dependent protection when administered as an IgG, but not when administered in 

its Fab form (70), suggesting an Fc-dependent mechanism of protection in vivo. Previous studies 

have also demonstrated that MPER mAbs are much more protective against SHIV challenge than 

when measured in vitro, compared to other bnAbs (71–73). Considered alongside these previous 

findings, the extremely potent activity of D5_AR observed here against HIV-1 infection of 

FcγRI-expressing cells (Figure 4) motivates future efforts to investigate the ability of passively 

transferred anti-PHI antibodies to protect against sexual HIV-1 transmission in vivo.  

Taken together, the findings presented here provide evidence that the NHR of the PHI is a 

promising target for future HIV-1 vaccine development, and pave the way for future studies of the 

in vivo significance of FcγRI-mediated potentiation of anti-PHI antibodies. 
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Materials and Methods 

Mammalian expression of D5 constructs 

The variable heavy (VH) chain regions of the D5 variants were ordered as gene fragments 

from Twist Biosciences (Supplemental Figure 1A). Gene fragments were resuspended to 10 ng/μL 

in H2O and PCR amplified using the following two primers: (HC_forward) 

5’-ACCGGTGTACATTCCCAGGTTCAAC-3’ and (HC_reverse) 

5’-GCCCTTGGTCGACGCGCTTGATACG-3’. The mutated variable light (VL) chain region, 

with only the third CDR mutated according to Montgomery et al. (24), was ordered as a G-block 

gene fragment from Integrated DNA Technologies and PCR amplified using the following two 

primers: (LC_forward) 5’-ACCGGTGTACATTCAGATATTCAAATGAC-3’ and (LC_reverse) 

5’- TGCAGCCACCGTACGTTTG-3’. Purified VH and VL fragments were cloned into linearized 

pCMVR with either the human IgG heavy or kappa light constant regions, respectively (74, 75). 

The primers for linearizing the pCMVR IgG heavy chain plasmid were: (HC_lin_forward) 

5’-GCGTCGACCAAGGGCCCATCGGTCTTC-3’ and (HC_lin_reverse) 

5’- GGAATGTACACCGGTTGCAGTTGCTACTAGAAAAAG -3’. The primers for linearizing 

the pCMVR IgG kappa light chain plasmid were: (LC_lin_forward) 

5’-CGTACGGTGGCTGCACCATCTGTCTTCATCTTC-3’ and (LC_lin_reverse) 

5’-TGAATGTACACCGGTTGCAGTTGCTACTAGAAAAAGGATGATA-3’. The D5 VH and 

VL segments were cloned into the linearized pCMVR backbones with 5X In-Fusion HD Enzyme 

Premix (Takara Bio). Plasmids were transformed into Stellar Competent Cells (Takara Bio) and 

transformed cells were grown at 37 °C. Colonies were sequence confirmed and then maxi-prepped 

(NucleoBond® Xtra Maxi, Macherey-Nagel). Plasmids were sterile filtered using a 0.22-μm 

syringe filter and stored at -20 °C. 
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D5 IgG variants used for neutralization assays were expressed in Expi293F™ cells 

(Thermo Fisher Scientific) using FectoPRO® (Polyplus). VH and VL plasmids were 

co-transfected at a 1:2 ratio, respectively; cells were transfected at 3x106 cells/mL. Cell cultures 

were incubated at 37 °C and 8% CO2 with shaking at 120 rpm. Cells were harvested 3 days post 

transfection by spinning at 300 x g for 5 min and then filtered through a 0.22-μm filter. IgG 

supernatants were diluted 1:1 with 1X phosphate-buffered saline (PBS) and batch-bound to 

Pierce™ Protein A agarose (Thermo Fisher Scientific) overnight at 4 °C. The supernatant/resin 

slurry was added to a column and the resin was washed with 1X PBS and eluted with 100 mM 

glycine [pH 2.8] into 1/10 volume of 1 M Tris [pH 8.0]. 

D5 and D5_AR Fab used for neutralization assays were also produced in Expi293F™ cells. 

D5 and D5_AR Fab VH regions were cloned into a pCMVR heavy chain linearized backbone with 

a portion (CH2 and CH3 domains) of the constant region removed. Fab VH and VL plasmids were 

co-transfected and harvested with the protocol for IgG described above. Fab supernatants were 

diluted 1:1 with 50 mM sodium acetate [pH 5.0], batch-bound to Pierce™ Protein G Agarose 

(Thermo Fisher Scientific) overnight at 4 °C, washed with 50 mM sodium acetate [pH 5.0], and 

eluted with 100 mM glycine [pH 2.8] into 1/10 volume of 1 M Tris [pH 8.0]. 

D5 and D5_AR scFv constructs used for neutralization assays were expressed in 

Expi293F™ cells. The VH and VL regions were linked via a human muscle aldolase sequence 

(76), tagged with a His6-tag, and cloned into a linearized pCMVR vector (Supplemental Figure 2). 

The scFv plasmid was transfected and harvested with the same protocol as IgG and Fab. ScFv 

supernatants were diluted 1:1 with 10 mM imidazole in 1X PBS, batch-bound to Ni-NTA agarose 

(Thermo Fisher Scientific) overnight at 4 °C, washed with 10 mM imidazole in 1X PBS, and eluted 

with 250 mM imidazole in 1X PBS.  
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Purification and storage of D5 constructs 

For the initial screening in neutralization assays (Table 1 and Supplemental Table 1), there 

was no purification following elution from Protein A affinity purification. Elutions were buffer 

exchanged and spin concentrated using 1X PBS and Amicon® Ultra-15 10 kD 15 mL spin 

concentrators (Millipore). 

For all other neutralization assays, elutions were further purified after affinity purification 

on an AKTA™ using a GE Superdex 200 Increase 10/300 GL column (GE HealthCare) in 1X 

PBS. After size exclusion chromatography, samples were spin concentrated using Amicon® 

Ultra-15 10 kD 15 mL spin concentrators. 

Fab and scFv constructs were eluted from affinity purification and then purified further via 

size exclusion chromatography using the Superdex 200 Increase 10/300 GL column (GE 

HealthCare) and 1X PBS. Samples were spin concentrated as described above. 

For all samples, regardless of the purification procedure, concentrated elution samples were 

syringe filtered using a 0.22-μm filter and stored at 4 °C prior to use. 

 

Transfection to produce HIV-1 pseudotyped lentiviruses 

HEK293T cells were transiently co-transfected with a backbone plasmid as well as a HIV-1 

Env plasmid for HIV-1 pseudotyped lentivirus production using the calcium phosphate 

transfection protocol previously described (77–79). HEK293T cells were passaged in T75 flasks 

and incubated at 37 °C at 5% CO2. The growth medium used for passaging and transfections was 

Corning® DMEM (Dulbecco’s Modified Eagle Medium with 4.5 g/L glucose, L-glutamine, and 

sodium pyruvate) with 10% fetal bovine serum, 1% penicillin streptomycin (Corning), and 1% 

L-glutamine (Corning). 
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The backbone plasmid psg3ΔEnv was obtained through the NIH AIDS Reagent Program, 

Division of AIDS, NIAID, NIH from Drs. John C. Kappes and Xiaoyun Wu: HIV-1 SG3 ΔEnv 

Non-infectious Molecular Clone (Cat#11051) (80, 81). The psg3ΔEnv plasmid was propagated in 

MAX Efficiency® Stbl2™ cells grown at 30 °C with shaking and Env plasmids were propagated 

in Stellar Competent Cells grown at 37 °C with shaking. DNA was isolated using a maxi-prep kit 

(NucleoBond® Xtra Maxi, Macherey-Nagel) and sequence confirmed.  

In brief, 6x106 HEK293T cells were plated in 10-cm petri dishes in a total volume of 10 

mL of DMEM and incubated overnight at 37 °C and 5% CO2 without shaking. Once the cells 

reached 50-80% confluency, they were transfected as follows. In a Falcon tube, 20 μg of psg3ΔEnv 

was mixed with 10 μg of Env plasmid and water for a final volume of 500 μL. Five hundred 

microliters of 2X HEPES-buffered saline [pH 7] (Alfa Aesar) were added dropwise to the mixture 

and 100 μL 2.5 M CaCl2 were added subsequently. The mixture was incubated at room temperature 

for 20 min and then added dropwise onto the cells. Next, 12-18 h after transfection, the medium 

was aspirated from the dish and replaced with 10 mL of fresh DMEM with additives. 

Virus-containing medium was harvested 48 h after medium swap and centrifuged at 300 x g for 5 

min; the supernatant was sterile-filtered with a 0.45-μm polyvinylidene difluoride filter and stored 

in 1-mL aliquots at -80 °C. 

 

Neutralization Assay 

The neutralization assay was adapted from the TZM-bl assay protocol using HIV-1 

Env-pseudotyped viruses as described previously (38, 41). Briefly, TZM-bl cells, derived from the 

JC53-bl parental cell line, were used as reporter cells in this assay and were obtained through the 

NIH AIDS Reagent Program (Cat#8129) from Dr. John C. Kappes, and Dr. Xiaoyun Wu (80, 82–
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85). TZM-bl cells are adherent HeLa cells that stably express CD4 and CCR5 and constitutively 

express CXCR4; they have integrated β-galactosidase and firefly luciferase reporter genes under 

the control of the HIV-1 LTR promoter. TZM-bl cells transduced to stably express FcγRI (26, 27), 

were also used in these neutralization assays. TZM-bl cells were passaged in T25 flasks and 

incubated at 37 °C at 5% CO2 without shaking. The growth medium used for passaging and 

neutralization assays was Corning® DMEM with 10% fetal bovine serum, 1% penicillin 

streptomycin (Corning), and 1% L-glutamine (Corning). 

In brief, 5x103 TZM-bl cells were plated in the internal 60 wells of white-walled, 

clear-bottom, 96-well plates and incubated overnight at 37 °C, 5% CO2 without shaking. All 

outside wells were filled with 200 μL PBS to minimize evaporation. On the next day, the medium 

was aspirated without disturbing the cells and replaced with a final mixture composed of ¼ volume 

DMEM, ½ volume HIV-1 pseudotyped lentivirus, ½ volume D5 antibody at varying 

concentrations, and DEAE dextran (10 μg/mL). Forty-eight hours after infection, all medium was 

aspirated off the wells, cells were lysed and either luciferase activity was determined using 

BriteLite Plus Reagent (Perkin Elmer) or β-galactosidase activity was determined using Tropix 

Gal-Screen™ (Applied Biosystems) and Buffer A (Applied Biosystems). β-galactosidase readout 

was used for neutralizations show in Table 1, Figures 2 and 3. Luciferase readout was used for 

neutralizations shown in Figures 4 and 5.  

Relative luminescent unit (RLU) values were quantified using a Synergy™ HTX 

Multi-Mode Reader (BioTek®), normalized against cells-only reference wells, and averaged for 

technical replicates on the plate. Percent infectivity and propagated error values (Statistics and 

Data Analysis) were entered into GraphPad Prism 8. Neutralization titers are reported as the 

antibody concentration at which RLU were reduced by 50% compared to RLU in virus control 
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wells after subtraction of background RLU in cell control wells. ID50 was calculated using the 

[inhibitor] vs. response (three parameters) dose-response curve fit in GraphPad Prism 8. This assay 

was conducted in compliance with good clinical laboratory procedures (86), including 

participation in a formal TZM-bl assay proficiency program for GCLP-compliant laboratories 

(37).  

 

Statistics and Data Analysis 

Percent infectivity for the neutralization assays was calculated as follows: 

! !"#$%&	()*+,&%%-	./%0	()*
1234-	./%0	()*+,&%%-	./%0	()*

" 	× 100.  Propagated error for the percent infectivity was calculated 

using the following formula: (%	𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛) × 2!!56	78	!"#$%&	()*
91:	78	!"#$%&	()*

"
;
+ !!56	78	1234-	./%0	()*

91:	78	1234-	./%0	()*
"
;
. 

The ID50 values in Table 1 and Figure 3 represent the geometric mean of the biological replicates 

for the tested antibodies with the standard error of the mean reported. Fold difference in ID50 was 

calculated for each experiment by dividing the D5 ID50 by the D5 variant ID50. Because fold 

difference was calculated for each experiment, the reported fold differences in Table 1 and Figure 

3 are the geometric mean and the standard error of the mean from all replicates.  

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.10.23.352526doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352526
http://creativecommons.org/licenses/by-nc/4.0/


   

 23 

Author Contributions 

AAR, MVFI, CLB, and PSK conceived the experiments. AAR performed protein purification, 

antibody characterization, and neutralization assays. MVFI and BNB performed protein 

purification and neutralization assays. Additional neutralization assays were also conducted under 

the supervision of CCL and DCM. All authors contributed to revising the manuscript.  

Acknowledgments 

We thank members of the Kim Lab for helpful discussions and Drs. A. E. Powell, S. Tang, and D. 

Xu for critical reading of this manuscript. This research was supported by the National Institute of 

General Medical Sciences of the National Institutes of Health under award numbers 

T32GM007276 (BNB) and 5T32GM007365 (MVFI), the NSF GRFP (BNB), NIH/NIAID 

contract HHSN272201800004C (CCL), the Bill and Melinda Gates Foundation award 

OPP1113682 (PSK), the Virginia and D. K. Ludwig Fund for Cancer Research (PSK), and the 

Chan Zuckerberg Biohub (PSK).   

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.10.23.352526doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352526
http://creativecommons.org/licenses/by-nc/4.0/


   

 24 

References 
1.  WHO. 2020. HIV/AIDS Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/hiv-aids Accessed 

[9/14/2020] 
2.  Burton DR, Desrosiers RC, Doms RW, Koff WC, Kwong PD, Moore JP, Nabel GJ, Sodroski J, Wilson IA, 

Wyatt RT. 2004. HIV vaccine design and the neutralizing antibody problem. Nat Immunol 5:233–236. 
3.  Stamatatos L, Morris L, Burton DR, Mascola JR. 2009. Neutralizing antibodies generated during natural 

hiv-1 infection: Good news for an hiv-1 vaccine? Nat Med 15:866–870. 
4.  Ahmed Y, Tian M, Gao Y. 2017. Development of an anti-HIV vaccine eliciting broadly neutralizing 

antibodies. AIDS Res Ther 14, 50. 
5.  Sanders RW, Van Gils MJ, Derking R, Sok D, Ketas TJ, Burger JA, Ozorowski G, Cupo A, Simonich C, 

Goo L, Arendt H, Kim HJ, Lee JH, Pugach P, Williams M, Debnath G, Moldt B, Van Breemen MJ, Isik G, 
Medina-Ramírez M, Back JW, Koff WC, Julien JP, Rakasz EG, Seaman MS, Guttman M, Lee KK, Klasse 
PJ, LaBranche C, Schief WR, Wilson IA, Overbaugh J, Burton DR, Ward AB, Montefiori DC, Dean H, 
Moore JP. 2015. HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science 349, 
aac4223. 

6.  Georgiev IS, Gordon Joyce M, Zhou T, Kwong PD. 2013. Elicitation of HIV-1-neutralizing antibodies 
against the CD4-binding site. Curr Opin HIV AIDS 8:382–392. 

7.  Duan H, Chen X, Boyington JC, Cheng C, Zhang Y, Jafari AJ, Stephens T, Tsybovsky Y, Kalyuzhniy O, 
Zhao P, Menis S, Nason MC, Normandin E, Mukhamedova M, DeKosky BJ, Wells L, Schief WR, Tian M, 
Alt FW, Kwong PD, Mascola JR. 2018. Glycan Masking Focuses Immune Responses to the HIV-1 CD4-
Binding Site and Enhances Elicitation of VRC01-Class Precursor Antibodies. Immunity 49:301-311.e5. 

8.  Pantophlet R, Burton DR. 2006. GP120: Target for neutralizing HIV-1 antibodies. Annu Rev Immunol 
24:739–769. 

9.  Chan DC, Kim PS. 1998. HIV-1 entry and its inhibition. Cell 93:681–684. 
10.  Harrison SC. 2015. Viral membrane fusion. Virology 479–480:498–507. 
11.  Ladinsky MS, Gnanapragasam PN, Yang Z, West AP, Kay MS, Bjorkman PJ. 2020. Electron tomography 

visualization of HIV-1 fusion with target cells using fusion inhibitors to trap the pre-hairpin intermediate. 
elife 9, e58411. 

12.  Los Alamos National Laboratory. HIV sequence database main page. 
https://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html Accessed [9/14/2020] 

13.  Wild C, Greenwell T, Matthews T. 1993. A Synthetic Peptide from HIV-1 gp41 Is a Potent Inhibitor of 
Virus-Mediated Cell—Cell Fusion. AIDS Res Hum Retroviruses 9:1051–1053. 

14.  Kilby JM, Lalezari JP, Eron JJ, Carlson M, Cohen C, Arduino RC, Goodgame JC, Gallant JE, Volberding P, 
Murphy RL, Valentine F, Saag MS, Nelson EL, Sista PR, Dusek A. 2002. The safety, plasma 
pharmacokinetics, and antiviral activity of subcutaneous enfuvirtide (T-20), a peptide inhibitor of gp41-
mediated virus fusion, in HIV-infected adults. AIDS Res Hum Retroviruses 18:685–693. 

15.  Matthews T, Salgo M, Greenberg M, Chung J, DeMasi R, Bolognesi D. 2004. Enfuvirtide: The first therapy 
to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nat Rev Drug Discov 3:215–225. 

16.  Eckert DM, Malashkevich VN, Hong LH, Carr PA, Kim PS. 1999. Inhibiting HIV-1 entry: Discovery of D-
peptide inhibitors that target the gp41 coiled-coil pocket. Cell 99:103–115. 

17.  Nishimura Y, Francis JN, Donau OK, Jesteadt E, Sadjadpour R, Smith AR, Seaman MS, Welch BD, Martin 
MA, Kay MS. 2020. Prevention and treatment of SHIVAD8 infection in rhesus macaques by a potent d-
peptide HIV entry inhibitor. Proc Natl Acad Sci 117:22436–22442. 

18.  Miller MD, Geleziunas R, Bianchi E, Lennard S, Hrin R, Zhang H, Lu M, An Z, Ingallinella P, Finotto M, 
Mattu M, Finnefrock AC, Bramhill D, Cook J, Eckert DM, Hampton R, Patel M, Jarantow S, Joyce J, 
Ciliberto G, Cortese R, Lu P, Strohl W, Schleif W, McElhaugh M, Lane S, Lloyd C, Lowe D, Osbourn J, 
Vaughan T, Emini E, Barbato G, Kim PS, Hazuda DJ, Shiver JW, Pessi A. 2005. A human monoclonal 
antibody neutralizes diverse HIV-1 isolates by binding a critical gp41 epitope. Proc Natl Acad Sci U S A 
102:14759–14764. 

19.  Gustchina E, Li M, Louis JM, Eric Anderson D, Lloyd J, Frisch C, Bewley CA, Gustchina A, Wlodawer A, 
Marius Clore G. 2010. Structural basis of HIV-1 neutralization by affinity matured fabs directed against the 
internal trimeric coiled-coil of gp41. PLoS Pathog 6, e1001182. 

20.  Sabin C, Corti D, Buzon V, Seaman MS, Hulsik DL, Hinz A, Vanzetta F, Agatic G, Silacci C, Mainetti L, 
Scarlatti G, Sallusto F, Weiss R, Lanzavecchia A, Weissenhorn W. 2010. Crystal structure and size-
dependent neutralization properties of HK20, a human monoclonal antibody binding to the highly conserved 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.10.23.352526doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352526
http://creativecommons.org/licenses/by-nc/4.0/


   

 25 

heptad repeat 1 of gp41. PLoS Pathog 6, e1001195. 
21.  Root MJ, Kay MS, Kim PS. 2001. Protein Design of an HIV-1 Entry Inhibitor. Science 291:884–888. 
22.  Eckert DM, Kim PS. 2001. Design of potent inhibitors of HIV-1 entry from the gp41 N-peptide region. Proc 

Natl Acad Sci U S A 98:11187–11192. 
23.  Luftig MA, Mattu M, Di Giovine P, Geleziunas R, Hrin R, Barbato G, Bianchi E, Miller MD, Pessi A, Carfí 

A. 2006. Structural basis for HIV-1 neutralization by a gp41 fusion intermediate-directed antibody. Nat 
Struct Mol Biol 13:740–747. 

24.  Montgomery DL, Wang YJ, Hrin R, Luftig M, Su B, Miller MD, Wang F, Haytko P, Huang L, Vitelli S, 
Condra J, Liu X, Hampton R, Carfi A, Pessi A, Bianchi E, Joyce J, Lloyd C, Geleziunas R, Bramhill D, 
King VM, Finnefrock AC, Strohl W, An Z. 2009. Affinity maturation and characterization of a human 
monoclonal antibody against HIV-1 gp41. MAbs 1:462–474. 

25.  Montefiori DC, Interrante MVF, Bell BN, Rubio AA, Joyce JG, Shiver JW, LaBranche CC, Kim PS. 2020. 
The high-affinity immunoglobulin receptor FcγRI potentiates HIV-1 neutralization via antibodies against the 
gp41 N-heptad repeat. bioRxiv doi: 10.1101/2020.08.27.271064 

26.  Perez LG, Costa MR, Todd CA, Haynes BF, Montefiori DC. 2009. Utilization of Immunoglobulin G Fc 
Receptors by Human Immunodeficiency Virus Type 1: a Specific Role for Antibodies against the 
Membrane-Proximal External Region of gp41. J Virol 83:7397–7410. 

27.  Perez LG, Zolla-Pazner S, Montefiori DC. 2013. Antibody-Dependent, FcγRI-Mediated Neutralization of 
HIV-1 in TZM-bl Cells Occurs Independently of Phagocytosis. J Virol 87:5287–5290. 

28.  van der Poel CE, Spaapen RM, van de Winkel JGJ, Leusen JHW. 2011. Functional Characteristics of the 
High Affinity IgG Receptor, FcγRI. J Immunol 186:2699–2704. 

29.  Patterson S, Rae A, Hockey N, Gilmour J, Gotch F. 2001. Plasmacytoid Dendritic Cells Are Highly 
Susceptible to Human Immunodeficiency Virus Type 1 Infection and Release Infectious Virus. J Virol 
75:6710–6713. 

30.  Shen R, Richter HE, Clements RH, Novak L, Huff K, Bimczok D, Sankaran-Walters S, Dandekar S, 
Clapham PR, Smythies LE, Smith PD. 2009. Macrophages in Vaginal but Not Intestinal Mucosa Are 
Monocyte-Like and Permissive to Human Immunodeficiency Virus Type 1 Infection. J Virol 83:3258–3267. 

31.  Kruize Z, Kootstra NA. 2019. The Role of Macrophages in HIV-1 Persistence and Pathogenesis. Front 
Microbiol 10, 2828. 

32.  Smed-Sörensen A, Loré K, Vasudevan J, Louder MK, Andersson J, Mascola JR, Spetz A-L, Koup RA. 
2005. Differential Susceptibility to Human Immunodeficiency Virus Type 1 Infection of Myeloid and 
Plasmacytoid Dendritic Cells. J Virol 79:8861–8869. 

33.  Loré K, Smed-Sörensen A, Vasudevan J, Mascola JR, Koup RA. 2005. Myeloid and plasmacytoid dendritic 
cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. J Exp Med 201:2023–2033. 

34.  Groot F, Welsch S, Sattentau QJ. 2008. Efficient HIV-1 transmission from macrophages to T cells across 
transient virological synapses. Blood 111:4660–4663. 

35.  Waki K, Freed EO. 2010. Macrophages and cell-cell spread of HIV-1. Viruses 2:1603–1620. 
36.  Bracq L, Xie M, Benichou S, Bouchet J. 2018. Mechanisms for cell-to-cell transmission of HIV-1. Front 

Immunol 9, 260. 
37.  Todd CA, Greene KM, Yu X, Ozaki DA, Gao H, Huang Y, Wang M, Li G, Brown R, Wood B, D’Souza 

MP, Gilbert P, Montefiori DC, Sarzotti-Kelsoe M. 2012. Development and implementation of an 
international proficiency testing program for a neutralizing antibody assay for HIV-1 in TZM-bl cells. J 
Immunol Methods 375:57–67. 

38.  Sarzotti-Kelsoe M, Bailer RT, Turk E, Lin C, Bilska M, Greene KM, Gao H, Todd CA, Ozaki DA, Seaman 
MS, Mascola JR, Montefiori DC. 2014. Optimization and validation of the TZM-bl assay for standardized 
assessments of neutralizing antibodies against HIV-1. J Immunol Methods 409:131–146. 

39.  Mascola JR, D’Souza P, Gilbert P, Hahn BH, Haigwood NL, Morris L, Petropoulos CJ, Polonis VR, 
Sarzotti M, Montefiori DC. 2005. Recommendations for the Design and Use of Standard Virus Panels To 
Assess Neutralizing Antibody Responses Elicited by Candidate Human Immunodeficiency Virus Type 1 
Vaccines. J Virol 79:10103–10107. 

40.  DeCamp A, Hraber P, Bailer RT, Seaman MS, Ochsenbauer C, Kappes J, Gottardo R, Edlefsen P, Self S, 
Tang H, Greene K, Gao H, Daniell X, Sarzotti-Kelsoe M, Gorny MK, Zolla-Pazner S, LaBranche CC, 
Mascola JR, Korber BT, Montefiori DC. 2014. Global Panel of HIV-1 Env Reference Strains for 
Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies. J Virol 88:2489–2507. 

41.  Montefiori DC. 2009. Measuring HIV Neutralization in a Luciferase Reporter Gene Assay, p. 395–405. In 
HIV Protocols. Methods in Molecular Biology, Second Edition. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.10.23.352526doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352526
http://creativecommons.org/licenses/by-nc/4.0/


   

 26 

42.  Eckert DM, Shi Y, Kim S, Welch BD, Kang E, Poff ES, Kay MS. 2008. Characterization of the steric 
defense of the HIV‐1 gp41 N‐trimer region. Protein Sci 17:2091–2100. 

43.  Hamburger AE, Kim S, Welch BD, Kay MS. 2005. Steric accessibility of the HIV-1 gp41 N-trimer region. J 
Biol Chem 280:12567–12572. 

44.  Lu L, Wei M, Chen Y, Xiong W, Yu F, Qi Z, Jiang S, Pan C. 2013. F(ab’)2 fragment of a gp41 NHR-
trimer-induced IgM monoclonal antibody neutralizes HIV-1 infection and blocks viral fusion by targeting 
the conserved gp41 pocket. Microbes Infect 15:887–894. 

45.  Robertson D, Anderson J, Bradac J, Carr J, Foley B, Funkhouser R, Gao F, Hahn B, Kalish M, Kuiken C, 
Learn G, Leitner T, McCutchan F, Osmanov S, Peeters M, Pieniazek D, Salminen M, Sharp P, Wolinsky S, 
Korber B. 2000. HIV-1 nomenclature proposal. Science 288, 55. 

46.  Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, Koutsoukos M, Voss G, Goepfert P, Gilbert P, Greene 
KM, Bilska M, Kothe DL, Salazar-Gonzalez JF, Wei X, Decker JM, Hahn BH, Montefiori DC. 2005. 
Human Immunodeficiency Virus Type 1 env Clones from Acute and Early Subtype B Infections for 
Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies. J Virol 79:10108–10125. 

47.  Li M, Salazar-Gonzalez JF, Derdeyn CA, Morris L, Williamson C, Robinson JE, Decker JM, Li Y, Salazar 
MG, Polonis VR, Mlisana K, Karim SA, Hong K, Greene KM, Bilska M, Zhou J, Allen S, Chomba E, 
Mulenga J, Vwalika C, Gao F, Zhang M, Korber BTM, Hunter E, Hahn BH, Montefiori DC. 2006. Genetic 
and Neutralization Properties of Subtype C Human Immunodeficiency Virus Type 1 Molecular env Clones 
from Acute and Early Heterosexually Acquired Infections in Southern Africa. J Virol 80:11776–11790. 

48.  Shang H, Han X, Shi X, Zuo T, Goldin M, Chen D, Han B, Sun W, Wu H, Wang X, Zhang L. 2011. Genetic 
and neutralization sensitivity of diverse HIV-1 env clones from chronically infected patients in China. J Biol 
Chem 286:14531–14541. 

49.  Revilla A, Delgado E, Christian EC, Dalrymple J, Vega Y, Carrera C, González-Galeano M, Ocampo A, De 
Castro RO, Lezaún MJ, Rodríguez R, Mariño A, Ordóñez P, Cilla G, Cisterna R, Santamaría JM, Prieto S, 
Rakhmanova A, Vinogradova A, Ríos M, Pérez-Álvarez L, Nájera R, Montefiori DC, Seaman MS, 
Thomson MM. 2011. Construction and phenotypic characterization of HIV type 1 functional envelope 
clones of subtypes G and F. AIDS Res Hum Retroviruses 27:889–901. 

50.  Kulkarni SS, Lapedes A, Tang H, Gnanakaran S, Daniels MG, Zhang M, Bhattacharya T, Li M, Polonis VR, 
McCutchan FE, Morris L, Ellenberger D, Butera ST, Bollinger RC, Korber BT, Paranjape RS, Montefiori 
DC. 2009. Highly complex neutralization determinants on a monophyletic lineage of newly transmitted 
subtype C HIV-1 Env clones from India Smita. Virology 385:505–520. 

51.  Li Y, Migueles SA, Welcher B, Svehla K, Phogat A, Louder MK, Wu X, Shaw GM, Connors M, Wyatt RT, 
Mascola JR. 2007. Broad HIV-1 neutralization mediated by CD4-binding site antibodies. Nat Med 13:1032–
1034. 

52.  Seaman MS, Janes H, Hawkins N, Grandpre LE, Devoy C, Giri A, Coffey RT, Harris L, Wood B, Daniels 
MG, Bhattacharya T, Lapedes A, Polonis VR, McCutchan FE, Gilbert PB, Self SG, Korber BT, Montefiori 
DC, Mascola JR. 2010. Tiered Categorization of a Diverse Panel of HIV-1 Env Pseudoviruses for 
Assessment of Neutralizing Antibodies. J Virol 84:1439–1452. 

53.  Page KA, Landau NR, Littman DR. 1990. Construction and use of a human immunodeficiency virus vector 
for analysis of virus infectivity. J Virol 64:5270–5276. 

54.  Li Y, Svehla K, Mathy NL, Voss G, Mascola JR, Wyatt R. 2006. Characterization of Antibody Responses 
Elicited by Human Immunodeficiency Virus Type 1 Primary Isolate Trimeric and Monomeric Envelope 
Glycoproteins in Selected Adjuvants. J Virol 80:1414–1426. 

55.  Long EM, Rainwater SMJ, Lavreys L, Mandaliya K, Overbaugh J. 2002. HIV type 1 variants transmitted to 
women in Kenya require the CCR5 coreceptor for entry, regardless of the genetic complexity of the 
infecting virus. AIDS Res Hum Retroviruses 18:567–576. 

56.  Cheng-Mayer C, Liu R, Landau NR, Stamatatos L. 1997. Macrophage tropism of human immunodeficiency 
virus type 1 and utilization of the CC-CKR5 coreceptor. J Virol 71:1657–1661. 

57.  Stamatatos L, Lim M, Cheng-Mayer C. 2000. Generation and structural analysis of soluble oligomeric 
gp140 envelope proteins derived from neutralization-resistant and neutralization-susceptible primary HIV 
type 1 isolates. AIDS Res Hum Retroviruses 16:981–994. 

58.  Stamatatos L, Wiskerchen M, Cheng-Mayer C. 1998. Effect of major deletions in the V1 and V2 loops of a 
macrophage-tropic HIV type 1 isolate on viral envelope structure, cell entry, and replication. AIDS Res 
Hum Retroviruses 14:1129–1139. 

59.  Gao F, Morrison SG, Robertson DL, Thornton CL, Craig S, Karlsson G, Sodroski J, Morgado M, Galvao-
Castro B, Von Briesen H, Beddows S, Weber J, Sharp PM, Shaw GM, Hahn BH. 1996. Molecular cloning 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.10.23.352526doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352526
http://creativecommons.org/licenses/by-nc/4.0/


   

 27 

and analysis of functional envelope genes from human immunodeficiency virus type 1 sequence subtypes A 
through G. J Virol 70:1651–1667. 

60.  Poss M, Overbaugh J. 1999. Variants from the diverse virus population identified at seroconversion of a 
clade A human immunodeficiency virus type 1-infected woman have distinct biological properties. J Virol 
73:5255–5264. 

61.  Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, Daëron M. 2009. Specificity and 
affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood 113:3716–
3725. 

62.  Montero M, van Houten NE, Wang X, Scott JK. 2008. The Membrane-Proximal External Region of the 
Human Immunodeficiency Virus Type 1 Envelope: Dominant Site of Antibody Neutralization and Target 
for Vaccine Design. Microbiol Mol Biol Rev 72:54–84. 

63.  Gach JS, Leaman DP, Zwick MB. 2011. Targeting HIV-1 gp41 in Close Proximity to the Membrane Using 
Antibody and Other Molecules. Curr Top Med Chem 11:2997–3021. 

64.  Su B, Dispinseri S, Iannone V, Zhang T, Wu H, Carapito R, Bahram S, Scarlatti G, Moog C. 2019. Update 
on Fc-Mediated Antibody Functions Against HIV-1 Beyond Neutralization. Front Immunol 10, 2968. 

65.  Spira AI, Marx PA, Patterson BK, Mahoney J, Koup A, Wolinsky SM, Ho DD. 1996. Cellular targets of 
infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus 
into rhesus macaques. J Exp Med 183:215–225. 

66.  Hu J, Gardner MB, Miller CJ. 2000. Simian Immunodeficiency Virus Rapidly Penetrates the Cervicovaginal 
Mucosa after Intravaginal Inoculation and Infects Intraepithelial Dendritic Cells. J Virol 74:6087–6095. 

67.  Pope M, Haase AT. 2003. Transmission, acute HIV-1 infection and the quest for strategies to prevent 
infection. Nat Med 9:847–852. 

68.  Stieh DJ, Maric D, Kelley ZL, Anderson MR, Hattaway HZ, Beilfuss BA, Rothwangl KB, Veazey RS, 
Hope TJ. 2014. Vaginal Challenge with an SIV-Based Dual Reporter System Reveals That Infection Can 
Occur throughout the Upper and Lower Female Reproductive Tract. PLoS Pathog 10, e1004440. 

69.  Stieh DJ, Matias E, Xu H, Fought AJ, Blanchard JL, Marx PA, Veazey RS, Hope TJ. 2016. Th17 Cells Are 
Preferentially Infected Very Early after Vaginal Transmission of SIV in Macaques. Cell Host Microbe 
19:529–540. 

70.  Klein K, Veazey RS, Warrier R, Hraber P, Doyle-Meyers LA, Buffa V, Liao H-X, Haynes BF, Shaw GM, 
Shattock RJ. 2013. Neutralizing IgG at the Portal of Infection Mediates Protection against Vaginal 
Simian/Human Immunodeficiency Virus Challenge. J Virol 87:11604–11616. 

71.  Hessell AJ, Rakasz EG, Tehrani DM, Huber M, Weisgrau KL, Landucci G, Forthal DN, Koff WC, Poignard 
P, Watkins DI, Burton DR. 2010. Broadly Neutralizing Monoclonal Antibodies 2F5 and 4E10 Directed 
against the Human Immunodeficiency Virus Type 1 gp41 Membrane-Proximal External Region Protect 
against Mucosal Challenge by Simian-Human Immunodeficiency Virus SHIVBa-L. J Virol 84:1302–1313. 

72.  Pegu A, Yang ZY, Boyington JC, Wu L, Ko SY, Schmidt SD, McKee K, Kong WP, Shi W, Chen X, Todd 
JP, Letvin NL, Huang J, Nason MC, Hoxie JA, Kwong PD, Connors M, Rao SS, Mascola JR, Nabel GJ. 
2014. Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 
receptor. Sci Transl Med 6, 243ra88. 

73.  Pegu A, Borate B, Huang Y, Pauthner MG, Hessell AJ, Julg B, Doria-Rose NA, Schmidt SD, Carpp LN, 
Cully MD, Chen X, Shaw GM, Barouch DH, Haigwood NL, Corey L, Burton DR, Roederer M, Gilbert PB, 
Mascola JR, Huang Y. 2019. A Meta-analysis of Passive Immunization Studies Shows that Serum-
Neutralizing Antibody Titer Associates with Protection against SHIV Challenge. Cell Host Microbe 26:336-
346.e3. 

74.  Wu X, Yang Z-Y, Li Y, Hogerkorp C-M, Schief WR, Seaman MS, Zhou T, Schmidt SD, Wu L, Xu L, 
Longo NS, McKee K, O’Dell S, Louder MK, Wycuff DL, Feng Y, Nason M, Doria-Rose N, Connors M, 
Kwong PD, Roederer M, Wyatt RT, Nabel GJ, Mascola JR. 2010. Rational Design of Envelope Identifies 
Broadly Neutralizing Human Monoclonal Antibodies to HIV-1. Science 329:856–862. 

75.  Barouch DH, Yang Z, Kong W, Korioth-schmitz B, Sumida SM, Truitt DM, Kishko MG, Arthur JC, Miura 
A, Mascola JR, Letvin NL, Nabel GJ. 2005. A Human T-Cell Leukemia Virus Type 1 Regulatory Element 
Enhances the Immunogenicity of Human Immunodeficiency Virus Type 1 DNA Vaccines in Mice and 
Nonhuman Primates. J Virol 79:8828–8834. 

76.  Dalby A, Dauter Z, Littlechild JA. 1999. Crystal structure of human muscle aldolase complexed with 
fructose 1,6-bisphosphate: Mechanistic implications. Protein Sci 8:291–297. 

77.  Graham FL, Van der Eb A. 1973. A New Technique for the Assay of Infectivity of Human Adenovirus 5 
DNA. Virology 52:456–467. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.10.23.352526doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352526
http://creativecommons.org/licenses/by-nc/4.0/


   

 28 

78.  Kutner RH, Zhang XY, Reiser J. 2009. Production, concentration and titration of pseudotyped HIV-1-based 
lentiviral vectors. Nat Protoc 4:495–505. 

79.  Pear WS, Nolan GP, Scott ML, Baltimore D. 1993. Production of high-titer helper-free retroviruses by 
transient transfection. Proc Natl Acad Sci U S A 90:8392–8396. 

80.  Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS, Wu X, Shaw GM, Kappes JC. 2002. 
Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) 
monotherapy. Antimicrob Agents Chemother 46:1896–1905. 

81.  Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG, Kilby JM, Saag 
MS, Komarova NL, Nowak MA, Hahn BH, Kwong PD, Shaw GM. 2003. Antibody neutralization and 
escape by HIV-1. Nature 422:307–312. 

82.  Platt EJ, Wehrly K, Kuhmann SE, Chesebro B, Kabat D. 1998. Effects of CCR5 and CD4 Cell Surface 
Concentrations on Infections by Macrophagetropic Isolates of Human Immunodeficiency Virus Type 1. J 
Virol 72:2855–2864. 

83.  Derdeyn CA, Decker JM, Sfakianos JN, Wu X, O’brien WA, Ratner L, Kappes JC, Shaw GM, Hunter E. 
2000. Sensitivity of Human Immunodeficiency Virus Type 1 to the Fusion Inhibitor T-20 Is Modulated by 
Coreceptor Specificity Defined by the V3 Loop of gp120. J Virol 74:8358–8367. 

84.  Takeuchi Y, McClure MO, Pizzato M. 2008. Identification of Gammaretroviruses Constitutively Released 
from Cell Lines Used for Human Immunodeficiency Virus Research. J Virol 82:12585–12588. 

85.  Platt EJ, Bilska M, Kozak SL, Kabat D, Montefiori DC. 2009. Evidence that Ecotropic Murine Leukemia 
Virus Contamination in TZM-bl Cells Does Not Affect the Outcome of Neutralizing Antibody Assays with 
Human Immunodeficiency Virus Type 1. J Virol 83:8289–8292. 

86.  Ozaki DA, Gao H, Todd CA, Greene KM, Montefiori DC, Sarzotti-Kelsoe M. 2012. International 
technology transfer of a GCLP-compliant HIV-1 neutralizing antibody assay for human clinical trials. PLoS 
One 7, e30963. 

 
  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.10.23.352526doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352526
http://creativecommons.org/licenses/by-nc/4.0/


   

 29 

Supplementary Information 
 
Purification method impacts D5’s neutralization potency 

After completing the initial neutralization screens of the D5 variants, a more in-depth 

neutralization profile was determined for D5_AR compared to D5. This profiling involved testing 

the constructs’ neutralization potency against various viruses and in various antibody formats. 

Notably, we found that the manner of purification and concentration of antibodies impacts the 

observed neutralization activity of the antibody. In our initial neutralization screens, we did not 

include a size exclusion chromatography (SEC) purification step after Protein A purification: we 

immediately spin-concentrated the elution and filtered the concentrated antibody for use in 

neutralization assays (Materials and Methods). For the in-depth neutralization analysis, we further 

purified antibodies via SEC after Protein A purification. After SEC purification, we concentrated 

the protein using spin concentrators. These ID50 values (Figure 3) differed from the values that we 

previously measured (Table 1) when the antibodies were not SEC-purified (SEC-purified 

preparations had a 1.5-fold decrease in ID50 for D5 and a 2.3-fold decrease in ID50 for D5_AR) 

(Supplemental Figure 3). A side-by-side comparison revealed that there was indeed a difference 

in neutralization for D5-AR (Supplemental Figure 3A), although neutralization was still enhanced 

compared to D5. UV traces from SEC indicated that aggregates may explain this difference in 

reported neutralization (Supplemental Figure 3B), which likely explains the discrepancy in 

reported ID50 values for HXB2 in Table 1 and Figure 3 of the main text. 
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Supplemental Figures and Tables 
 

 
 
Supplemental Figure 1: Sequences of D5 variant variable heavy and variable light chain 
regions. 
(A) Sequence alignment of variable heavy (VH) chain sequences of D5 variants (IGHV1-69 
germline).  (B) Sequence alignment of variable light (VL) chain sequence of D5 variants 
(IGKV1-5 germline). Bold font denotes complementarity-determining regions and red letters 
highlight amino acid changes from wild-type D5. 
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2020. ; https://doi.org/10.1101/2020.10.23.352526doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352526
http://creativecommons.org/licenses/by-nc/4.0/


   

 31 

Supplemental Figure 2: Sequences of D5 and D5_AR scFv inserts with human muscle 
aldolase linker and His6-Tag. 
Bold font denotes complementarity-determining regions, the linker, and the tag; red letters 
highlight amino acid changes from wild-type D5. 
 

 
Supplemental Figure 3: Purification via size exclusion chromatography (SEC) impacts the 
neutralization potency of D5_AR and reveals possible aggregation. 
(A) After purification by gel filtration, D5_AR IgG preparations demonstrated enhanced 
neutralization activity. Each data point represents the mean with standard error of mean (n=2).  
(B and C) UV traces from SEC reveal possible protein aggregates (circled in red) for both D5 and 
D5_AR IgG. 
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Supplemental Table 1: Single-CDR mutants neutralize pseudotyped HIV-1 HXB2 in a 
fashion consistent with the report of Montgomery et al. (24). 
The ID50 for this work is represented by the geometric mean and standard error of the mean of 
replicate experiments (n=2). For each infection assay, the fold enhancement versus D5 was 
calculated (ID50, D5 / ID50, D5 variant); reported fold enhancement is the geometric mean (n=2).  
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