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ABSTRACT 

The novel SARS-CoV-2 virus emerged in December 2019 and has few effective 

treatments. We applied a computational drug repositioning pipeline to SARS-CoV-2 

differential gene expression signatures derived from publicly available data. We utilized 

three independent published studies to acquire or generate lists of differentially 

expressed genes between control and SARS-CoV-2-infected samples. Using a rank-

based pattern matching strategy based on the Kolmogorov-Smirnov Statistic, the 

signatures were queried against drug profiles from Connectivity Map (CMap).  We 

validated sixteen of our top predicted hits in live SARS-CoV-2 antiviral assays in either 

Calu-3 or 293T-ACE2 cells. Validation experiments in human cell lines showed that 11 

of the 16 compounds tested to date (including clofazimine, haloperidol and others) had 

measurable antiviral activity against SARS-CoV-2. These initial results are encouraging 

as we continue to work towards a further analysis of these predicted drugs as potential 

therapeutics for the treatment of COVID-19. 
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INTRODUCTION 

SARS-CoV-2 has already claimed at least a million lives, has been detected in at 

least 40 million people, and has likely infected at least another 200 million. The 

spectrum of disease caused by the virus can be broad ranging from silent infection to 

lethal disease, with an estimated infection-fatality ratio around 1%1. SARS-CoV-2 

infection has been shown to affect many organs of the body in addition to the lungs2. 

Three epidemiological factors increase the risk of disease severity: increasing age, 

decade-by-decade, after the age of 50 years; being male; and various underlying 

medical conditions1. However, even taking these factors into account, there is immense 

interindividual clinical variability in each demographic category considered3. Recently, 

researchers found that more than 10% of people who develop severe COVID-19 have 

misguided antibodies―autoantibodies―that attack the innate immune system. Another 

3.5% or more of people who develop severe COVID-19 carry specific genetic mutations 

that impact innate immunity. Consequently, both groups lack effective innate immune 

responses that depend on type  interferon, demonstrating a crucial role for type  

interferon in protecting cells and the body from COVID-19. Whether the type  interferon 

has been neutralized by autoantibodies or―because of a faulty gene―is produced in 

insufficient amounts or induced an inadequate antiviral response, the absence of type  

IFN-mediated immune response appears to be a commonality among a subgroup of 

people who suffer from life-threatening COVID-19 pneumonia3. 

While numerous efforts are underway to identify potential therapies targeting 

various aspects of the disease, there is a paucity of clinically proven treatments for 

COVID-19. There have been efforts to therapeutically target the hyperinflammation 
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associated with severe COVID-194, as well as to utilize previously identified antiviral 

medications5,6. One of these antivirals, remdesivir, an intravenously administered RNA-

dependent RNA polymerase inhibitor, showed positive preliminary results in patients 

with severe COVID-197. In October 2020, the FDA approved remdesivir for the 

treatment of COVID-198. Dexamethasone has also been shown to reduce the mortality 

rate in cases of severe COVID-199. 

Nevertheless, the lack of treatments and the severity of the current health 

pandemic warrant the exploration of rapid identification methods of preventive and 

therapeutic strategies from every angle. The traditional paradigm of drug discovery is 

generally regarded as protracted and costly, taking approximately 15 years and over $1 

billion to develop and bring a novel drug to market10. The repositioning of drugs already 

approved for human use mitigates the costs and risks associated with early stages of 

drug development, and offers shorter routes to approval for therapeutic indications. 

Successful examples of drug repositioning include the indication of thalidomide for 

severe erythema nodosum leprosum and retinoic acid for acute promyelocytic 

leukemia11. The development and availability of large-scale genomic, transcriptomic, 

and other molecular profiling technologies and publicly available databases, in 

combination with the deployment of the network concept of drug targets and the power 

of phenotypic screening, provide an unprecedented opportunity to advance rational drug 

design.  

Drug repositioning is being extensively explored for COVID-19. High-throughput 

screening pipelines have been implemented in order to quickly test drug candidates as 

they are identified12–15. In the past, our group has successfully applied a transcriptomics-
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based computational drug repositioning pipeline to identify novel therapeutic uses for 

existing drugs16. This pipeline leverages transcriptomic data to perform a pattern-

matching search between diseases and drugs. The underlying hypothesis is that for a 

given disease signature consisting of a set of up and down-regulated genes, if there is a 

drug profile where those same sets of genes are instead down-regulated and up-

regulated, respectively, then that drug could be therapeutic for the disease. This method 

has shown promising results for a variety of different indications, including inflammatory 

bowel disease17, dermatomyositis18, cancer19–21, and preterm birth22.  

In existing work from Xing et al.23, this pipeline has been used to identify potential 

drug hits from multiple input disease signatures derived from SARS-CoV or MERS-CoV 

data. The results were aggregated to obtain a consensus ranking, with 10 drugs 

selected for in vitro testing against SARS-CoV-2 in Vero E6 cell lines, with four drugs 

(bortezomib, dactolisib, alvocidib and methotrexate) showing viral inhibition23. However, 

this pipeline has not yet been applied specifically to SARS-CoV-2 infection. 

A variety of different transcriptomic datasets related to SARS-CoV-2 were 

published in the spring of 2020. In May 2020, Blanco-Melo et al. studied the 

transcriptomic signature of SARS-CoV-2 in a variety of different systems, including 

human cell lines and a ferret model24. By infecting human adenocarcinomic alveolar 

basal epithelial cells with SARS-CoV-2 and comparing to controls, the authors 

generated a list of 120 differentially expressed genes. They observed two enriched 

pathways: one composed primarily of type-I interferon-stimulated genes (ISGs) involved 

in the cellular response to viral infection; and a second composed of chemokines, 

cytokines, and complement proteins involved in the humoral response. After infecting 
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the cell lines, Blanco-Melo et al. did not detect either ACE2 or TMPRSS2, which are the 

SARS-CoV-2 receptor and SARS-CoV-2 protease, respectively25. However, supported 

viral replication was observed, thereby allowing the capture of some of the biological 

responses to SARS-CoV-2. 

In May 2020, another study by Lamers et al. examined SARS-CoV-2 infection in 

human small intestinal organoids grown from primary gut epithelial stem cells. The 

organoids were exposed to SARS-CoV-2 and grown in various conditions, including 

Wnt-high expansion media. Enterocytes were readily infected by the virus, and RNA 

sequencing revealed upregulation of cytokines and genes related to type I and III 

interferon responses26. 

A limited amount of transcriptomic data from human samples has also been 

published. One study detailed the transcriptional signature of bronchoalveolar lavage 

fluid (of which responding immune cells are often a primary component) of COVID-19 

patients compared to controls27. Despite a limited number of samples, the results were 

striking enough to reveal inflammatory cytokine profiles in the COVID-19 cases, along 

with enrichments in the activation of apoptosis and the P53 signaling pathways. 

On the drug side, data are available in the form of differential gene expression 

profiles from testing on human cells. Publicly-available versions include the Connectivity 

Map (CMap)28, which contains genome-wide testing on approximately 1,300 drugs, 

wherein the differential profile for a drug was generated by comparing cultured cells 

treated with the drug to untreated control cultures. 

Here, we applied our existing computational drug repositioning pipeline to identify 

drug profiles with significantly reversed differential gene expression compared to 
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several diverse input signatures for SARS-CoV-2 effects on human cells. By taking into 

account a broader view of differentially expressed gene sets from both cell line and 

organoid disease models and human samples, the predictions are complementary to 

other drug discovery approaches. We identified 102 unique drug hits, from which 25 

were identified in at least two of the signatures, several of which have been already 

investigated in clinical trials. We furthermore explore our findings in the context of other 

computational drug repurposing efforts for COVID-19. Finally, we tested 16 of our top 

predicted hits in live SARS-CoV-2 antiviral assays. Four of the top predicted inhibitors 

were tested for virus inhibition in a human lung cell line, Calu-3, infected with SARS-

CoV-2 with quantitation of the secreted virus assessed by RT-qPCR assay. Thirteen 

predicted inhibitors (including one tested in Calu-3) were incubated with SARS-CoV-2 

infected human embryonic kidney 293T cells overexpressing ACE2 (293T-ACE2) with 

viral replication determined using an immunofluorescence-based assay.  
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RESULTS 

In this study, we applied our drug repositioning pipeline to SARS-CoV-2 

differential gene expression signatures derived from publicly available RNA-seq data 

(Figure 1). The transcriptomic data were generated from distinct types of tissues, so 

rather than aggregating them together, we predicted therapeutics for each signature 

and then combined the results. We utilized three independent gene expression 

signatures (labelled “ALV”, “EXP”, and “BALF”), each of which consisted of lists of 

differentially expressed genes between SARS-CoV-2 samples and their respective 

controls. The ALV signature was generated from human adenocarcinomic alveolar 

basal epithelial cells by comparing SARS-CoV-2 infection to mock-infection conditions24. 

The EXP signature originated from a study where organoids, grown from human 

intestinal cells expanded in Wnt-high expansion media, were infected with SARS-CoV-2 

and then compared to controls26. The BALF signature was from a contrast of primary 

human BALF samples from two COVID-19 patients versus three controls27. Each of 

these signatures was contrasted with drug profiles of differential gene expression from 

CMap.  

For each of the input signatures, we applied a significance threshold false 

discovery rate (FDR) < 0.05. We further applied minimum fold change thresholds in 

order to identify the driving genes. The ALV signature had only 120 genes, with 109 

genes shared with the drug profiles; in order to maintain at least 100 genes for the 

pattern-matching algorithm to work with, we applied no fold-change threshold. For the 

EXP signature, we applied a |log2FC| > 2 cutoff, resulting in 125 genes for the 

expansion signature (108 shared with the drug profiles). For the BALF signature, we 
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processed the raw read count data to calculate differential gene expression values. We 

applied a |log2FC| > 4 cutoff, with the BALF data yielding 1,349 protein-coding genes for 

the lavage fluid signature (941 shared with the drug profiles). The gene lists for each of 

these signatures can be found in the supplement (Tables S1, S2, S3). 

We used GSEA (Gene Set Enrichment Analysis)29,30 to annotate enriched 

Hallmark pathways from each of the input signatures (Figure 2A). A number of 

pathways common to at least two signatures were found. Interferon alpha response and 

interferon beta response were upregulated in the ALV and EXP signatures. 

Adipogenesis and cholesterol homeostasis pathways were downregulated in the EXP 

and BALF signatures. KRAS signaling, and mTORC1 (mammalian target of rapamycin 

complex 1) signaling were enriched in all three signatures, but not in the same direction, 

showing the diversity of effects SARS-CoV-2 may have on human cells, and highlighting 

a need for utilization of diverse profiles as we do in the present study. When we look at 

the contributing genes within the three signatures (Figure 2B), we found one 

overlapping upregulated gene - Dickkopf WNT Signaling Pathway Inhibitor 1 (DKK1). 

We used the publicly available single-cell RNAseq dataset GSE12803331 composed of 

13 patients (4 healthy, 3 presenting with mild COVID-19 symptoms, and 6 presenting 

with severe COVID-19 symptoms) to further characterise the expression of DKK1 

(Figure S1). Data were re-analyzed following the standard Seurat pipeline. From the 

analyses of the single-cell data, DKK1 is highly expressed in COVID-19 patients 

compared to controls, specifically in severe patients and it is expressed by epithelial 

cells. 
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After analyzing the input SARS-CoV-2 signatures, we utilized our repositioning 

pipeline to identify drugs with reversed profiles from CMap (Figure 1). Significantly 

reversed drug profiles were identified for each of the signatures using a permutation 

approach: 30 hits from the ALV signature (Table S4), 15 hits from the EXP signature 

(Table S5), and 86 hits from the BALF signature (Table S6). When visualizing the gene 

regulation of the input signatures and their respective top 15 drug hits, the overall 

reversal pattern can be observed (Figure 2C-E). In total, our analysis identified 102 

unique drug hits (Table S7). Twenty-five common drug hits were shared by at least two 

of the signatures (p = 0.0334), with four consensus drug hits (bacampicillin, clofazimine, 

haloperidol, valproic acid) across all three signatures (p = 0.0599) (Table 1, Figure 3A). 

We further characterized the common hits by examining their interactions with 

proteins in humans. We used known drug targets from DrugBank32 and predicted 

additional targets using the similarity ensemble approach (SEA)33. We visualized the 

known interactions from DrugBank in a network (Figure 3B). We also aggregated the list 

of proteins which were found in DrugBank for at least 2 of the common hits (Table S9). 

The proteins with the most known interactions with our list of 25 drugs included 

adrenergic receptors (particularly α2 adrenoreceptors), dopamine receptors, and 

serotonin receptors. 
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Drug hit Description (current 
uses) 

ALV 
Reversal 
Score 

EXP 
Reversal 
Score 

BALF 
Reversal 
Score 

Bacampicillin Antibiotic 0.789 0.790 0.596 

Benzocaine Anesthetic n.s. 0.766 0.546 

Ciclopirox Antifungal n.s. 1 0.361 

Ciclosporin Immunosuppressant (RA, 
psoriasis, Crohn’s) 

0.756 n.s. 0.409 

Clofazimine Antimycobacterial (leprosy) 0.946 0.893 0.558 

Co-dergocrine 
mesilate 

Ergoid mesylate (dementia, 
Alzheimer’s, stroke) 

0.775 n.s. 0.553 

Dicycloverine Antispasmodic (IBS) 0.847 n.s. 0..461 

Fludrocortisone Corticosteroid n.s. 0.782 0.519 

Fluticasone Steroid (asthma, COPD) 0.790 n.s. 0.463 

Haloperidol Antipsychotic 
(schizophrenia) 

0.937 0.773 0.507 

Isoxicam NSAID n.s. 0.873 0.410 

Lansoprazole Proton-pump inhibitor (acid 
reflux) 

0.856 n.s. 0.370 

Levopropoxyphene Antitussive n.s. 0.835 0.770 

Lomustine Antineoplastic (Hodgkin’s 
disease, brain tumors) 

0.748 n.s. 0.338 

Metixene Anticholinergic 
(Parkinson’s) 

0.759 n.s. 0.344 

Myricetin Flavonoid n.s. 0.823 0.603 

Niclosamide Anthelmintic (tapeworms) 0.812 n.s. 0.360 

Nocodazole Antineoplastic 0.766 n.s. 0.439 

Pentoxifylline Vasodilatory and anti-
inflammatory  (claudication) 

n.s. 0.791 0.552 

Sirolimus Immunosuppressive n..s. 0.768 0.729 
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Thiamazole Antithyroid agent (Graves 
disease) 

n.s. 0.796 0.724 

Tocainide Antiarrhythmic 0.798 n.s. 0.714 

Tretinoin Vitamin A derivative (acne, 
acute promyelocytic 
leukemia) 

n.s. 0.854 0.579 

Valproic acid Anticonvulsant (seizures, 
bipolar disorder) 

0.917 0.786 0.546 

Zuclopenthixol Antipsychotic 
(schizophrenia) 

0.754 n.s. 0.535 

Table 1. Therapeutic hits reversing at least 2 of input SARS-CoV-2 signatures. A wide 
variety of drugs were identified by the analysis of multiple signatures. Drug reversal 
scores are normalized for each signature; drug entries marked “n.s.” were not significant 
for reversing that signature. 
 

To confirm the validity of our approach, the inhibitory effects of 16 of our drug hits 

which significantly reversed multiple SARS-CoV-2 profiles were assessed in live 

antiviral assays. The inhibitory effects of haloperidol, clofazimine, valproic acid, and 

fluticasone were evaluated in SARS-CoV-2 infected Calu-3 cells (human lung epithelial 

cell line), with remdesivir also tested as a positive control. From these five, remdesivir 

and haloperidol inhibited viral replication (Figure 4A), and the inhibitory effect was also 

observed by microscopy (Figure 4B). 

Additionally, 13 drugs (bacampicillin, ciclopirox, ciclosporin, clofazimine, 

dicycloverine, fludrocortisone, isoxicam, lansoprazole, metixene, myricetin, 

pentoxifylline, sirolimus, tretinoin) were assessed in a live SARS-CoV-2 antiviral assay. 

Remdesivir was again used as a positive control. This testing involved six serial 

dilutions of each drug to inhibit the replication of SARS-CoV-2 in 293T-ACE2 cells using 

an immunofluorescence-based antiviral assay34. All antiviral assays were paired with 

cytotoxicity assays using identical drug concentrations in uninfected human 293T-ACE2 
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cells. Positive control remdesivir and 10 of our predicted drugs (bacampicillin, ciclopirox, 

ciclosporin, clofazimine, dicycloverine, isoxicam, metixene, pentoxifylline, sirolimus, and 

tretinoin) showed antiviral efficacy against SARS-CoV-2, reducing viral infection by at 

least 50%, that was distinguishable from their cytotoxicity profile when tested in this cell 

line (Figure 5). Several inhibitors showed micromolar to sub-micromolar antiviral 

efficacy, including clofazimine, ciclosporin, ciclopirox, and metixene. These results not 

only confirm our predictive methods, but have also identified several clinically-approved 

drugs with potential for repurposing for the treatment of COVID-19. 
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DISCUSSION 

Here, we used a transcriptomics-based drug repositioning pipeline to predict 

therapeutic drug hits for three different input SARS-CoV-2 signatures, each of which 

came from distinct human cell or tissue origins. We found significant overlap of the 

therapeutic predictions for these signatures. From 102 total drug hits, 25 drugs reversed 

at least two signatures (p = 0.0334) and 4 drugs reversed all three signatures (p = 

0.0599). The diversity of such signatures yet overlap of highlighted drugs underscores 

the utility of the current pipeline for identification of drugs which might be therapeutic for 

the diverse effects of SARS-CoV-2 infection. 

Twenty-five of our drug hits reversed at least two of the three input signatures 

(Table 3). Notably, 14 of the 15 hits from the EXP signature were also hits for the BALF 

signature, despite being generated from different types of tissue. The EXP signature 

was generated from intestinal tissue, whereas the BALF signature was generated from 

constituents of the respiratory tract. Among the common hits reversing at least two of 

the signatures were two immunosuppressants (ciclosporin and sirolimus), an anti-

inflammatory medication (isoxicam),  and two steroids (fludrocortisone and fluticasone). 

Sirolimus (or rapamycin), an immunosuppressant and an mTOR inhibitor, is currently 

undergoing investigation in several clinical trials in COVID-19 patients (NCT04371640, 

NCT04341675, NCT04461340). Other hits currently in clinical trials for COVID-19 

treatment include ciclosporin (NCT04412785, NCT04392531), niclosamide in 

combination with diltiazem (NCT04558021), and clofazimine in combination with 

interferon beta-1b (NCT04465695).  
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Among our four drug hits that reversed all three signatures, three drugs 

demonstrated in vitro antiviral efficacy - bacampicillin, clofazimine, and haloperidol. Our 

group found haloperidol decreased viral growth in SARS-CoV-2 infected Calu-3 cells 

(Figure 4B) in a dose-dependent manner (Figure 4A). Haloperidol is a psychiatric 

medication that is indicated for the treatment of psychotic disorders including 

schizophrenia and acute psychosis. By blocking dopamine (mainly D2) receptors in the 

brain, haloperidol eliminates dopamine neurotransmission which leads to improvement 

of psychotic symptoms35. Haloperidol can also bind to the sigma-1 and sigma-2 

receptors, which are implicated in lipid remodeling and cell stress response12. As 

reported by Gordon et al12, the SARS-CoV-2 proteins Nsp6 and ORF9c interact with the 

sigma-1 receptor and the sigma-2 receptor2, respectively. Moreover, they found that 

haloperidol decreased viral replication in SARS-CoV-2-infected Vero E6 cells.  In 

another more recent study, Gordon et al found in their analysis of a national electronic 

medical record database that fewer hospitalized COVID-19 patients who were newly 

prescribed haloperidol and other Sigma-binding typical antipsychotic medications 

progressed to requiring mechanical ventilation compared to those who were newly 

prescribed atypical antipsychotic medications that do not bind to Sigma receptors14.  

Our testing of clofazimine demonstrated submicromolar  antiviral effects of this 

drug in SARS-Co-V-2 infected 293T-ACE2 and Vero E6 cells (Figures 4 and S3). 

Clofazimine is an orally administered antimycobacterial drug used in the treatment of 

leprosy. By preferentially binding to mycobacterial DNA, clofazimine disrupts the cell 

cycle and eventually kills the bacterium36. In addition to being an antimycobacterial 

agent, clofazimine also possesses anti-inflammatory properties primarily by inhibiting T 
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lymphocyte activation and proliferation37. Yuan et al. found that clofazimine inhibits 

SARS-CoV-2 replication by interfering with spike-mediated viral entry and viral RNA 

replication. Their work also demonstrated that clofazimine has antiviral efficacy against 

SARS-CoV-2 in human embryonic stem cell-derived cardiomyocytes and in an ex vivo 

human lung culture system, as well as antiviral synergy with remdesivir demonstrating 

the potential of clofazimine as part of a combination treatment regimen for COVID-1938.  

Our group found bacampicillin to have micromolar antiviral efficacy in SARS-Co-

V-2 infected 293T-ACE2 cells. Bacampicillin is an orally administered prodrug of 

ampicillin typically prescribed for treating bacterial infections39. As identified by 

SPOKE40, bacampicillin was found to downregulate the GDF15 gene and upregulate the 

NFKB2 (Nuclear Factor Kappa B Subunit 2) gene in studies by CMap28 and LINCS41. 

The GDF15 protein acts as a cytokine and is involved in stress response after cellular 

injury, and the NFKB2 is a central activator of genes involved with inflammation and 

immune function42. Circulating levels of GDF15 have been found to be significantly 

higher in COVID-19 patients who die43.  Zhou et al.’s work revealed NF-kappa B 

signaling as one of the main pathways of coronavirus infections in humans. While the 

rapid conversion of bacampicillin to ampicillin in vivo makes this prodrug a less optimal 

therapeutic candidate for COVID-19, our findings nevertheless provide insights into the 

immunologic and inflammatory landscape from SARS-CoV-2 infection. 

 Overall, in testing of our drug hits across two human cell line assays, 11 of 16 

exhibited  inhibition of SARS-CoV-2 infection. In particular, three of our four consensus 

drug hits demonstrated antiviral efficacy, with haloperidol showing reproducible 

inhibition in Calu-3 cells, and bacampicillin and clofazimine inhibiting viral activity in 
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293T-ACE2 cells without cytotoxicity. Many of our tested drugs can be administered 

orally, and several are on the WHO Model List of Essential medications, including 

ciclosporin, clofazimine, and haloperidol44. These results suggest that our drug 

repositioning pipeline can rapidly identify readily available potential therapeutics in 

antiviral contexts. 

There are several limitations of our approach that should be recognized. Data 

generated from cell lines (both the ALV and EXP signatures) might not accurately 

represent the biological changes and responses in human infection.  Moreover, 

although the BALF signature was generated from fluid recovered from lavage of 

infected human tissues, this primary response data was aggregated from a very limited 

sample size (2 cases and 3 controls). Gathering samples from a larger number of 

patients should generate a more robust gene expression signature and better inform 

therapeutic predictions. Furthermore, the drug profiles from CMap were generated from 

cell line data; drug data generated from more relevant tissue cultures (e.g. lung tissue) 

may generate more appropriate comparisons.  

The drug development response for SARS-CoV-2 / COVID-19 is rapidly 

developing. One drug, remdesivir, recently received FDA approval for the treatment of 

COVID-19, and numerous other drugs are being actively explored for possible 

therapeutic value in COVID-19 cases. Utilizing a diverse set of transcriptomic SARS-

CoV-2 signatures, our drug repositioning pipeline identified 25 therapeutic candidates. 

Validation experiments revealed antiviral activity for 11 of 16 drug hits. Further clinical 

investigation into these drug hits as well as potential combination therapies is 

warranted.  
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METHODS 

Study design 

            We have previously developed and used a transcriptomics based bioinformatics 

approach for drug repositioning in various contexts including inflammatory bowel 

disease, dermatomyositis, and spontaneous preterm birth. For a list of differentially 

expressed genes, the computational pipeline compares the ranked differential 

expression of a disease signature with that of a profile16,19,28. A reversal score based on 

the Kolmogorov-Smirnov statistic is generated for each disease-drug pair, with the idea 

that if the drug profile significantly reverses the disease signature, then the drug could 

be potentially therapeutic for the disease. 

 

SARS-CoV-2 gene expression signatures 

Blanco-Melo et al. generated a differential gene expression signature using RNA-

seq on human adenocarcinomic alveolar basal epithelial cells infected with SARS-CoV-

2 propagated from Vero E6 cells (GSE147507)24. Due to the fast-moving nature of the 

research topic, we opted to use this cell line data in lieu of waiting for substantial 

patient-level data. This work identified 120 differentially expressed genes (DEGs) – 100 

upregulated and 20 downregulated. We used these 120 genes as the ALV signature for 

our computational pipeline (Table S1). 

Lamers et al. performed RNA-seq on their organoid samples, from which 

differentially expressed genes were calculated. These samples were grown in a medium 
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with a Wnt surrogate supplement and infected with SARS-CoV-2 propagated from Vero 

E6 cells (GSE149312). They detected 434 significant DEGs (FDR < 0.05). We 

additionally applied a fold-change cutoff (|log2 FC| > 2), resulting in 125 genes used as 

the EXP signature (Table S2). 

Xiong et al. performed RNA-seq analysis of BALF samples from two COVID-19 

patients (two samples per patient) and three healthy controls. We processed their raw 

read counts in order to construct a differential signature (see below for details). FASTQ 

files were downloaded from the Genome Sequence Archive45,46 under accession 

number CRA002390. Paired-end reads were mapped to the hg19 human reference 

genome using Salmon (v.1.2.0) and assigned Ensembl genes. After read quality control, 

we obtained quantifications for 55,640 genes in all samples. In order to identify genes 

differentially expressed between cases and controls for the BALF samples, we 

quantified gene expression as raw counts. Raw counts were used as inputs to DESeq2  

(v.1.24.0 R package) to call differentially expressed genes (DEGs). After adjusting for 

the sequencing platform, the default settings of DESeq2 were used. Principal 

components were generated using the DESeq2 function (Figure S2), and heat maps 

were generated using the Bioconductor package pheatmap (v.1.0.12) using the rlog-

transformed counts (Figure S3). Values shown are rlog-transformed and row-

normalized. Volcano plots were generated using the Bioconductor package 

EnhancedVolcano (v.1.2.0) (Figure S4). Retaining only protein-coding genes and 

applying both a significance threshold and a fold-change cutoff (FDR < 0.05, |log2 FC| > 

4), we obtained 1,349 genes to be used as the BALF signature (Table S3). 
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Pathway enrichment analysis 

Functional enrichment gene-set analysis for GSEA (Gene Set Enrichment 

Analysis) was performed using fgsea (v.1.12.0 R package) and the input gene lists were 

ranked by log2 fold change. The 50 Hallmark Gene Sets used in the GSEA analysis 

were downloaded from MSigDB Signatures database29,47. For GO (Gene Ontology) 

terms, identification of enriched biological themes was performed using the DAVID 

database48.  

  

Drug gene expression profiles 

Drug gene expression profiles were sourced from Connectivity Map (CMap), a 

publicly-available database of drugs tested on cancer cell lines28. CMap contains a set 

of differential gene expression profiles generated from treating cultured human cells 

with a variety of different drugs and experimental compounds. These profiles were 

generated using DNA microarrays to assay mRNA expression. These drug profiles are 

ranked genome-wide profiles (~22,000 genes) of the effects of the drugs on various cell 

lines. 6,100 gene expression profiles are presented in CMap. A total of 1,309 

compounds were tested in up to 5 different cell lines. The overlap between the gene 

lists of CMap and the SARS-CoV-2 signature is 109 genes. 

 

Computational gene expression reversal scoring 
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To compute reversal scores, we used a non-parametric rank-based method 

similar to the Kolmogorov-Smirnov test statistic. This analysis was originally suggested 

by the creators of the CMap database and has since been implemented in a variety of 

different settings16–19,22,28. Similar to past works, we applied a pre-filtering step to the 

CMap profiles to maintain only drug profiles which were significantly correlated with 

another profile of the same drug. Drugs were assigned reversal scores based on their 

ranked differential gene expression profile relative to the SARS-CoV-2 ranked 

differential gene expression signature. A negative reversal score indicated that the drug 

had a profile which reversed the SARS-CoV-2 signature; that is, up-regulated genes in 

the SARS-CoV-2 signature were down-regulated in the drug profile and vice versa. 

 

Statistical analysis 

P-values were adjusted using the false discovery rate (FDR; Benjamini-

Hochberg) procedure. P-values for individual drug hits were obtained by comparing 

reversal scores to a distribution of random scores. Negative reversal scores were 

considered significant if they met the criterion FDR < 0.05. For drugs tested multiple 

times (e.g. different cell lines), we used the most reversed profile (lowest negative 

score). For significance values of the number of drugs reversing multiple signatures, we 

constructed distributions of the common reversal (reversing two of three signatures) and 

the consensus reversal (reversing three of three signatures) by randomly sampling the 

same number of drug profiles for each signature from CMap. 

 

Single-cell data analysis 
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Quantification files were downloaded from GEO GSE145926. An individual Seurat 

object for each sample was generated using Seurat v.3. While the data has been 

filtered by 10x's algorithm, we still needed to ensure the remaining cells are clean and 

devoid of artifacts. We calculated three confounders for the dataset: mitochondrial 

percentage, ribosomal percentage, and cell cycle state information. For each sample, 

cells were normalized for genes expressed per cell and per total expression, then 

multiplied by a scale factor of 10,000 and log-transformed. Low quality cells were 

excluded from our analyses— this was achieved by filtering out cells with greater than 

5,000 and fewer than 300 genes and cells with high percentage of mitochondrial and 

ribosomal genes (greater than 10% for mitochondrial genes, and 50% for ribosomal 

genes). SCTransform is a relatively new technique that uses "Pearson Residuals" (PR) 

to normalize the data. PR's are independent of sequencing depththanks49. We "regress 

out" the effects of mitochondrial and ribosomal genes, and the cell cycling state of each 

cell, so they do not dominate the downstream signal used for clustering and differential 

expression. We then performed a lineage auto-update disabled r dimensional reduction 

(RunPCA function). Then, each sample was merged together into one Seurat object. 

Data were then re-normalized and dimensionality reduction and significant principal 

components were used for downstream graph-based, semi-unsupervised clustering into 

distinct populations (FindClusters function) and uniform manifold approximation and 

projection (UMAP) dimensionality reduction was used. For clustering, the resolution 

parameter was approximated based on the number of cells according to Seurat 

guidelines; a vector of resolution parameters was passed to the FindClusters function 

and the optimal resolution of 0.8 that established discernible clusters with distinct 
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marker gene expression was selected. We obtained a total of 21 clusters representing 

the major immune and epithelial cell populations. To identify marker genes driving each 

cluster, the clusters were compared pairwise for differential gene expression 

(FindAllMarkers function) using the Likelihood ratio test assuming an underlying 

negative binomial distribution (negbinom). For visualization of gene expression data 

between different samples a number of Seurat functions were used: FeaturePlot, 

VlnPlot and DotPlot. 

 

Experimental validation  

Cell Lines 

For studies at the Gladstone Institutes, Calu-3 cells, a human lung epithelial cell line 

(American Type Culture Collection, ATCC HTB-55), were cultured in advanced MEM 

supplemented with 2.5% fetal bovine serum (FBS) (Gibco, Life Technologies), 1% L-

GlutaMax (ThermoFisher), and 1% penicillin/streptomycin (Corning) at 37°C and 5% 

CO2. SARS-CoV-2 Isolate USA-WA1/2020 was purchased from BEI Resources and 

propagated and titered in Vero E6 cells.  

Compounds 

Selection of compounds for testing was based on side effect profiles and compound 

availability. Bacampicillin (B0070000), ciclopirox (SML2011-50MG), ciclosporin 

(C2163000), clofazimine (1138904-200MG), dicycloverine (D1060000), fludrocortisone 

(1273003-200MG), fluticasone (1285873-100MG), haloperidol (H1512-5G), isoxicam 
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(I1762-1G), lansoprazole (1356916-150MG), metixene (M1808000), myricetin (M6760-

10MG), pentoxifylline (1508901-200MG), sirolimus (S-015-1ML), tretinoin (1674004-

5X30MG), and valproic acid (1708707-500MG) were purchased from Sigma-Aldrich. 

Remdesivir (GS-5734) was purchased from Selleckchem.  

 

Compounds were resuspended in DMSO according to manufacturer’s instructions and 

serially diluted to the relevant concentrations for treatment of infected cells.  

  

Infection Experiments 

All work involving live SARS-CoV-2 was performed in the BSL3 facility at the Gladstone 

Institutes with appropriate approvals. Calu-3 cells were seeded in 96-well plates for 24h, 

infected with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.05, and treated with 

compounds. 72 hours post infection, supernatant was collected for RNA extraction and 

the RNA was analyzed using RT-qPCR to quantify viral genomes present in the 

supernatant. SARS-CoV-2 specific primers targeting the E gene region: 5’-

ACAGGTACGTTAATAGTTAATAGCGT-3’ (Forward) and 5’-

ATATTGCAGCAGTACGCACACA-3’ (Reverse) were used to quantify cDNA on the 

7500 Fast Real-Time PCR system (Applied Biosystems). Cells were fixed with 

paraformaldehyde and used for immunofluorescence analysis with dsRNA antibody 

(SCICONS) and DAPI stain. Images were acquired and analyzed using ImageXpress 

Micro Confocal High-Content Imaging System.   
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In Vitro Microneutralization Assay for SARS-CoV-2 Serology and Drug Screening 

For studies carried out at Mount Sinai, SARS-CoV-2 was propagated in Vero E6 

cells and 293T-ACE2 cells, as previously described in12,34. Two thousand cells were 

seeded into 96-well plates in DMEM (10% FBS) and incubated for 24 h at 37�°C,5% 

CO2. Then, 2 h before infection, the medium was replaced with 100 μl of DMEM (2% 

FBS) containing the compound of interest at concentrations 50% greater than those 

indicated, including a DMSO control. The Vero E6 cell line used in this study is a kidney 

cell line; therefore, we cannot exclude that lung cells yield different results for some 

inhibitors. Plates were then transferred into the Biosafety Level 3 (BSL3) facility and 100 

PFU (MOI = 0.025) was added in 50 μl of DMEM (2% FBS), bringing the final 

compound concentration to those indicated. Plates were then incubated for 48 h at 

37�°C. After infection, supernatants were removed and cells were fixed with 4% 

formaldehyde for 24 h before being removed from the BSL3 facility. The cells were then 

immunostained for the viral NP protein (an in-house mAb 1C7, provided by Dr. Thomas 

Moran) with a DAPI counterstain. Infected cells (488 nM) and total cells (DAPI) were 

quantified using the Celigo (Nexcelcom) imaging cytometer. Infectivity is measured by 

the accumulation of viral NP protein in the nucleus of the Vero E6 cells and 293T-ACE2 

cells (fluorescence accumulation). Percentage infection was quantified as ((infected 

cells/total cells) − background) × 100 and the DMSO control was then set to 100% 

infection for analysis. The IC50 and IC90 for each experiment were determined using 

the Prism (GraphPad) software. Cytotoxicity was also performed using the MTT assay 

(Roche), according to the manufacturer’s instructions. Cytotoxicity was performed in 
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uninfected VeroE6 cells with same compound dilutions and concurrent with viral 

replication assay. All assays were performed in biologically independent triplicates. 
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