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 8 

Abstract: 9 

Meter-resolution imagery of our world and myriad biodiversity records collected through citizen 10 

scientists and automated sensors belie the fact that much of the planet’s biodiversity remains 11 

undiscovered. Conservative estimates suggest only 13 to 18% of all living species may be known 12 

at this point 1–4, although this number could be as low as 1.5% 5. This biodiversity shortfall 6,7 13 

strongly impedes the sustainable management of our planet’s resources, as the potential 14 

ecological and economic relevance of undiscovered species remains unrecognized 8. Here we use 15 

model-based predictions of terrestrial vertebrate species discovery to estimate future taxonomic 16 

and geographic discovery opportunities. Our model identifies distinct taxonomic and geographic 17 

unevenness in future discovery potential, with greatest opportunities for amphibians and reptiles 18 

and for Neotropical and IndoMalayan forests. Brazil, Indonesia, Madagascar, and Colombia 19 

emerge as holding greatest discovery opportunities, with a quarter of future species descriptions 20 

expected there. These findings highlight the significance of international support for taxonomic 21 
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initiatives and the potential of quantitative models to aid the discovery of species before their 22 

functions are lost in ignorance 8. As nations draw up new policy goals under the post-2020 global 23 

biodiversity framework, a better understanding of the magnitude and geography of this known 24 

unknown is critical to inform goals and priorities 9 and to minimize future discoveries lost to 25 

extinction10. 26 

 27 

Main Text 28 

Previous studies have tackled this challenge through a range of extrapolation techniques 29 

using species discovery curves and expert opinion 1–3,11, but with limited detail beyond 30 

global/continental taxon percentages or counts 12,13. Here we use the effects organismal 31 

characteristics have on discovery probability to provide taxonomic and geographic specificity of 32 

future species discovery 14–17. For example, take one of the largest extant birds, the emu 33 

Dromaius novaehollandiae, which was described in 1790 in a time and region with limited 34 

taxonomic activity; centuries before a small, elusive frog species Brachycephalus guarani, 35 

discovered in 2012 in Brazil (Fig 1a). The difference between the two species matches previous 36 

insights about the effects of body size, range size and taxonomic activity on discovery 16,18–20. 37 

We extend this comparison to eleven biological, environmental, and sociological attributes in a 38 

‘time-to-event’ model framework to estimate the probability a given species’ discovery (event) 39 

over time 21,22 (Supplementary Information).  40 

For all extant species, the modelling framework provides predicted discovery year and 41 

discovery probability at the present (herein 2015) based on the weighted importance of each 42 

assessed attribute. In our earlier example, B. guarani (described in 2012) had a 49% (95%CI: 37-43 

64%) chance of discovery by 2015 given its attributes. Conversely, the discovery probability for 44 
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the emu exceeded 50% already in 1759, increasing to 100% by 2015 (95%CI: 100-100%). When 45 

applied to 32,172 species of amphibians, reptiles, birds, and mammals, the predicted discovery 46 

curves match observed differences in temporal description patterns in the four taxa. Most bird 47 

species saw high discovery probabilities early on, matching the median avian description year of 48 

1845. In contrast, half of all amphibian descriptions occurred after 1972, and modelled discovery 49 

curves accordingly show a slow increase (Fig. 1). 50 

 51 

Fig. 1. Variation in observed and predicted discovery trends for the years 1759-2014 across the four terrestrial 52 

vertebrate groups. (A) Example species and their attributes (standardized to vary from 0 and 1 in each group, 53 

separately). (B-E) Variation in species descriptions over time. Vertical dashed lines indicate the year in which 50% 54 

of the known species were described. (F-I) Time-to-event model-based predictions of discovery probability for each 55 

species (light colours; solid coloured line representing example in A), and average trends across all (coloured 56 

dashed-line). Black lines show the empirical cumulative growth of described species described across time 57 

(expressed as proportion of known species).  58 
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Species’ body size, geographic range size, and taxonomic activity strongly affect 59 

variation in discovery probability, but terrain and environmental conditions also matter 16,19,23. 60 

Species tend to have higher discovery probability if they are large-bodied, wide-ranged, located 61 

in cold climates or characterized by, at the time, low taxonomic activity or low human density 62 

(Fig. 2). The magnitude, and sometimes also direction, of effects differs somewhat among the 63 

four groups. It also varies across time, reflecting developments in taxonomists’ modes and 64 

toolbox, as well as changes in the kinds of species left to be discovered (Fig S3-S6). For 65 

example, among more recently discovered species, body size or human density have lost 66 

predictive strength. In amphibians, higher elevations are less of a constraint on discovery 67 

probability than in the past, whereas the recency of mammal discovery continues to be associated 68 

with higher elevations. Among bird species described since the mid-20th century, wetter 69 

locations have yielded later discoveries, but not so prior to that time. Notably, in amphibians and 70 

reptiles, clades and regions with more active taxonomists remained those with greatest discovery 71 

potential. This highlights how gaps in taxonomic expertise continue to limit our recognition of 72 

species. 73 

Averaged across species in an assemblage or clade, the divergence of modelled discovery 74 

probability from 100% informs the portion of species yet to be discovered given past modes of 75 

description. Among vertebrate clades with >5 species, South American shrew opossums 76 

(Paucituberculata), dibamids, geckos and relatives, wall lizards and other lacertids emerge as 77 

having the greatest relative undescribed diversity (Fig. 3). Scaled by groups’ species count, the 78 

models identify several frog clades, geckos and iguanas and their relatives, and snakes as the 79 

vertebrate groups with the highest expected number of future species discoveries. Among 80 

mammals, rodents and bats feature in the top ten higher-level taxa, partly reflective of the 81 
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already large described diversity of these groups 24. Cross-validation with holdout data on past 82 

discoveries indicate a strong predictive power of our framework and suggest robustness across 83 

groups (Extended Data, Figs S8, S14). While some of the identified taxonomic discovery 84 

hotspots are not unexpected, our evaluation across all terrestrial vertebrates offers a transparent 85 

quantitative comparison in support of taxonomic research priorities. 86 

 87 

Fig. 2. Joint effects of species-level attributes on discovery probability over different time periods. Standardized 88 

coefficients above 0 indicate that species with high values for a given attribute had higher discovery probability 89 

(prob.) and thus were likely discovered early on. Negative standardized coefficients mean high attribute values 90 

depressed discovery probability and delayed discovery. The vertical colour gradients illustrate the variation in 91 

coefficient from all (bottom) to more recently described species as species are successively removed from the 92 

analysis. Coefficients include 95% confidence intervals as horizontal bars.   93 
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 94 

  

Fig. 3. Predicted future discovery potential across major terrestrial vertebrate taxa. Bar height indicates the 95 

percentage of all future terrestrial vertebrate discoveries predicted to occur in the taxon, with error bars indicating 96 

95% confidence intervals. Bar colours show the proportion of undiscovered species within each vertebrate class, 97 

standardized to vary from 0 to 1 (see Supplementary Information). See Figs S16-S19 (Extended Data) for the full set 98 

of discovery metrics at family level. 99 

Both the facilitators of species discovery – such as fieldwork and systematics initiatives – 100 

and the drivers of undiscovered species’ demise – such climate- and land-use change – are 101 

strongly place-based 25,26. We therefore extended our discovery predictions to geographic space. 102 

We mapped attribute-driven discovery probabilities across species distributions while applying a 103 

subsampling procedure accounting for range-size driven variation in representation 27. As the 104 
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locations with highest number of expected future discoveries (Fig. 4), we identify the Tropical 105 

Andes and the Atlantic Forest, the Eastern Afromontane and West African Guinean Forests, 106 

Madagascar, and the Western Ghats, Sri Lanka, Indo-Burma, and Philippines and New Guinea 107 

Forests. Projected unknown species richness covaries with extant species richness (Spearman r = 108 

0.87–0.90), but discovery hotspots also included locations with relative limited extant diversity 109 

such as the Southern Andes and Caatinga region. Validations with observed discoveries strongly 110 

support these projected spatial discovery patterns across different spatial resolutions (Spearman r 111 

= 0.71–0.92 for all groups, see Extended Data Figs S9-S12, S15). 112 

Expertise, support, and incentives for future discovery are ultimately tied to nations – the 113 

stewards of these unknown biological resources. Aggregating our spatial estimates to countries 114 

highlights several South American and South Asian nations and Madagascar as countries with 115 

highest projected future discoveries, i.e. greatest “discovery debt” or conversely, “biodiversity 116 

reward” (Fig. 4, and Fig. S25, Extended Data). These countries are home to a large diversity of 117 

taxa with attributes indicative of low discovery rate to date, and thus likely contain many 118 

expected future discoveries. Brazil stands out with multiple diversity centres across its large area, 119 

holding ca. 10.5–10.8% of all projected future discoveries, which largely coincides with the 120 

10.8–13.4% of ant genera discovery projected for this country 13. Other top discovery debt 121 

countries for terrestrial vertebrates include Indonesia (5.0–5.7%), Madagascar (3.9–4.9%), and 122 

Colombia (4.1–4.4%).  123 

Reflecting their class-wide high discovery potential, reptiles constitute the greatest 124 

portion of this future prospect. Undiscovered reptiles are expected in more arid regions, such as 125 

Australia, Iran, and Argentina, correlating with existing centres of reptile diversity and 126 

endemism 28. In the tropics, many countries owe most future discoveries to amphibians, 127 
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particularly in southern Asia and northern South America (Extended Data, Fig. S25). Discovery 128 

potential for mammals is more limited and concentrated in recent description hotspots such as 129 

Madagascar. Compared to other taxa and reflecting their flattened description curve (Fig. 1), the 130 

discovery potential for birds is low, but given past trends the model estimates further discoveries 131 

especially in Peru, Colombia, Brazil, and Philippines.  132 

 133 

Fig. 4. Global variation in predicted discovery potential, quantified as the percent of all global terrestrial vertebrate 134 

discoveries predicted to occur in a region. (A) Variation across 220km grid cells, standardized to percent of total 135 

discoveries. (B) Variation among countries, with colours showing mean discovery potential, expressed as country-136 

wide proportion (prop.) of undiscovered species (spp.) and standardized to vary from zero to one. Pie charts 137 

illustrate the predicted distribution of discoveries among the four vertebrate classes in each country (“Global” in 138 

legend shows the global pattern); pie chart size indicates the country-wide total, with dashed grey lines indicating 139 

the 95% confidence interval. See Figs S20-S24 (Extended Data) for maps of the discovery metrics at different 140 

spatial resolutions. 141 
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9 

 

Research on quantifying species discovery shortfalls is by definition imprecise, with 142 

absolute estimates of undiscovered species differing by orders of magnitude 1,3,5. We focused on 143 

the geographic and taxonomic differentiation in discovery potential and used a well-known 144 

subset of global biodiversity to develop a generalizable framework to address this challenge. We 145 

do not expect that our discovery projections will hold up in exact form. The present estimates are 146 

a direct reflection of past description processes and their correlates, and any forward 147 

interpretation therefore needs to recognize intrinsic limitations. Despite ongoing calls for 148 

taxonomic standardization and stability 29,30, species also represent scientific hypotheses that are 149 

sometimes revisited, refuted, or revalidated 31,32. Our models therefore are not able to distinguish 150 

operational definitions of valid species and the potential heterogeneous associations arising from 151 

variable practices around, e.g., recognizing cryptic species or splits 33. There may also be parts of 152 

the multivariate predictor space that lack data to inform the model and thus miss actual discovery 153 

opportunities. Nevertheless, extensive model validations confirmed a strong predictive ability for 154 

species discoveries and highlight the potential to increase discovery rates through the use of 155 

quantitative frameworks such as the one presented. 156 

Our findings indicate that discovery gaps hinder the safeguarding and realization of 157 

biodiversity for certain kinds of species and for select places and countries much more than 158 

others. We show that specific countries require increased capacity and support to address this 159 

challenge. After centuries of efforts by biodiversity explorers and taxonomists, the catalogue of 160 

life still has too many blank pages. Extending the presented approach to other taxa has the 161 

potential to underpin taxonomic research initiatives that help speed up discovery before species 162 

are lost in ignorance 34. With discussions of the Post-2020 Global Biodiversity Framework 163 
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10 

 

ongoing, we urge intergovernmental recognition of the unevenness in this knowledge shortfall 164 

and of the growing scientific opportunities to address it. 165 

 166 

METHODS 167 

We used species-level biological, environmental, and sociological attributes to parameterize 168 

time-to-event models of discovery probability across time in birds, mammals, amphibians, and 169 

reptiles 21. The models provided for each species an estimated probability of discovery in the 170 

present time given its attributes. We used these species predictions to characterize the major 171 

taxonomic and geographic groups they are part of for their future discovery potential. 172 

Specifically, for major taxa and assemblages worldwide the central tendency (geometric mean) 173 

of model-driven discovery probability of its member species informed an estimate of the 174 

proportion of their known vs. yet to discovered species richness. 175 

 176 

Species data 177 

We compiled trait data for nearly all extant species of terrestrial vertebrates 28,35, excluding 178 

those with uncertain geographic distribution, that is, species with occurrence reported only at the 179 

level of administrative units – country, states, etc – without precise location. We also excluded 180 

species described after 2014 to minimize potential biases from their potentially incomplete 181 

geographic characterization. Overall, our dataset comprised 32,878 species of terrestrial 182 

vertebrates: 7202 species of amphibians, 10,004 of reptiles, 5679 of mammals, and 9993 of birds 183 

(Data S1). Taxonomic nomenclature followed the same adopted in original data sources 28,36–39. 184 

 185 

Species-level attributes 186 
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Previous studies have shown that recently described species often have smaller body sizes 187 

and narrower geographic range compared to those described earlier 16,17. But species detectability 188 

and discovery may be affected by a range of other attributes, such as the environmental and 189 

socioeconomic conditions where the species occurs, and the taxonomic knowledge of a given 190 

taxon or region 16,17,40. We considered a total of eleven putative correlates of discovery 191 

probability (see Data S5): 192 

(i) Body size. Larger animals are easier to detect thus being described first 16,17,23,41. 193 

Information on maximum body size was compiled from available data sources: amphibians 194 

42, reptiles 43–47, mammals 38,48, and birds 49. We complemented these data sources by 195 

inspecting the literature for body size information of species without data. In the end, we 196 

obtained body size data for 6869 (95.2%) species of amphibians, 9852 (99.7%) of reptiles, 197 

5208 (91.4%) of mammals, and 9123 (91.3%) of birds. For amphibians, body size was 198 

represented by snout-vent length (in mm, anurans) or total length (in mm, caecilians and 199 

salamanders). Reptiles had their body length measures converted into masses (g) using 200 

taxon-specific allometric equations available in the literature for squamates 43 or here 201 

developed for chelonians (Supplementary Information, Table S1). Birds and mammals had 202 

their body size represented by masses (g), as provided in the available data sources 38,49. 203 

For 870 bird species with missing body size data, we used the genus-level mean body size 204 

as originally provided in 49. For the remaining species without body size data, we 205 

performed a phylogenetic imputation using the fully-sampled global phylogenies made 206 

recently available 37,38,50 in concert with the R package Rphylopars 51. We discarded seven 207 

reptile species due to the lack of both body size and phylogenetic data (Agama congica, 208 

Bothrochilus montanus, Gerrhosaurus intermedius, Hemidactylus benguellensis, 209 
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Leptotyphlops lepezi, Rhoptropus benguellensis, R. montanus). To account for uncertainty 210 

in the fully sampled phylogenies, we used 100 trees of each vertebrate group to perform 211 

imputations. We loaded the named species-level data (including missing values) and ran 212 

phylopars function using Brownian motion (BM) as model of trait evolution. We then 213 

matched the imputed values back to the taxonomy and summarized the BM imputations 214 

across the 100 trees as medians for each species. All body size measures were log10 215 

transformed before phylogenetic imputations. Overall, we imputed body size for 333 216 

species of amphibians, 23 of reptiles, 492 of mammals. We assumed intraspecific variation 217 

in body size to be negligible relative to interspecific variation. 218 

(ii) Geographic range size. Widely distributed species tend to be locally abundant 52,53 and are 219 

therefore easier to find, being described earlier than narrowly distributed species 16,17,23,41. 220 

We overlaid expert-based extent-of-occurrence range maps of each species with an equal-221 

area grid of 110 ×110 km cell size. Range maps were extracted from 39,54 for amphibians, 28 222 

for reptiles, 35,38,54 for mammals, and 35,36 for birds. Range size was then measured as the 223 

number of grid cells intersected by each species. Only the native and breeding range of 224 

species were considered for these computations. Presence of a species in a grid cell was 225 

recorded if any part of the species distribution polygon overlapped with the grid cell. 226 

(iii) Range rarity. Biodiversity researchers may prefer to work in areas with many or 227 

geographically rare species, and describe first the species from those areas 25,55. A 228 

commonly used metric of rarity is the total range size rarity, also called endemism 229 

richness, defined as the sum of the inverse range sizes of all species present in a place 56. 230 

To represent rarity at the species-level, we used the average endemism-richness within 231 

each species’ range. However, grid cells (regions) that currently harbour many and/or rare 232 
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species had not always been known as such, since known richness and endemism patterns 233 

may change through time as species descriptions progressed. To better capture the 234 

variation in range rarity across time, we computed the endemism richness using only 235 

species described from 1758 to x, where x varied from 1758 to 2014. Then, for each 236 

species, we computed the average known within-range endemism richness at the year it 237 

was described. 238 

(iv) Annual precipitation. Early descriptions dates are on average low for species occurring in 239 

Europe, North America, and western Asia 57. These later regions have received substantial 240 

taxonomic effort, which explains their higher levels of inventory completeness relative to 241 

tropical and desert-like environments 25. Thus, it is reasonable to consider that early 242 

naturalists were trained in temperate regions and therefore they explored first species from 243 

relatively dry regions 16,58–60. We calculated the average annual precipitation in each equal-244 

area grid cell at 110 ×110 km of spatial resolution and then computed the average within-245 

range annual precipitation for each species using the 1 km climatic layer from 61. 246 

Computations were performed in the R software 62 using the extract function of ‘raster’ 247 

package 63. 248 

(v) Annual mean temperature: Following the reasoning aforementioned, early naturalists were 249 

trained in temperate regions and therefore they explored first species from cold regions 250 

16,58,59. We calculated the average temperature (annual mean) in each equal-area grid cell at 251 

110 ×110 km of spatial resolution and then computed the average within-range temperature  252 

for each species using the 1 km climatic layer from 61.  253 

(vi) Precipitation seasonality. Early naturalists were trained in temperate regions and therefore 254 

they explored first species from high seasonal regions 23,58. We calculated average within-255 
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range precipitation seasonality (coefficient of variation) for each species using the 1 km 256 

climatic layer from 61.  257 

(vii) Temperature seasonality. Early naturalists were trained in temperate regions and therefore 258 

they explored first species from high seasonal regions 16,58,59. We measured average within-259 

range annual temperature seasonality (standard deviation) for each species using the 1 km 260 

climatic layer from 61. Although climatic conditions might not have been necessarily stable 261 

over the last centuries, we assumed that average conditions from 1979-2015 represented 262 

similar climatic conditions from the 18th to 20th centuries. We argue that averaging 263 

climatic variables within species geographic range may both dilute the temporal variations 264 

in local climate and avoid the uncertainty associated with extrapolating fine resolution 265 

climatic data to past times of low density (or even absence) of weather stations. 266 

(viii) Elevation. Mountainous regions might have limited accessibility, likely impeding early 267 

species descriptions from higher elevations 25,40. Although early taxonomists and 268 

naturalists likely explored low elevation regions first, we avoided computations of 269 

minimum within-range elevation since species with coastal distribution could show biased 270 

values that do not necessarily reflect the most common elevation where they occur. We 271 

computed the mean elevation within each equal-area grid cell at 110 ×110 km of spatial 272 

resolution, using the 1 km global topography layer from 64. We then extracted the average 273 

within-range elevation for each species. 274 

(ix) Human density: A species may be described if human population density within its 275 

geographic range surpass a detectability threshold that enhance its discovery probability 276 

23,40. Such detectability is expected to be low before the species description (too few or 277 

even no humans overlapping the species geographic range) and irrelevant after its 278 
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discovery (human density might change but the formal description already happened). 279 

Thus, an informative measure of geographic range overlap with human settlements should 280 

consider the year of species description. Earlier descriptions occurred at times of low 281 

human density and much likely involved easily detectable species, whereas more recent 282 

descriptions have coincided with times of high human density. We therefore expect a 283 

positive association between human density and year of description. To quantify the 284 

influence of humans on species description, we computed the average human density 285 

within the species’ range at the exact year of its description (for all species described after 286 

2000), or at the closest decade (for all species described before 2000). Historical data on 287 

human density data was obtained from 65 at the spatial resolution of 5 arc-min (~10 km).  288 

(x) Activity per family. In general, taxonomists tend to discover the ‘obvious’ first and 289 

‘obscure’ later. Species like the emu (Fig. 1) were quickly noticed by taxonomists, even in 290 

times of low taxonomic activity (relative to current trends). However, other species exhibit 291 

high conspicuousness and likely required more attention to be taxonomically noticed. This 292 

level of attention is what we refer here as taxonomic activity. In increasing the number of 293 

active taxonomists per family, a potentially inconspicuous or cryptic species may receive 294 

enough attention to have its discovery unveiled by taxonomists. Otherwise, a species may 295 

remain unknown while the taxonomic activity within its family is kept low. Similarly to 296 

human population, the number of taxonomists has increased over time, with fewer 297 

taxonomists authoring early species descriptions 66. Therefore, we expect species described 298 

long ago to show low within-family taxonomic activity, and consequently high discovery 299 

probability. We used the number of authors of each species description as a proxy for 300 

taxonomic activity. We standardized the surnames included in the authority name of each 301 
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species to lowercase letters without special characters. For each species, we identified the 302 

taxa described in the same family and year as the focal taxon and then calculated the 303 

aggregate number of unique active taxonomists. Because the number of active taxonomists 304 

in a given year is expected to increase as more species are described in that year, we 305 

standardized this measure by dividing it by the number of within-family descriptions in the 306 

respective year. Computations were performed using the stringr 67 and splitstackshape 68 307 

R-packages. 308 

(xi) Activity per bioregion. In a similar way to the influence of taxonomic activity per family, a 309 

new species may go unnoticed while the number of taxonomists working within its 310 

geographic range remain too low or even non-existent. Under low levels of taxonomic 311 

activity, those easy to find species are likely described first. In other words, species with 312 

high ‘taxonomic conspicuousness’ may require eyes from more taxonomists. Following the 313 

trend of increasing the number of taxonomists per species over time 66, we expect early 314 

described species to show low within range taxonomic activity, in contrast to recent 315 

described species. These computations followed those for the taxon level, but with species 316 

instead subset by geography. Specifically, we used the biogeographical realm and biome 317 

classification proposed in 69 to compute the percentage overlap between species geographic 318 

ranges and realm-biome combination, or bioregion 70 (e.g. Tropical and subtropical moist 319 

broadleaf forests in the Neotropics). Each species was classified as typical of a given 320 

bioregion if it either occurred in at least 25% of the bioregion or the bioregion intersected 321 

with at least 25% of its geographic range (species could be typical of multiple bioregions). 322 

For each species, we then selected its ‘typical’ bioregion and extracted all other species 323 

described in the same year and co-occurring in the same bioregion as focal taxon. We then 324 
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summed the number of unique taxonomist names that described species within the selected 325 

bioregion and divided it by the number of within-bioregion descriptions to obtain a 326 

measure independent of the number species descriptions. We recognize that our metrics of 327 

taxonomic activity might be affected by duplicated names (same taxonomist entered with 328 

the different surname) or homonyms (taxonomists with the same surname), but given the 329 

spatial, taxonomic, and temporal constraints applied, we expect this issue to be negligible. 330 

 331 

Since all our predictor variables vary over many orders of magnitude, we log10 transformed 332 

them to reduce their skewness. We examined multicollinearity of the predictor variables using 333 

the Variance Inflation Factor (VIF). Predictors holding VIF values > 10 are regarded as having 334 

high multicollinearity and should be excluded from the model 71. As none of our predictors 335 

achieved VIF > 5 (Supplementary Information, Table S2), we kept all of them for the subsequent 336 

analysis. VIF computations were performed with the ‘usdm’ R package 72. 337 

 338 

Time-to-event models 339 

We used time-to-event analysis, also known as survival analysis 21, to assess the effect of 340 

species-level attributes on the description rates observed in a given vertebrate class. Time-to-341 

event analysis is commonly used in the medical, engineering, and social sciences to assess 342 

factors influencing the probability of an event (e.g., death, mechanical failure, getting a job), but 343 

has also been used in ecological studies 22,73,74. In our analysis, the event of interest is the species 344 

description date and the measure of time the number of years passed until this date since 1758, 345 

the beginning of modern taxonomy through Linnaeus 75. Although our species data covers the 346 

period from 1758 to 2014, we did not use species described in the year 1758 itself to avoid the 347 
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large number of descriptions due to Linnaeus work 75. Overall, our class-level time-to-event 348 

models were informed by 7,185 species of amphibians, 9,889 of reptiles, 9,557 of birds, and 349 

5,541 of terrestrial mammals described between 1759 and 2014. 350 

Specifically, we modelled time-to-description using Accelerated Failure Time (AFT) 351 

model, which is a parametric time-to-event model to evaluate covariate effects on the 352 

acceleration/deceleration of the probability of an event 76. The output of the AFT model includes 353 

the probability of a given species to have remained unknown across time, i.e. its survival 354 

probability. We define the 1 minus species survival probability as species discovery probability 355 

(Fig. 1). This discovery probability is always increasing; as time moves forward, we accumulate 356 

chances to discover an unknown species. 357 

We initially ran a model selection procedure to identify the family error distribution that is 358 

best suited to our time-to-description variable 77. For each of the four vertebrate classes, we built 359 

null AFT models (Time to event ~ 1) using six different family error distributions (Exponential, 360 

Weibull, Log-normal, Log-logistic, Gamma, and Gompertz) available in the flexsurvreg function 361 

from the ‘flexsurv’ R package 78. We then identified the model offering the best error family 362 

distribution using the Bayesian Information Criterion (BIC) 79. Once the best family error 363 

distribution was selected, we proceeded with the subsequent analysis using the predictor 364 

variables. 365 

Given the high number of possible models using all predictor combinations (211 – 1 = 2047 366 

models), it may be difficult to find an overwhelmingly supported model because the best 367 

predictors (if any) will have their importance diluted among multiple models 80. Hence, to 368 

incorporate the uncertainty around the variable selection procedure into our model coefficients, 369 

we passed the predictors through a model averaging procedure 81 and for each possible AFT 370 
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model obtained the standardized coefficients. Computations performed using the ‘MuMIn’ 82 and 371 

‘stats’ 62 R packages. 372 

 373 

Species-level predictions 374 

For every possible AFT model we computed the discovery probability of each species in 375 

year 2015 (herein considered as ‘present time’, Data S1). To relate this value to observed 376 

description dates, we used a threshold of 0.5 to convert the estimated discovery probability for a 377 

given time step into a predicted description and extracted the corresponding year as predicted 378 

description date. We note that the discovery curves returned by an AFT model have the same 379 

shape but a different position along the time axis, the latter being determined by the covariates of 380 

each species. Because of that, using a different threshold for the binary conversion does not 381 

affect the slope of the relationship between the observed and estimated description dates, only 382 

the intercept changes if a different threshold value is applied. This procedure yielded for every 383 

species and each of the 2,047 AFT models i) a discovery probability in year 2015 and ii) a 384 

predicted description date. We weighted these metrics by the relative BIC weights (wBIC) of 385 

their models to arrive at species-level discovery metrics used in subsequent analyses. 386 

Computations performed using the ‘MuMIn’ R package 82. All species-level estimates are 387 

available through Data S1 file. 388 

 389 

Taxon-level predictions 390 

We used the species-level predictions of discovery probabilities to characterize individual 391 

families and higher-level groupings for their potential for future discoveries. Specifically, we 392 

estimated the taxon-level proportion of known species to date (PropKnown) as the central 393 
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tendency (geometric mean) of discovery probability of its member species 22. We also obtained 394 

the known species richness (KnownSR) per taxon, and used both PropKnown and KnownSR to 395 

calculate total richness (TotalSR) through a rule of three: TotalSR = KnownSR × 100 / 396 

PropKnown. If the PropKnown of a given taxon was 100%, then all species were expected to be 397 

described in the respective taxon, and TotalSR = KnownSR. If PropKnown was < 100%, then 398 

TotalSR > KnownSR, and the difference between these variables represented the unknown 399 

species richness: UnknownSR  = TotalSR – KnownSR. The proportion of unknown species 400 

(PropUnknown) was given by 1 minus PropKnown. We highlight that PropKnown (our measure 401 

of central tendency), represents a snapshot of the current biodiversity knowledge for a given 402 

species sample. In approaching saturation of species discovery in a sample, PropKnown is 403 

expected to shift towards 100%. We only computed these metrics for families and higher-level 404 

groupings holding five or more species. 405 

For mammals and birds, we used taxonomic orders as the highest-level taxonomic rank, 406 

although we split Passeriformes birds into Oscines and Suboscines. In amphibians and reptiles, 407 

orders are highly uneven in size, which led us to use a more informative higher-level grouping 408 

for them. For amphibians, we kept the orders Gymnophiona (caecilians) and Caudata 409 

(salamanders and relatives), and followed 83 to divide the order Anura into four groups: (i) non-410 

Neobatrachia (some primitive anuran families), (ii) Hyloidea taxon within Neobatrachia, 411 

including most frog species from the Neartic and Neotropic realms, (iii) Ranoidea taxon within 412 

Neobatrachia, including most frog species from the Afrotropical, Paleartic, Indo-Malay, and 413 

Australasia realms, and (iv) other Neobatrachia (a non-monophyletic set of Neobatrachian 414 

families not included in Ranoidea or Hyloidea). For reptiles, we kept the order Crocodylia 415 

(alligators and relatives), divided the order Testudines in the suborders Pleurodira (side-necked 416 
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turtles) and Cryptodira (hidden-necked turtles), and followed 84 to split the order Squamata into 417 

seven groups: Gekkota (geckos and relatives), Iguania (iguanas, chameleons, and relatives), 418 

Scincoidea (skinks and relatives), Lacertoidea (teiids, lacertids, amphisbaenians, and relatives), 419 

Anguimorpha (glass lizards, monitors, and relatives), Dibamidae (dibamids or blind skinks, also 420 

referred as Dibamoidea), and Serpentes (snakes). 421 

The model validation (see below) indicated that our framework satisfactorily identified the 422 

relative potential of taxa to hold unknown species, but it underestimated absolute values of 423 

UnknownSR and PropUnknown per taxon (Supplementary Information, Table S4; Extended 424 

Data, Fig. S8). Thus, we standardized both measures of discovery potential. For each vertebrate 425 

class, we divided the UnknownSR by the total number of estimated discoveries (i.e., sum of 426 

UnknownSR across taxa) to provide the estimated percent of total discoveries. The proportion of 427 

unknown species (PropUnknown) per taxa was standardized to vary between 0 and 1, by first 428 

subtracting the minimum observed for each vertebrate class and then dividing by the respective 429 

range of PropUnknown. The value of 1 indicated the taxon with the highest proportion of 430 

unknown species (whatever such number might be), and not necessarily a taxon with 100% of 431 

unknown species. All taxon-level estimates are available through Data S2 files. 432 

 433 

Assemblage-level predictions 434 

We followed the same rationale we used to for taxon above to estimate the variation in 435 

future discovery potential in geographic space. Specifically, we considered the proportion of 436 

species that remain to be discovered in an assemblage, PropUnknown, an emergent property of 437 

its species members and their attributes. This approach follows the growing recognition in trait 438 

biogeography and macroecology of the species-level drivers of larger-scale patterns 14,22,85–87. We 439 
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used the equal-area grid cell species distribution data (see above) to derive species lists for each 440 

the four vertebrate classes for assemblages of 220, 440, and 880 km grid cell size, discarding all 441 

assemblages with less than five species. For each assemblage we then calculated PropUnknown 442 

and UnknownSR based on the discovery probabilities of its member species, the same way we 443 

did at the taxon-level. 444 

Different to the by-taxon characterization, however, in the assemblage patterns wide-445 

ranging species are overrepresented, since those are counted multiple times throughout grid cells 446 

36,88. Considering that widely distributed species tend to be described first 16,17,41, this can bias 447 

assemblage measures towards lower PropUnknown. This unevenness in the representation of 448 

wide-ranging species can be controlled through a random subsampling approach that provides 449 

range-size controlled estimates of aggregate measures at the assemblage level 27. 450 

Briefly, the subsampling algorithm we applied considers the random extraction of x grid 451 

cells belonging to a given species’ range. If the species’ range was smaller than x, then, all grid 452 

cells are extracted for that species. The x here is analogous to the pseudoreplication level of a 453 

dataset. If x equals 1, then the geographic range of all species will be subsampled to show only 454 

one grid cell per species. The subsampling algorithm was applied to all species in a single 455 

iteration, and the subsampled geographic ranges were then overlapped for the extraction of the 456 

PropUnknown and UnknownSR. These computations were performed 100 times, and the mean 457 

value across iterations was extracted for each grid cell to represent the geographic pattern of the 458 

respective aggregate measure under the x level of pseudoreplication. Additional details on this 459 

subsampling algorithm are available in 27. In this study, we used seven different levels of x: 1, 5, 460 

10, 50, 100, 200, and 500 grid cell occurrences per species, also including the observed pattern 461 
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using all grid cell occurrences per species. Computations performed using ‘data.table’ R package 462 

89. 463 

As in many ecogeographical investigations 90, this study focuses in the variation of species-464 

level attributes across space to describe and explain biodiversity patterns. Given the dominant 465 

unavailability of spatially varying data on species-level attributes, most ecogeographical studies 466 

– including this one – assume species-level attributes to be spatially constant. While the 467 

incorporation of spatially varying covariates through hierarchical modelling remains an open 468 

avenue in trait biogeography91, we argue that it has limited influence in our results for two major 469 

reasons. First, most species in our dataset are not widely distributed, which implies less potential 470 

for biological attributes to vary in space. For instance, 50%, 70%, and 88% of species in our 471 

dataset occupy ≤4 grid cells at respectively 220, 440, and 880 km of spatial resolution (See Data 472 

Availability for raw data). Second, the subsampling algorithm we applied reduces the 473 

overrepresentation of widely distributed species, whom are the ones with highest potential to 474 

show spatially varying biological attributes. 475 

We standardized UnknownSR and PropUnknown per assemblage (Supplementary 476 

Information, Table S4; Extended Data, Fig. S8) in the same way as done for taxa. We divided the 477 

UnknownSR per assemblage by the sum of UnknownSR across assemblages to get the estimated 478 

percent of total discoveries, and standardized PropUnknown to vary between 0 and 1, with 1 479 

indicating the assemblage with the highest proportion of unknown species (whatever such 480 

number might be). We note that adding up the UnknownSR across grid cells could overestimate 481 

the total number of unknown species if unknown species occur in more than one assemblage. 482 

The 220km and 440km spatial resolutions may therefore slightly underestimate percent of total 483 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.23.352690doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352690


24 

 

discoveries, but we retained these resolutions for the visual detail they offered. All assemblage-484 

level estimates are available through Data S3 files. 485 

 486 

Country-level predictions 487 

We used the assemblage-level predictions to compute country-wide estimates of 488 

UnknownSR and PropUnknown at each spatial resolution. For each grid cell, we quantified the 489 

proportion of landcover that overlapped with countries (a same grid cell could be assigned to 490 

multiple countries, but the proportion of landcover may differ). Country selected grid cells had 491 

their values of UnknownSR and PropUnknown weighted by the respective proportion of country 492 

landcover. Given the same spatial resolution, the sum of UnknownSR returns the same value 493 

when computed across either countries or assemblages. We summed the UnknownSR across 494 

countries to get the number of unknown species per country, and averaged the PropUnknown to 495 

obtain the country wide proportion of unknown species. The country-level predictions were also 496 

standardized in the same way we did for taxa and assemblages. We divided the per country 497 

UnknownSR by the global number of UnknownSR to get the estimated percent of total 498 

discoveries, and standardized PropUnknown to vary between 0 and 1, with 1 indicating the 499 

country with the highest proportion of unknown species. Country boundaries followed the 500 

Global Administrative Units database, version 1.6 92. All country-level estimates are available 501 

through Data S4 files. 502 

 503 
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SUPPLEMENTARY INFORMATION 709 

SUPPLEMENTARY METHODS 710 

We performed model validations to verify if our model framework were able to satisfactorily 711 

predict species discoveries based on random species subsets left out of the model training. We 712 

also performed extensive sensitivity analysis to assess limitations of our approach to three issues 713 

detailed in the following. 714 

 715 

Model validation 716 

We used a four-fold cross-validation approach to examine the predictive accuracy of our 717 

models. For each vertebrate group, the species were randomly partitioned into four equal parts, 718 

with three of those used as the training-fold and the fourth as validation-fold. The cross-719 

validation process was repeated four times, with each of the four-fold subsamples used once as 720 

the validation data. For each cross-validation round, we performed the model averaging approach 721 

using the 11 predictor variables and obtained for each species, the weighted average value of the 722 

(i) discovery probability in year 2014, and (ii) estimated description date. 723 

For each training-fold, we obtained the coefficients of all possible AFT models (2,047 724 

models covering all predictor combinations), as well as their BIC weights (wBIC). We used the 725 

model coefficients of each training-fold to predict the description dates of the 25% of species left 726 

out of the model fitting (validation-fold). These predictions were obtained for each one of the 727 

2,047 AFT models, in each training-fold. For each species, we then calculated the weighted 728 

average of the predicted description dates using wBIC of each model as relative weights. These 729 

species-level predictions of the description date were therefore independent from the model 730 

fitting. 731 
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At this point, we proceeded with model validation at three different levels: species, taxon, 732 

assemblage. 733 

1) Species-level validation 734 

We assessed the accuracy of the predictions of description dates from the average weighted 735 

AFT model with three different statistics. (i) The Spearman correlation measured our ability to 736 

correctly rank species according to their discovery year. (ii) The slope of the linear regression 737 

between observed and predicted description dates assessed under- or overestimation of absolute 738 

values. (iii) The normalized root mean square error (NRMSE) measured the divergence of 739 

predictions from observations 1. NRMSE is given in percentage, where lower values indicate less 740 

residual variance [NRMSE = (√∑ (�̂�𝑖 − 𝑥𝑖)² 𝑁⁄𝑁
1 ) (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)⁄ ]. These three statistics were 741 

computed for each the four vertebrate groups. Computations were performed in R using the 742 

‘hydroGOF’ 2 and ‘stats’ 3 packages. 743 

2) Taxon-level validation 744 

For each cross-validation round, we calculated taxon-level estimates of UnknownSR as 745 

explained above. We averaged the outputs of the four cross-validation rounds to get the 746 

estimated UnknownSR (hereafter, estimated discoveries). Using the 25% of the species left out of 747 

the model, we obtained the observed number of unknown species (observed discoveries) per 748 

taxon, that is, the species richness per taxon based on the validation fold. 749 

To evaluate predictive accuracy, we calculated three different statistics using the observed 750 

and estimated discoveries per taxon. (i) The Spearman correlation measured our ability to 751 

correctly rank taxonomic genera, families, and orders with respect to the number of unknown 752 

species. (ii) The slope of the linear regression between observed and estimated discoveries was 753 

used to check for under- or overestimation of the estimated discoveries. (iii) The normalized root 754 
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mean square error (NRMSE). These three statistics were computed for each taxonomic rank 755 

(family, order) of each of the four vertebrate groups. Computations were performed in R using 756 

the ‘hydroGOF’ 2 and ‘stats’ 3 packages. 757 

3) Assemblage-level validation 758 

This validation followed that conducted at the taxon level. Here, the outputs of the four 759 

cross-validation rounds were averaged to get estimated UnknownSR (estimated discoveries) per 760 

assemblage grid cell. We used the 25% of species in the validation fold to extract the observed 761 

number of unknown species (observed discoveries) per assemblage grid cell. 762 

The relationship between observed and estimated discoveries per grid cell was assessed 763 

through three different statistics: (i) Spearman correlation, (ii) slope of the linear regression, and 764 

the (iii) normalized root mean square error (NRMSE). These three statistics were computed for 765 

each subsampling level (using 1, 5, 10, 50, 100, 200 and 500 grid cell occurrences per species) 766 

and the observed data (all grid cell occurrences per species), at the three spatial resolutions (grain 767 

sizes 220, 440, and 880 km), and for each vertebrate group. Computations were performed in R 768 

using the ‘hydroGOF’ 2 and ‘stats’ 3 packages. 769 

4) Country-level validation 770 

Per country results are aggregates of the assemblage-level predictions, and are represented 771 

by the assemblage-level validation. 772 

 773 

Model limitations 774 

It is important to note that the estimated time-to-event functions derived from the AFT 775 

models may overestimate the discovery probability if the empirical time-to-event functions do 776 

not yet approach asymptote 4. Consequently, the estimated proportion of known species, 777 
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PropKnown, for species in a taxon or assemblage will also be overestimated, ultimately leading 778 

to more conservative estimates of the PropUnknown and UnknownSR. We acknowledge that the 779 

discovery curve of amphibians and reptiles have not yet approach asymptote, as evidenced by the 780 

cumulative number of species description over time (Fig. 1, main text). That said, our model 781 

framework is subject to three major limitations. 782 

First, time-to-event data are often incompletely observed, in which case the data may be 783 

considered censored and/or truncated. Broadly speaking, truncation is related to the study design 784 

and is further divided in two types. Left truncation arises from the specification of a minimum 785 

entry time for the sampling units. If the event occurs before the minimum entry time, those 786 

sampling units will never enter the study. Right truncation occurs when sampling units are only 787 

observable if they have experienced the event 5. Our species data shows this latter feature. The 788 

sampling condition imposed to our data may affect our estimates of discovery probability. 789 

Second, over the temporal scale considered in this study (almost 260 years), taxonomists 790 

have dealt with different issues to describe new species. For example, earlier naturalists crossed 791 

oceans on ships to find unknown taxa in regions previously considered highly remote. In 792 

contrast, modern taxonomists have been required to use multiple tools to accumulate more 793 

evidences to provide highly detailed descriptions of new species 6. Although these different 794 

technological contexts are important to the discovery process, they are difficult to measure and 795 

incorporate into our models. Both predictors and model performance may vary through time. In 796 

using only species described more recently as input data, we might get different results. 797 

And third, our model validation procedure is subject to two mathematical constraints. The 798 

number of estimated discoveries is affected by the size of the training-fold. In adding more 799 

species to the training-fold, we tend to increase the known richness per taxon or assemblage and 800 
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consequently, the estimated unknown richness (UnknownSR). Moreover, the number of observed 801 

discoveries per taxon or assemblage is dependent on the size of the validation-fold; that is, the 802 

number of species left out of the model training. In increasing the size of validation-fold we tend 803 

to obtain higher values of observed discoveries, with the opposite occurring if we decrease the 804 

size of validation-fold. Therefore, the size of validation- and training-folds may affect how we 805 

rank taxa and regions according to their potential for future species discovery. 806 

We investigate these three limitations futher below. 807 

1) Robustness to sampling condition 808 

The right truncation feature creates a sampling condition, Si ≤ Tmax, where Si is the 809 

taxonomic age of species i (i.e., the number of years since 1758), and Tmax equals the temporal 810 

range of this study (2014 – 1758 = 256 years). Only species with the taxonomic age ≤ 256 811 

entered the study. Underlying this sampling condition is the assumption that the chance of an 812 

event at the time T > Tmax is zero [P(T >Tmax) = 0]. This condition may be especially relevant if 813 

Tmax is too short, which could lead to an underrepresentation of recent-described species. 814 

Consequently, the importance of species-level attributes may depart from their true effect, 815 

leading to biased estimates of discovery probability. 816 

Although the theoretical background to deal with incompletely observed time-to-event data 817 

has improved in the recent decades 5, the statistical tools available to account for right truncation 818 

are either restricted to particular time-to-event models - e.g. Cox Proportional Hazard Model 7 - 819 

or have somewhat limited application due to the fail in estimator convergence 8. Herein, we 820 

assessed the robustness of our results to the violation of this sampling condition through a 821 

sensitivity analysis. We created 10 data subsets containing increasing levels of right truncation. 822 

To do so, we successively discarded x% of the most recent-described species, with x varying 823 
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from 0 to 50, at intervals of 5%. For each data subset, we repeated the model averaging 824 

framework and registered the average weighted coefficients of each predictor variable, as well as 825 

the estimated discovery probability of each species. 826 

This sensitivity analysis is intended to answer three questions. First, how the effect size of 827 

predictors varies when the AFT models are trained with datasets holding higher levels of right-828 

truncation? Second, how the changes in effect size (if any) affect the estimation of species’ 829 

discovery probability? To answer this latter question is important to compare the discovery 830 

probabilities for the same set of species. For this purpose, we used the oldest half of the known 831 

species, since these species were included in all data subsets. And third, what kind of the species-832 

level attributes are expected for species yet to be described, and how those attributes would 833 

affect the estimation of discovery probability? 834 

2) Influence of the time period of species discovery 835 

To assess the differential influence of early species discoveries in our model performance, 836 

we performed a sensitivity analysis by successively discarding previously described species. Our 837 

goal was i) to evaluate the variation of predictors across time and ii) to identify the period that 838 

offered strongest model performance for prediction. In addition to the full time period of this 839 

study (1759-2014), we defined other 22 time periods covering the interval from d to 2014, where 840 

d is a decade from 1760 to 1970 (e.g. 1760-2014, 1770-2014, …, 1970-2014). We then filtered 841 

our species dataset to include only those taxa described within each time period and repeated the 842 

model validation framework at the level of species, taxa, and assemblages. We note that with 843 

increasing d the sample sizes available in the datasets decreased (Table S3). 844 

For the sensitivity analysis at the species-level, we investigated the relationship between 845 

observed and predicted description dates. At the level of taxa and assemblages, the sensitivity 846 
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analyses dealt with the association between observed and estimated discoveries per taxonomic 847 

rank and assemblage grid cell, respectively. We obtained three statistics of model evaluation for 848 

the relationship of interest in each time period: (i) Spearman r, (ii) regression slope, and (iii) 849 

NRMSE. After identifying which time period returned the best model performance (see 850 

Supplementary Text section), we ran an additional analysis using the dataset for the best time 851 

period to obtain the species-level discovery metrics used to characterize discovery trends per 852 

taxon and per assemblage. 853 

3) Influence of the size of cross validation partitions 854 

To elucidate if the mathematical constraints of our model validation affected our results, we 855 

repeated the procedure using four different sizes of validation- and training-folds. More 856 

specifically, we included 25, 50, 75, and 90% of randomly selected species in the training-fold, 857 

while keeping each respective complement (75, 50, 25, and 10% of species) in the validation-858 

fold. We then repeated the model validation procedure at the level of taxa and assemblages, and 859 

registered three different statistics to assess the relationship between observed and estimated 860 

discoveries: (i) Spearman correlation, (ii) slope of the linear regression, and the (iii) normalized 861 

root mean square error (NRMSE). This sensitivity analysis was also repeated across the different 862 

time periods of species discovery discussed above. Computations were performed in R using the 863 

‘hydroGOF’ 2 and ‘stats’ 3 packages. 864 

 865 

SUPPLEMENTARY RESULTS 866 

Model Limitations and Sensitivity Analyses 867 

1) Robustness to sampling condition 868 
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We found low variation in the effect size of model coefficients if up to 30% of more 869 

recently described species were discarded before model computations (Extended Data, Fig. S1). 870 

The increasing of right-truncation decreased the effect size of model coefficients. Only a few 871 

covariates changed the effect direction with increasing levels of right-truncation. The model 872 

coefficients were nearly invariant for birds. 873 

The variation in model coefficients is expected to influence the estimated discovery 874 

probability. In increasing the level of the right-truncation of the species dataset, we obtained 875 

higher values of discovery probability relative to those estimated from more complete datasets 876 

(Extended Data, Fig. S2). Such changes were evident mostly for amphibians and reptiles, and 877 

they were virtually nonexistent for mammals and especially birds. 878 

Among the most consistent predictors affecting the discovery probabilities there were the (i) 879 

geographic range size, (ii) taxonomic activity per biome, and (iii) species body size. The 880 

frequency distribution of these predictor variables (Extended Data, Figs S3-S6) confirms the 881 

well-known trend of recent-described species to show narrower geographic ranges, smaller body 882 

sizes, and be described by more taxonomists relative to species described long ago 9–11. 883 

It is worth noting that this sensitivity analysis indirectly considered the modelling of 884 

discovery probability for species datasets with different ending dates, in an opposite way to the 885 

analysis on the influence of the time period of species discovery (next subtopic). Here, species 886 

datasets always started in 1759 but ended at different dates, according to the percentange of 887 

recently described species discarded before computations. Thus, the ending dates were not 888 

necessarily equal for a same percentange of discarded species. For instance, the first half of the 889 

currently known amphibian species were described by 1972, whereas 50% of the bird diversity 890 

were already known by 1845 (see histograms of description year, Figure 1). 891 
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Had we been able to incorporate species-level attribute of unknown species, we would have 892 

found higher effect size for the most important model coefficients and therefore estimated lower 893 

species discovery probabilities. Given the right-truncation nature of data used in our analysis, it 894 

is likely that our discovery metrics, the PropUnknown and UnknownSR per taxon or per 895 

assemblage, are underestimated. The proportion and number of unknown species we report 896 

should be considered as conservative estimates, particularly for amphibians and reptiles. 897 

2) Influence of the time period of species discovery 898 

We evaluated the sensitivity of our ‘discovery metrics’ to the time period of species 899 

discovery (e.g. 1760-2014, 1770-2014, …, 1970-2014). In discarding species described long ago, 900 

most of the model coefficients decreased their effect size (Fig. 2, main text). The ability of the 901 

AFT models to correctly predict the species description dates did not improve after excluding 902 

earlier-described species, except in mammals (but at the cost of discarding more than 70% of all 903 

known mammal species; Table S3, Extended Data, Fig. S7). 904 

At the taxon-level, the Spearman correlation between observed and estimated discoveries 905 

was roughly constant after discarding species described during the first century of the modern 906 

taxonomy (Extended Data, Fig. S8). At the assemblage level, the model performance also 907 

decreased as old described species were discarded before computations. The decline in model 908 

performance was evident across all subsampling levels used to control the overrepresentation of 909 

wide-ranging species (Extended Data, Figs S9-S12). The subsampling level of 5 occurrences per 910 

species showed the best performance in explaining the observed discoveries per grid cell, a result 911 

consistent across the all spatial resolutions and vertebrate classes. 912 

Overall, we did not obtain better measures of estimated discoveries by removing species 913 

described long ago. We therefore used the complete dataset (species described from 1759 to 914 
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2014) to estimate the discovery probability at the species-level and to estimate the number of 915 

unknown species (UnknownSR) at the taxon- and assemblage-level. Overall, we found a strong 916 

association with description year in extracting the predicted year of discovery at the threshold of 917 

0.5 of discovery probability (Spearman r = 0.65–0.81 for all groups, see Extended Data, Fig. 918 

S13). 919 

3) Influence of the size of cross-validation partitions 920 

Across taxonomic ranks, we found similar values of Spearman correlation between 921 

observed and estimated discoveries, regardless of the size of the species dataset used in the 922 

model training and mapping procedure (Extended Data, Fig. S8). The size of cross-validation 923 

partitions did not influence model performance when using different time periods of species 924 

discovery either (Extended Data, Fig. S8). The extraction of PropUnknown based on small 925 

sample sizes (i.e., using 25% of species in the model training) were less able to properly 926 

characterize discovery patterns at the taxon-level relative to large sample sizes (including 50, 75, 927 

90% of species in the model training). 928 

The regression slope between observed and estimated discoveries per taxon tended to 929 

decrease when assessed at higher taxonomic ranks and for training-folds containing more species 930 

(Extended Data, Fig. S8). The estimated discoveries underestimated the observed discoveries 931 

across all taxonomic ranks, although such underestimation were less pronounced when using 932 

90% of species in the model training (Table S4). After standardizing UnknownSR to percent of 933 

total discoveries, we observed similar model performance for all sizes of the cross-validation 934 

partitions (Extended Data, Fig. S14). 935 

At the assemblage-level, the relationship between observed and estimated discoveries 936 

showed similar values of Spearman correlation, regardless of the size of cross-validation 937 
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partitions (Extended Data, Figs S9-S12). Once again, subsampling 5 grid cell occurrences per 938 

species resulted in estimated discoveries that better predicted the observed discoveries per grid 939 

cell, regardless of the size of cross validation partitions. The discrepancy between the absolute 940 

number of observed and estimated discoveries per grid cell decreased when species assemblages 941 

were defined at either coarser spatial resolutions or based in training-folds including higher 942 

proportion of randomly selected species (Table S4). After standardizing UnknownSR to percent 943 

of total discoveries, the relationship between estimated and observed discoveries per grid cell 944 

was also constant for all sizes of the cross-validation partitions (Extended Data, Fig. S15). 945 

Overall, the estimated discoveries we obtained, either at the taxon- or assemblage-level 946 

analyses, underestimated the observed discoveries. The underestimation was higher when the 947 

discovery metrics were computed for models including fewer species (Table S4). We therefore 948 

recommend caution in interpreting the absolute values of the estimated number of unknown 949 

species (UnknownSR) per taxon or per grid cell. We reinforce the strong monotonicity between 950 

the observed and estimated discoveries, which ultimately support our ability to rank taxa and 951 

regions according to their potential for the discovery of new species. We do not advise using this 952 

approach to update global numbers of unknown species, unless extensive cross validation reveal 953 

absence of under- or overestimation of UnknownSR. 954 

4) Species authority name assumptions 955 

Our time-to-description analysis is based on original species authority names and uses the 956 

year in which a given binomial was originally proposed. Authority name description years reveal 957 

patterns of species discovery over time 4,9–15, but do not account for the complicated taxonomic 958 

history of synonymizations and revalidations associated with a binomial name. A species that 959 

was recently revalidated still holds the same authority name – and therefore description year – as 960 
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when it was first recognized as unique taxon. Therefore, our findings concern factors affecting 961 

the year when a species was first discovered, and not if and when a revalidation occurred. 962 

It is worth noting that a species description is a scientific hypothesis 16, which can be 963 

revisited if more data become available, as often illustrated in integrative taxonomy studies 17. It 964 

is not uncommon for broad studies such as taxonomic reviews to split a previously described 965 

species into multiple species, and in some cases, to resurrect synonyms or elevate subspecies to 966 

species rank. Although such ‘splitting’ might sometimes be viewed as undesirable 18,19, when 967 

driven by scientific insights is a vital part of the taxonomic knowledge evolution, as taxonomies 968 

are not static over time 16,20. Among 149 integrative taxonomy studies recently published in 969 

vertebrates (including fish), 40% consider all species as valid without changes, 31% pointed out 970 

at least one undescribed species but did not formally describe it, and 30% described at least one 971 

new species 6. Thus, at least among vertebrates, the identification of new lineages (if any) is not 972 

necessarily followed by the proposition of new names. 973 

Many firsthand species discoveries, i.e. species descriptions that propose new authority 974 

binomials, are reported for vertebrates every year. For example, more than 85% of amphibian 975 

species described between 1992-2003 resulted from newly proposed names, with less than 15% 976 

of descriptions concerning elevation of subspecies to species or revalidation of synonymies 21. In 977 

reptiles, 79% of species descriptions between 1992-2017 were published outside revisionary 978 

taxonomic studies 22. Newly proposed binomial names are also a large part of recently described 979 

mammals. Since 2005, 1,251 new mammal species have been recognized as valid, with 42% of 980 

them comprising firsthand discoveries and 58% consisting of resurrection of synomymies or 981 

elevation of subspecies to species rank 23. Altogether, these estimates illustrate the size of the 982 

taxonomic enterprise ahead. Concerns might go beyond differentiating firsthand discoveries 983 
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from species revalidations, questioning the validity of species descriptions under the application 984 

of different species concepts 18. To date, reflecting the ongoing debate about species concepts in 985 

biology 24, comprehensive taxonomic databases that standardize global species lists according to 986 

a single species concept remain out of reach.  987 
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SUPPLEMENTARY TABLES 1038 

 1039 

Table S1. 1040 

Taxon-specific allometric equations used to convert straight carapace length (SCL) of chelonians 1041 

into body mass. Sample size used to create the equations, number of species covered by the 1042 

samples, and summary statistics of each allometric equation are shown. Allometric equation: 1043 

Log(BodyMass) = Intercept + Coef × Log(SCL). 1044 

Taxa 
Sample 

Size 

Number of 

species 
Intercept Coefficient R² 

Chelidae 52 42 -3.915 2.991 0.947 

Emydidae 82 57 -3.420 2.814 0.950 

Kinosternidae 28 27 -3.235 2.715 0.913 

Podocnemididae 14 8 -3.757 2.930 0.952 

Testutinidae 96 52 -3.473 2.885 0.956 

Cryptodira* 326 218 -3.389 2.832 0.928 

Pleurodira* 68 49 -3.922 2.995 0.967 
* Only used when a family-level equation was not available.  1045 
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Table S2. 1046 

Variance Inflation Factor (VIF) for species-level attributes of terrestrial vertebrates using the full 1047 

dataset (species described from 1759 to 2014). VIF measures the multicollinearity of variables 1048 

included in a model, and it varies from 1 (no multicollinearity) to +Inf. VIF values > 10 reflect 1049 

high multicollinearity 25. 1050 

Variable Amphibians Reptiles Mammals Birds 

Annual mean temperature 2.695 2.364 2.590 2.615 

Annual precipitation 2.661 2.251 2.424 2.817 

Body size 1.125 1.192 1.074 1.072 

Elevation 2.048 1.872 1.578 1.858 

Human density 1.368 1.442 1.423 1.410 

Precipitation seasonality 1.631 1.663 1.702 2.116 

Range size 1.516 2.158 1.913 2.390 

Range rarity 1.752 1.606 1.674 1.932 

Activity per bioregion 2.155 2.184 2.454 1.619 

Activity per family 1.922 1.953 2.311 1.322 

Temperature seasonality 1.908 2.620 3.646 4.098 
All variables were log10 transformed before computation of the Variance Inflation Factor. 1051 

  1052 
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Table S3. 1053 

Total number of species described within the different time periods. The number between 1054 

parentheses indicates the percentage of species discarded if such decades are left out of the 1055 

species dataset. Only species included in our dataset were counted. 1056 

Time Period Amphibians Reptiles Mammals Birds 

1758 – 2014 7268 (0.2) 10063 (2.4) 5700 (1.1) 9993 (4.4) 

>1760 – 2014  7251 (0.5) 9948 (3.5) 5561 (1.6) 9555 (7.7) 

>1770 – 2014  7235 (0.5) 9905 (6) 5501 (1.7) 9224 (9.2) 

>1780 – 2014  7233 (0.6) 9888 (6.8) 5359 (2.2) 9075 (16) 

>1790 – 2014  7225 (0.9) 9843 (7.9) 5312 (2.4) 8392 (16.9) 

>1800 – 2014 7205 (1.1) 9818 (9) 5249 (3.6) 8300 (18.6) 

>1810 – 2014  7191 (1.2) 9705 (11.6) 5186 (4.2) 8136 (24.2) 

>1820 – 2014  7180 (2.2) 9640 (15.9) 5040 (6.6) 7573 (33.3) 

>1830 – 2014  7108 (3.3) 9398 (21.8) 4794 (10.8) 6670 (44.3) 

>1840 – 2014  7025 (4.6) 8972 (27.2) 4459 (13.6) 5564 (55.4) 

>1850 – 2014  6931 (6.7) 8691 (30.4) 4152 (18.8) 4460 (64) 

>1860 – 2014  6778 (10) 8176 (34.1) 3970 (25.9) 3595 (71.2) 

>1870 – 2014  6539 (13) 7457 (38.1) 3758 (30.9) 2877 (78.9) 

>1880 – 2014  6322 (16.5) 6957 (42.3) 3531 (35.8) 2109 (83.7) 

>1890 – 2014  6069 (20.3) 6459 (51.7) 3291 (41.5) 1630 (88.3) 

>1900 – 2014  5794 (23.3) 5883 (61.8) 2752 (45.7) 1173 (91.6) 

>1910 – 2014  5577 (26.5) 5468 (68.8) 2179 (49.2) 842 (93.5) 

>1920 – 2014  5343 (31) 5114 (73) 1780 (52.6) 647 (95.3) 

>1930 – 2014  5016 (35.6) 4769 (76.7) 1541 (57.2) 466 (96.7) 

>1940 – 2014  4680 (38.6) 4304 (78.3) 1326 (59.5) 325 (97.3) 

>1950 – 2014  4460 (42.7) 4078 (80.4) 1235 (62.1) 273 (97.8) 

>1960 – 2014  4162 (49) 3809 (82.3) 1119 (66.5) 221 (98.2) 

>1970 – 2014 3705 (56.7) 3372 (84.9) 1007 (71.1) 182 (98.5) 

>1980 – 2014a  3150 (64.3) 2911 (87.7) 860 (76.3) 149 (99) 

>1990 – 2014a 2598 (75.9) 2387 (91.3) 699 (83.2) 102 (99.6) 

>2000 – 2014a 1748 (92.9) 1687 (96.8) 494 (93.6) 36 (100) 

>2010 – 2014a 515 (100) 645 (100) 184 (100) 0 (100) 
a Time periods not used in the sensitivity analysis.  1057 
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Table S4. 1058 

Validation-fold and grouping dependence of deviation from a 1:1 relationship. Values shown 1059 

how many times, on median, the observed discoveries were higher than the estimated 1060 

discoveries. Results shown for the complete time period of species discoveries (1759-2014). At 1061 

the assemblage level, only the subsampling level of 5 occurrences per species is shown. 1062 

Grouping level Validation-fold size Amphibians Reptiles Mammals Birds 

Taxon-level      

Family 75% 15.922 17.560 14.072 27.250 

Family 50% 7.312 8.270 8.329 18.500 

Family 25% 3.025 3.275 3.996 9.000 

Family 10% 1.338 1.349 1.791 4.200 

Family Average 6.899 7.613 7.047 14.737 

      

Higher-level grouping 75% 28.986 27.605 30.016 68.500 

Higher-level grouping 50% 9.887 11.843 11.402 46.000 

Higher-level grouping 25% 3.423 4.312 5.172 20.361 

Higher-level grouping 10% 1.152 1.469 1.888 7.392 

Higher-level grouping Average 10.862 11.307 12.120 35.563 

      

Assemblage-level      

220 km 75% 3.894 6.396 3.695 4.736 

220 km 50% 3.068 4.147 2.957 3.662 

220 km 25% 2.271 2.458 2.313 2.683 

220 km 10% 2.022 2.017 2.051 2.211 

220 km Average 2.814 3.754 2.754 3.323 

      

440 km 75% 9.430 14.658 9.687 11.627 

440 km 50% 5.882 7.795 6.412 8.120 

440 km 25% 3.097 3.524 3.487 4.577 

440 km 10% 2.079 2.069 2.241 2.788 

440 km Average 5.112 7.012 5.457 6.778 

      

880 km 75% 18.794 25.063 24.776 29.200 

880 km 50% 9.964 11.985 14.881 19.592 

880 km 25% 4.269 4.526 6.744 10.296 

880 km 10% 2.211 2.229 2.981 4.751 

880 km Average 8.810 10.951 12.345 15.960 

 1063 
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SUPPLEMENTARY FIGURES 1064 

 1065 

 1066 
Fig. S1. 1067 

Standardized coefficients of the average weighted accelerated failure time (AFT) model 1068 

computed for species datasets with increasing levels of right-truncation. Line colours indicate the 1069 

percentage of recent-described species left out of the model (recent-described species were 1070 

successively discarded). The horizontal bars denote the 95% confidence intervals around each 1071 

coefficient. Standardized coefficients above 0 indicate that species with high values for a given 1072 

attribute had higher discovery probability (prob.) and thus were likely discovered early on. 1073 

Negative standardized coefficients mean high attribute values depressed discovery probability 1074 

and delayed discovery.  1075 
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 1076 
Fig. S2. 1077 

Relationship between values of discovery probability computed using the complete (x-axis) and right-truncated (y-1078 

axis) datasets. For each vertebrate group, only the oldest half of the known species is represented due to their 1079 

presence in all data subsets with different levels of right-truncation. The dashed line indicates the line of equality. In 1080 

decreasing the level of right-truncation (increasing completeness) of species dataset, the discovery probabilities tend 1081 

to be lower.  1082 
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 1083 
Fig. S3. 1084 

Frequency distribution of species-level attributes for data subsets with different levels of right-1085 

truncation for amphibians. (A) Discovery probability. (B) Range size = number of 110 × 110 km 1086 

grid cells occupied by the species’ range. (C) Activity/bioregion = number of taxonomists per 1087 

species in the bioregions in which it typically occurs at the year of the species’ description. (D) 1088 

Activity/family = number of taxonomists per species in a family at the year of species’ 1089 

description. (E) Body size = maximum body size. (F) Human density = Within-range human 1090 

population density at the year of species’ description. (G) Range rarity = within-range endemism 1091 

richness at the year of the species’ description. (H) Annual mean temperature = within-range 1092 

annual mean temperature. (I) Annual precipitation = within-range annual precipitation. (J) 1093 

Temperature seasonality = within-range temperature seasonality. (K) Precipitation seasonality = 1094 

within-range precipitation seasonality. (L) Mean elevation = within-range mean elevation. In all 1095 

plots, the variable was log10 transformed to increase readability. The colour gradient is centred in 1096 

the median value.  1097 
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 1098 
Fig. S4. 1099 

Frequency distribution of species-level attributes for data subsets with different levels of right-1100 

truncation for reptiles. (A) Discovery probability. (B) Range size = number of 110 × 110 km grid 1101 

cells occupied by the species’ range. (C) Activity/bioregion = number of taxonomists per species 1102 

in the bioregions in which it typically occurs at the year of the species’ description. (D) 1103 

Activity/family = number of taxonomists per species in a family at the year of species’ 1104 

description. (E) Body size = maximum body size. (F) Human density = Within-range human 1105 

population density at the year of species’ description. (G) Range rarity = within-range endemism 1106 

richness at the year of the species’ description. (H) Annual mean temperature = within-range 1107 

annual mean temperature. (I) Annual precipitation = within-range annual precipitation. (J) 1108 

Temperature seasonality = within-range temperature seasonality. (K) Precipitation seasonality = 1109 

within-range precipitation seasonality. (L) Mean elevation = within-range mean elevation. In all 1110 

plots, the variable was log10 transformed to increase readability. The colour gradient is centred in 1111 

the median value.  1112 
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 1113 
Fig. S5. 1114 

Frequency distribution of species-level attributes for data subsets with different levels of right-1115 

truncation for mammals. (A) Discovery probability. (B) Range size = number of 110 × 110 km 1116 

grid cells occupied by the species’ range. (C) Activity/bioregion = number of taxonomists per 1117 

species in the bioregions in which it typically occurs at the year of the species’ description. (D) 1118 

Activity/family = number of taxonomists per species in a family at the year of species’ 1119 

description. (E) Body size = maximum body size. (F) Human density = Within-range human 1120 

population density at the year of species’ description. (G) Range rarity = within-range endemism 1121 

richness at the year of the species’ description. (H) Annual mean temperature = within-range 1122 

annual mean temperature. (I) Annual precipitation = within-range annual precipitation. (J) 1123 

Temperature seasonality = within-range temperature seasonality. (K) Precipitation seasonality = 1124 

within-range precipitation seasonality. (L) Mean elevation = within-range mean elevation. In all 1125 

plots, the variable was log10 transformed to increase readability. The colour gradient is centred in 1126 

the median value.  1127 
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 1128 
Fig. S6. 1129 

Frequency distribution of species-level attributes for data subsets with different levels of right-1130 

truncation for birds. (A) Discovery probability. (B) Range size = number of 110 × 110 km grid 1131 

cells occupied by the species’ range. (C) Activity/bioregion = number of taxonomists per species 1132 

in the bioregions in which it typically occurs at the year of the species’ description. (D) 1133 

Activity/family = number of taxonomists per species in a family at the year of species’ 1134 

description. (E) Body size = maximum body size. (F) Human density = Within-range human 1135 

population density at the year of species’ description. (G) Range rarity = within-range endemism 1136 

richness at the year of the species’ description. (H) Annual mean temperature = within-range 1137 

annual mean temperature. (I) Annual precipitation = within-range annual precipitation. (J) 1138 

Temperature seasonality = within-range temperature seasonality. (K) Precipitation seasonality = 1139 

within-range precipitation seasonality. (L) Mean elevation = within-range mean elevation. In all 1140 

plots, the variable was log10 transformed to increase readability. The colour gradient is centred in 1141 

the median value.  1142 
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 1143 
Fig. S7. 1144 

Statistic metrics derived from the sensitivity analysis at the species level. All statistics were 1145 

computed between predicted and observed year of discovery across species. Results based on 1146 

model trained with 75% of species and 25% of species used as holdout data. Line colours denote 1147 

different vertebrate groups. (A) Spearman correlation, (B) Regression slope, (C) Normalized 1148 

Root Mean Square Error (NRMSE). 1149 
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 1151 
Fig. S8. 1152 

Statistic metrics derived from the sensitivity analysis at the taxon level using different sizes 1153 

of validation-fold. All statistics were computed between estimated and observed discoveries 1154 

across taxa. Line types denote different sizes of the validation-fold. Line colours indicate 1155 

different taxonomic ranks. (A-D) Spearman correlation, (E-H) Regression slope, (I-L) 1156 

Normalized Root Mean Square Error (NRMSE). The size of training-fold (25, 50, 75, 90% of 1157 

species) is the complement of the respective validation-fold size (75, 50, 25, 10% of species). 1158 

Confidence intervals were omitted to increase readability. 1159 
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 1161 
Fig. S9. 1162 

Statistic metrics derived from the sensitivity analysis using amphibian species. All statistics 1163 

were computed between estimated and observed discoveries across grid cells. Line colours 1164 

denote the subsampling level adopted to control overrepresentation of wide-ranging species. 1165 

Panel columns refer to statistics calculated at different spatial resolutions (220, 440, 880 km). 1166 

(A-C) Spearman correlation, (D-F) Regression slope, (G-I) Normalized Root Mean Square Error 1167 

(NRMSE). Confidence intervals were omitted to increase readability.  1168 
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 1169 
Fig. S10. 1170 

Statistic metrics derived from the sensitivity analysis using reptile species. All statistics were 1171 

computed between estimated and observed species across grid cells. Line colours denote the 1172 

subsampling level adopted to control overrepresentation of wide-ranging species. Panel columns 1173 

refer to statistics calculated at different spatial resolutions (220, 440, 880 km). (A-C) Spearman 1174 

correlation, (D-F) Regression slope, (G-I) Normalized Root Mean Square Error (NRMSE). 1175 

Confidence intervals were omitted to increase readability.  1176 
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 1177 
Fig. S11. 1178 

Statistic metrics derived from the sensitivity analysis using mammal species. All statistics 1179 

were computed between estimated and observed species across grid cells. Line colours denote 1180 

the subsampling level adopted to control overrepresentation of wide-ranging species. Panel 1181 

columns refer to statistics calculated at different spatial resolutions (220, 440, 880 km). (A-C) 1182 

Spearman correlation, (D-F) Regression slope, (G-I) Normalized Root Mean Square Error 1183 

(NRMSE). Confidence intervals were omitted to increase readability.  1184 
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 1185 
Fig. S12. 1186 

Statistic metrics derived from the sensitivity analysis using bird species. All statistics were 1187 

computed between estimated and observed species across grid cells. Line colours denote the 1188 

subsampling level adopted to control overrepresentation of wide-ranging species. Panel columns 1189 

refer to statistics calculated at different spatial resolutions (220, 440, 880 km). (A-C) Spearman 1190 

correlation, (D-F) Regression slope, (G-I) Normalized Root Mean Square Error (NRMSE). 1191 

Confidence intervals were omitted to increase readability.  1192 
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 1193 
Fig. S13. 1194 

Relationship between predicted and observed year of description for terrestrial vertebrates. Plots 1195 

include known species described from 1759 to 2014. (A) Amphibians, (B) Reptiles, (C) 1196 

Mammals, (D) Birds. Models were first trained using 75% of the data, and then applied to the 1197 

validation-fold (independent data) to obtain the predicted year of discovery for each species. The 1198 

dashed line indicates the line of equality. R values inside plots denote the Spearman correlation 1199 

between observed and predicted year of description.  1200 
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 1202 
Fig. S14. 1203 

Relationship between estimated and observed discoveries at the taxon-level. Colours denote 1204 

different sizes of the validation-fold. Columns represent different vertebrate groups and rows 1205 

indicate different taxonomic ranks. The dashed line indicates the line of equality. (A, E, I) 1206 

Amphibians. (B, F, J) Reptiles. (C, G, K) Mammals. (D, H, L) Birds. See ‘Model validation’ 1207 

section for details on the highest-level taxonomic rank used. R values inside plots denote the 1208 

Spearman correlation between estimated and observed discoveries. Plots include known species 1209 

described from 1759 to 2014.  1210 
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 1211 

Fig. S15. 1212 

Relationship between estimated and observed discoveries at the assemblage-level. Colours 1213 

denote different sizes of the validation-fold. Columns represent different vertebrate groups and 1214 

rows indicate assemblages (grid cells) defined at different spatial resolutions. The dashed line 1215 

indicates the line of equality. (A, E, I, M) Amphibians. (B, F, J, N) Reptiles. (C, G, K, O) 1216 

Mammals. (D, H, L, P) Birds. Only the subsampling level of 5 is showed. R values inside plots 1217 

denote the Spearman correlation between estimated and observed discoveries. 1218 
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 1220 
Fig. S16. 1221 

Top 30 amphibian families with highest potential for species discoveries. (A) Taxa with highest percent of total 1222 

discoveries. (B) Taxa with highest standardized proportion of undiscovered species. The horizontal lines denote the 1223 

95% confidence intervals. 1224 
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 1226 
Fig. S17. 1227 

Top 30 reptile families with highest potential for species discoveries. (A) Taxa with highest percent of total 1228 

discoveries. (B) Taxa with highest standardized proportion of undiscovered species. The horizontal lines denote the 1229 

95% confidence intervals. 1230 
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 1232 
Fig. S18. 1233 

Top 30 mammal families with highest potential for species discoveries. (A) Taxa with highest percent of total 1234 

discoveries. (B) Taxa with highest standardized proportion of undiscovered species. The horizontal lines denote the 1235 

95% confidence intervals. 1236 
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 1238 
Fig. S19. 1239 

Top 30 bird families with highest potential for species discoveries. (A) Taxa with highest percent of total 1240 

discoveries. (B) Taxa with highest standardized proportion of undiscovered species. The horizontal lines denote the 1241 

95% confidence intervals. 1242 
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 1244 
Fig. S20. 1245 

Geographical discovery patterns for terrestrial vertebrates at different spatial resolutions. (A-C) Percent of total 1246 

predicted discoveries across grid cells and their respective (D-F) uncertainty (± margin of error). (G-I) Standardized 1247 

proportion of undiscovered species across grid cells and their respective (J-L) uncertainty (± margin of error). 1248 

Outlined and hatched regions designate grid cells holding values within respectively the top 10% and top 5% of the 1249 

mapped metric. Maps drawn at spatial resolutions of 220, 440, 880 km.  1250 
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 1251 
Fig. S21. 1252 

Geographical discovery patterns for amphibians at different spatial resolutions. (A-C) Percent of total discoveries 1253 

across grid cells and their respective (D-F) uncertainty (± margin of error). (G-I) Standardized proportion of 1254 

undiscovered species across grid cells and their respective (J-L) uncertainty (± margin of error). Outlined and 1255 

hatched regions designate grid cells holding values within respectively the top 10% and top 5% of the mapped 1256 

metric. Maps drawn at spatial resolutions of 220, 440, 880 km.  1257 
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 1258 
Fig. S22. 1259 

Geographical discovery patterns for reptiles at different spatial resolutions. (A-C) Percent of total discoveries across 1260 

grid cells and their respective (D-F) uncertainty (± margin of error). (G-I) Standardized proportion of undiscovered 1261 

species across grid cells and their respective (J-L) uncertainty (± margin of error). Outlined and hatched regions 1262 

designate grid cells holding values within respectively the top 10% and top 5% of the mapped metric. Maps drawn 1263 

at spatial resolutions of 220, 440, 880 km.  1264 
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 1265 
Fig. S23. 1266 

Geographical discovery patterns for mammals at different spatial resolutions. (A-C) Percent of total discoveries 1267 

across grid cells and their respective (D-F) uncertainty (± margin of error). (G-I) Standardized proportion of 1268 

undiscovered species across grid cells and their respective (J-L) uncertainty (± margin of error). Outlined and 1269 

hatched regions designate grid cells holding values within respectively the top 10% and top 5% of the mapped 1270 

metric. Maps drawn at spatial resolutions of 220, 440, 880 km.  1271 
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 1272 

Fig. S24. 1273 

Geographical discovery patterns for birds at different spatial resolutions. (A-C) Percent of total discoveries across 1274 

grid cells and their respective (D-F) uncertainty (± margin of error). (G-I) Standardized proportion of undiscovered 1275 

species across grid cells and their respective (J-L) uncertainty (± margin of error). Outlined and hatched regions 1276 

designate grid cells holding values within respectively the top 10% and top 5% of the mapped metric. Maps drawn 1277 

at spatial resolutions of 220, 440, 880 km.  1278 
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 1279 
Fig. S25. 1280 

Top 30 countries with higher percent of total discoveries. Country-wide percent of total discoveries extracted 1281 

from assemblages defined at (A) 220 km, (B) 440 km, and (C) 880 km of spatial resolution. 1282 
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