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ABSTRACT 

 

Rigid and affine registrations to a common template are the 

essential steps during pre-processing of brain structural 

magnetic resonance imaging (MRI) data. Manual quality 

check (QC) of these registrations is quite tedious if the data 

contains several thousands of images. Therefore, we propose 

a machine learning (ML) framework for fully automatic QC 

of these registrations via local computation of the similarity 

functions such as normalized cross-correlation, normalized 

mutual-information, and correlation ratio, and using these as 

features for training of different ML classifiers. To facilitate 

supervised learning, misaligned images are generated. A 

structural MRI dataset consisting of 215 subjects from autism 

brain imaging data exchange is used for 5-fold cross-

validation and testing. Few classifiers such as kNN, 

AdaBoost, and random forest reached testing F1-scores of 

0.98 for QC of both rigid and affine registrations. These 

tested ML models could be deployed for practical use.  

 

Index Terms— structural MRI, big data, supervised 

learning, quality control, image registration 

 

1. INTRODUCTION 

 

Given the increasing availability of publicly accessible 

repositories for brain magnetic resonance imaging (MRI) 

data,  researchers have been enabled to process larger number 

of subjects in neuro-scientific applications; such studies are 

often phrased “big data” MRI studies [1, 2]. Some of these 

publicly available brain MRI big data sets include HCP 

(aging, young adult, development), IXI, ADNI, ABIDE, 

OASIS, UK biobank, and NAKO Germany [3]. Due to 

advances in high-performance computing and the availability 

of these big data, brain studies on a larger population are now 

getting feasible [4, 5]. Structural MRI is the prime modality 

for the studies involving voxel-based morphometry (VBM) 

of the whole brain, and surface-based morphometry of 

cortical gray matter structures [6-8]. 

       Quality control (QC) has become an important step 

starting from assessing raw image quality until the final post-

processing. Checking the data for quality before pre-

processing is the first stage of QC and there have been several 

studies proposing different metrics for quantitative 

assessment of raw image quality [9, 10]. 

       After initial QC has passed, these acquired raw structural 

MRI images have to undergo several standard pre-processing 

steps such as reorientation to a standard template, cropping, 

bias correction, and alignment of the images in the subject 

space to a common space. Transforming images to a common 

space is one of the crucial steps in the pre-processing stage to 

make them better suitable for further processing such as 

VBM. These transformations could involve both rigid and 

affine registrations with 6 and 12 degrees of freedom 

respectively. QC of these registrations is necessary to make 

sure that they are suitable for subsequent analysis. In studies 

involving data in a few hundred, manual checking is the 

common solution. However, in big data studies that involve 

tens of thousands of images, manual inspection will be a 

time-consuming process and moreover the manual process 

could be prone to inter/intra-observer rating errors especially 

with doubtful cases. Hence, this raises the need for a fully 

automatic quality control mechanism which potentially 

reduces the manual intervention to the possible minimum.   

       Machine learning (ML) has been in wide use in medical 

imaging for several tasks such as assessment of image 

quality, brain mapping, and disease diagnosis and prognosis 

[11-13]. Coming to registration quality, the traditional 

similarity cost functions primarily in use are the sum of 

squared differences, normalized cross-correlation (NCC), 

joint entropy-based methods such as normalized mutual 

information (NMI) and correlation ratio (CR) [14]. However, 

computing them locally and combining them by employing 

ML classifiers may result in better accuracy compared with 

accuracy using the individual cost functions alone.  

      To our knowledge, this is the first study aiming at the 

development of different supervised ML models that could 

be deployed for use in big data structural MRI pre-processing. 

 

2. METHODS 

 
This section describes the dataset used for pre-processing, 

generation of misaligned images for supervised learning, and 
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computation of local cost values, cross-validation, and testing 

of different ML classifier models. 

 
2.1. Dataset 

 

The data for cross-validation and testing consisted of a subset 

of high-resolution T1-weighted MRI images of 215 subjects 

extracted from publicly available autism brain imaging data 

exchange (ABIDE I) [2]. Out of 215 subjects, 110 subjects 

are with autism. These images were acquired using a 3.0 T 

Siemens scanner with magnetization prepared rapid 

acquisition gradient echo sequence in the sagittal plane. 

 

2.2. Pre-processing 

 
The data is pre-processed under the Nipype environment by 

calling the required third-party interfaces such as ANTS, 

FSL, Freesurfer, and other required software [15]. Firstly, the 

raw images are reoriented to standard space and cropped to 

remove the neck region using the FSL tools fslreorient2std, 

robustfov respectively [16]. Further, the cropped images are 

bias-corrected to remove the low-frequency intensity 

variations due to the inhomogeneity of the scanner magnetic     

field using the N4 method from ANTS [17]. Lastly, the 

images are aligned to the 1×1×1 mm3 standard T1-weighted 

FSL template both rigidly and affinely using the FSL flirt 

interface. After rigid and affine registration, the images are 

manually checked to make sure that they are correctly aligned 

to the template. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Generated rigid misaligned images shown in slices in the 

top (little variation) and bottom (more variation) rows, middle row 

is showing the correctly aligned image slices for comparison. 

2.2. Generation of misaligned images 

 

Since a supervised learning approach is used in training ML 

models, misaligned rigid and affine test images are created by 

decomposing the corresponding transformation matrix into 

scales, translations, and rotations; changing and applying 

these modified matrices to align the corresponding images in 

subject space to the common template. Ten test images (five 

each for rigid and affine) are generated for each correctly 

aligned image by altering the matrix parameters in different 

combinations to have a variety of misaligned images. Fig. 1 

showing the generated rigid misaligned images for a subject.  

 

2.3. Computation of local cost values  

 
Using a custom-written python (version 3) script via 

anaconda, the cost values that indicate the quality of 

registration between the moving image and the template are 

computed locally using the similarity functions such as NCC, 

NMI, and CR by defining a 3×3×3 volume of interest (VOI). 

The quantifications are restricted to the brain region by using 

the brain mask of the standard T1-weighted FSL template. 

The final cost value (𝐹𝐶) is the average of the local cost values 

obtained by moving the VOI with a stride of 3 and computing 

the cost values at each stride as described by the equation (1).  

 

  𝐹𝐶 =
1

𝐶𝑛
∑ ∑ ∑ 𝑐𝑜𝑠𝑡(𝑀(𝑎,

𝑥−𝑣𝑠
𝑠𝑡

𝑖=0

𝑦−𝑣𝑠
𝑠𝑡

𝑗=0

𝑧−𝑣𝑠
𝑠𝑡

𝑘=0  𝑏, 𝑐), 𝑇(𝑎, 𝑏, 𝑐))   (1) 

 

      In equation (1), 𝑎 =  𝑖 ∗ 𝑠𝑡: ((𝑖 ∗ 𝑠𝑡) + 𝑣𝑠), b = 𝑗 ∗
𝑠𝑡: ((𝑗 ∗ 𝑠𝑡) + 𝑣𝑠), and 𝑐 = 𝑘 ∗ 𝑠𝑡: ((𝑘 ∗ 𝑠𝑡) + 𝑣𝑠) indicate 

indices ranges of the moving image M and template T. 𝐶𝑛 is 

the total number of local cost computations, 𝑣𝑠 is the size of 

VOI and 𝑠𝑡 is the stride, and the cost is anyone of the costs 

given in equations (2), (3), and (4) below. Lastly, x, y, and z 

represent the sizes of the template (or moving) in the three 

directions. Although the size of VOI and stride are free 

parameters, they are restricted to 3 for the purpose of this 

study. The local cost NCC is computed as follows: 

 

              𝑁𝐶𝐶 =
𝑤

𝑁
∑

(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

𝜎𝑥𝜎𝑦

𝑁

𝑖=1

                 (2) 

 

      Above, N is the total number of non-zero voxels in either 

moving VOI or template VOI, 𝑥𝑖 is the ith intensity and �̅� is 

the mean intensity of the moving VOI and  similarly, 𝑦𝑖  is the 

ith intensity and �̅� is the mean intensity of the template VOI, 

𝜎𝑥 and 𝜎𝑦 are standard deviations of intensities of moving and 

template VOIs respectively. Further, the local cost NMI is 

computed using the expression in equation (3). 

 

 𝑁𝑀𝐼(𝑥; 𝑦) =  
𝑤 ∗ 𝐼(𝑥; 𝑦)

√𝐻(𝑥)𝐻(𝑦)
                        (3) 

 

      Where 𝐼(𝑥; 𝑦) =  𝐻(𝑥) + 𝐻(𝑦) − 𝐻(𝑥𝑦) is the mutual 

information between x (moving VOI) and y (template VOI), 

and 𝐻(𝑥) and 𝐻(𝑦) are entropy values of VOIs x and y 

respectively. 𝐻(𝑥𝑦) is the joint entropy of x and y. Finally, 

the local cost CR is computed using the following expression: 
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 𝜂2 = 𝑤2 ∗
∑ 𝑛𝑥(𝑦𝑥̅̅̅𝑥 −  �̅�)

∑ (𝑦𝑥𝑖𝑥,𝑖 − �̅�)
                        (4) 

                    

       In equation (4), 𝑦𝑥𝑖  is the ith intensity value in category x 

(category is either moving VOI or template VOI) 𝑛𝑥  is the 

number of intensities in category x, 𝑦𝑥̅̅̅ is the average of 

category x and �̅� is the mean of intensities of both moving 

and template VOIs together. Finally, the CR is just 𝜂.  
      In equations (2), (3), and (4), 𝑤 is the weighting factor 

which is computed using equation (5) to reduce the say of the 

cost values computed at boundaries of the brain on the final 

cost value 𝐹𝐶 since the VOIs at the border could contain zero 

intensities. In eq. (5), 𝑐 is a constant that is fixed to 1000 and 

𝑔 is the number of non-zero intensities in the respective VOI.  

 

 𝑤 =
1

1 + (𝑐 ∗ 𝑒−𝑔)
                        (5) 

 

2.4. Training of ML classifiers  

 

Python based Scikit-learn (sklearn) module is used for 

fitting/training of ML classifier models [18]. Before feeding 

to ML classifiers, the three cost values NCC, NMI and CR are 

rescaled to have values between zero to one. The ML 

classifiers that are cross-validated and tested include linear 

discriminant analysis (LDA), Gaussian naïve Bayes (GNB), 

linear support vector classifier (SVC), k-nearest neighbors 

(kNN, k is chosen as 15), random forest (RF, 100 decision 

trees), and Adaptive Boosting (AdaBoost with 100 decision 

stumps). The data is divided into two groups where one group 

is used for repeated (100 repetitions) stratified 5-fold cross-

validation (CV) and the other group is utilized for testing 

(Table 1). The area under the ROC curve (AUC) and F1-

scores are calculated using the sklearn module to indicate the 

performance of each classifier during CV as well as testing. 

 
 CV N1 (N2) Testing N1 (N2) 

Correctly 

aligned 

170 (87) 45 (23) 

Misaligned  850 (435) 225 (115) 

Table. 1. Number of images used for CV and testing. N1 includes 

both healthy and diseased, N2 is the number of diseased.  

 

3. RESULTS 

 

The F1-scores during CV and testing for identifying the 

misaligned registrations using different ML classifiers is 

given in Table 2 for both rigid and affine. The cross-validated 

ML models achieved the testing F1-scores in the range of 

0.914–0.988 and the AUC values between 0.972–0.991 for 

identifying misaligned rigid registrations. Fig. 2 shows the 

true positive rate (sensitivity) and false positive rate (1-

specificity) ROC curves for different classifiers that are 

validated on the test set for finding faulty rigid registrations. 

Similarly, for affine, the cross-validated ML models reached 

the testing F1-scores and AUC values in the ranges of 0.922–

0.989 and 0.989–0.993 respectively. Fig. 3 shows the ROC 

curves for different classifiers that are validated on the test 

set for finding incorrect affine registrations. 

 

Classifier F1-score (Rigid) F1-score (Affine) 

CV testing CV testing 

LDA 0.947 0.982 0.956 0.981 

SVC 0.917 0.914 0.935 0.922 

GNB 0.916 0.967 0.915 0.977 

kNN 0.971 0.988 0.960 0.982 

RF 0.979 0.987 0.973 0.989 

AdaBoost 0.977 0.984 0.971 0.986 

Table. 2. F1-scores during CV and testing of different ML 

classifiers for checking both rigid and affine registrations. 

 

 

Fig. 2. Graph of true positive rate vs false positive rate for different 

ML classifiers tested for rigid registrations. 

 

 

Fig. 3. Graph of true positive rate vs false positive rate for different 

ML classifiers tested for affine registrations.  
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4. DISCUSSION 

 

Here, we developed a fully automatic framework using 

different ML classifier models for QC of rigid and affine 

registrations during structural MRI pre-processing. The 

classifier selection could be based on F1-score as the number 

of images in the two classes is heavily imbalanced during CV 

an testing. From Table 2, figs. 2 and 3, it is evident that all 

classifiers performed well, overall kNN, RF, and AdaBoost 

classifiers demonstrated both better testing F1-scores and 

AUC values. Another aspect to consider here is that checking 

the quality of alignment by computing the cost values locally 

using a moving VOI might have led to the anticipated F1-

sores and AUC values on the test set. Since a stride of 3 is 

applied, which significantly reduced the computational time 

to around a minute for each local cost value, thus making it 

computationally efficient. The tested ML models could be 

deployed using the pickle module for practical use. The whole 

processing pipeline is available at tummala-github.  

 

5. CONCLUSION 

 

The developed ML models could be deployed for fully 

automatic quality checking of rigid and affine registrations in 

big data brain structural MRI pre-processing. Since the data 

is validated both on healthy and diseased brains, the trained 

models may be capable of identifying the misalignments both 

in health and disease. Future work could involve testing and 

improving these developed classifier models by using 

different larger cohorts and may be extended to deal with 

non-linear registrations as well. Further, the development of 

deep neural nets could be considered to eliminate the need for 

computation of local cost values explicitly. Also, a single 

framework could be developed to deal with all types of 

structural images such as T1-weighted, T2-weighted, FLAIR, 

and proton density.  
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