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2 

ABSTRACT 24 

Background: The human gut microbiota exhibits marked variation around the world, which has 25 

been attributed to dietary intake and other environmental factors. However, the degree to which 26 

ethnicity-associated differences in gut microbial community structure and function are 27 

maintained following immigration or in the context of metabolic disease is poorly understood. 28 

Results: We conducted a multi-omic study of 46 lean and obese East Asian (EA) and White (W) 29 

participants living in the San Francisco Bay Area. 16S rRNA gene sequencing revealed 30 

significant differences between ethnic groups in bacterial richness and community structure. W 31 

individuals were enriched for the mucin-degrading Akkermansia muciniphila. EA participants 32 

had increased levels of multiple Bacteroidetes species, fermentative pathways detected by 33 

metagenomics, and the short-chain fatty acid end products acetate, propionate, and isobutyrate. 34 

Differences in the gut microbiota between the EA and W groups could not be explained by 35 

reported dietary intake, were more pronounced for lean individuals, and were associated with 36 

current geographical location. Microbiome transplantations into germ-free mice confirmed that 37 

the differences in the gut microbiota of the EA and W individuals we analyzed are indeed 38 

independent of diet and that they differentially impact host body weight and adiposity in 39 

genetically identical mouse recipients. 40 

Conclusions: The reported findings emphasize the utility of studying diverse ethnic groups 41 

within a defined geographical location and provide a starting point for dissecting the mechanisms 42 

contributing to the complex interactions between the gut microbiome and ethnicity-associated 43 

lifestyle, demographic, metabolic, and genetic factors. 44 

 45 
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 49 

BACKGROUND 50 

Culture-independent surveys have emphasized differences in gut microbial community structure 51 

between countries [1–3]; however, the factors that contribute to these differences are poorly 52 

understood. Diet is a common hypothesis for geographical variations in the gut microbiota [4,5], 53 

based upon extensive data from intervention experiments in humans and mouse models [6–9]. 54 

However, diet is just one of the many factors that distinguishes human populations at the global 55 

scale, motivating the desire for a more holistic approach. Self-identified race/ethnicity (SIRE) 56 

provides a useful alternative, as it integrates the broader national or cultural tradition of a given 57 

social group. Multiple studies have reported associations between the gut microbiota and 58 

ethnicity in China [10], the Netherlands [11], Singapore [12], and the United States [13,14]. In 59 

contrast, a recent study of Asian immigrants suggested that once an individual relocates to a new 60 

country, the microbiota rapidly assumes the structure of the country of residence [3]. Thus, the 61 

degree to which microbiome signatures of ethnicity persist following immigration and their 62 

consequences for host pathophysiology remain an open question. 63 

 The links between ethnicity and metabolic disease are well-established. For example, EA 64 

subjects are more likely to develop health-related metabolic complications at lower body mass 65 

index (BMI) compared to their W counterparts [15,16]. Moreover, Asian Americans have 66 

persistent ethnic differences in metabolic phenotypes following immigration [17], including a 67 

decoupling of BMI from total body fat percentage [18]. The mechanisms contributing to these 68 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.23.352807doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352807
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

ethnic differences in fat accrual remain unknown. Human genetic polymorphisms may play a 69 

role [19,20]; however, putative alleles are often shared between members of different ethnic 70 

groups [21]. The gut microbiome might offer a possible explanation for differences in metabolic 71 

disease rates across ethnic groups, but there has been a relative scarcity of microbiome studies in 72 

this area. 73 

 These observations led us to hypothesize that ethnicity-associated differences in host 74 

metabolic phenotypes may be determined by corresponding differences in the gut microbiome. 75 

First, we sought to better understand the extent to which ethnicity is linked to the human gut 76 

microbiome in states of health and disease. We conducted a cross-sectional multi-omic analysis 77 

of the gut microbiome using paired 16S rRNA gene sequencing (16S-seq), metagenomics, and 78 

metabolomics from the Inflammation, Diabetes, Ethnicity, and Obesity (IDEO) cohort at the 79 

University of California, San Francisco. IDEO includes rich metabolic, dietary, and 80 

socioeconomic metadata [18], a restricted geographical distribution within the San Francisco Bay 81 

Area, and a balanced distribution of EA and W individuals that are both lean and obese (Table 82 

S1). We report marked differences in gut microbial richness, community structure, and metabolic 83 

end products between EA and W individuals in the IDEO cohort. We then used microbiome 84 

transplantations to assess the stability of ethnicity-associated differences in the gut microbiota in 85 

the context of genetically identical mice fed the same diet. We also explored the functional 86 

consequences of these differences on host metabolic phenotypes. Our results emphasize the 87 

importance of considering ethnicity in microbiome research and further complicate prior links 88 

between metabolic disease and the gut microbiome [22–24], which may be markedly different 89 

across diverse ethnic groups. 90 

 91 
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 92 

METHODS 93 

Human subjects 94 

All study participants were part of the IDEO cohort, which has been previously described 95 

[18,25]. Briefly, IDEO consists of 25-65 year-old men and women of multiple ethnicities and 96 

across a wide BMI range (18.5–52 kg/m2) living in the San Francisco Bay Area; exclusion 97 

factors include smoking, unstable weight within the last 3 months (>3% weight gain or loss), a 98 

diagnosed inflammatory or infectious disease, liver failure, renal dysfunction, cancer, and 99 

reported alcohol consumption of >20 grams per day. Using IDEO, we recruited both lean and 100 

obese W and EA individuals into this study based on World Health Organization cut-offs: W/EA 101 

BMI≤24.9 kg/m2 (lean); W BMI≥30 kg/m2 (obese); and EA BMI≥27.5 kg/m2 (obese) [17,26,27].  102 

Each participant consented to take part in the study, which was approved by the University of 103 

California San Francisco (UCSF) Institutional Review Board. We utilized demographic, medical, 104 

dietary, and lifestyle metadata on each participant that were part of their initial recruitment into 105 

IDEO, as previously reported [18,25,28]. Participants with Type 2 Diabetes (T2D) were 106 

classified in accordance with American Diabetes Association Standards of Medical Care 107 

guidelines [29], defined by having glycated hemoglobin (HbA1c) ≥6.5% or the combination of a 108 

prior diagnosis of T2D and the active use of an antidiabetic medication.  109 

 110 

Anthropometric and body composition measurements  111 

We leverage host phenotypic and demographic data from IDEO, which was the focus of two 112 

previous studies [18,25]. For the convenience of the reader, we have reproduced our methods 113 

here. Height and weight were measured using a standard stadiometer and scale, and BMI (kg/m2) 114 
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was calculated from two averaged measurements. Waist and hip circumferences (to the nearest 115 

0.5 cm) were measured using a plastic tape meter at the level of the umbilicus and of the greater 116 

trochanters, respectively, and waist-to-hip ratio (WHR) was calculated. Blood pressure was 117 

measured with a standard mercury sphygmomanometer on the left arm after at least 10 minute of 118 

rest. Mean values were determined from two independent measurements. Blood samples were 119 

collected after an overnight fast and analyzed for plasma glucose, insulin, serum total 120 

cholesterol, high density lipoprotein (HDL) cholesterol, and triglycerides. Low density 121 

lipoprotein (LDL) cholesterol was estimated according to the Friedewald formula [30]. Insulin 122 

resistance was estimated by the homeostatic model assessment of insulin resistance (HOMA-IR) 123 

index calculated from fasting glucose and insulin values [31]. Two obese subjects on insulin 124 

were included in the HOMA-IR analysis (1 EA, 1 W). Body composition of the subjects was 125 

estimated by Dual-Energy X-ray Absorptiometry (DEXA) using a Hologic Horizon/A scanner 126 

(3-minute whole-body scan, <0.1 G milligray) per manufacturer protocol. A single technologist 127 

analyzed all DEXA measurements using Hologic Apex software (13.6.0.4:3) following the 128 

International Society for Clinical Densitometry guidelines. Visceral adipose tissue (VAT) was 129 

estimated from a 5 cm-wide region across the abdomen just above the iliac crest, coincident with 130 

the fourth lumbar vertebrae, to avoid interference from iliac crest bone pixels and matching the 131 

region commonly used to analyze VAT mass by CT scan [32–34] . 132 

 133 

Dietary assessment 134 

IDEO participants completed two dietary questionnaires, as previously described [18,25], 135 

allowing for the assessment of usual total fiber intake and fiber from specific sources, as well as 136 

macronutrient, phytochemical, vitamin, and mineral uptake. The first instrument was an 137 
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Automated Self-Administered 24-hour Dietary Assessment (ASA24) [35,36], which queries 138 

intake over a 24-hour period. The 24-hour recalls and supplement data were manually entered in 139 

the ASA24 Dietary Assessment Tool (v. 2016), an electronic data collection and dietary analysis 140 

program. ASA24 employs research-based strategies to enhance dietary recall using a respondent-141 

driven approach allowing initial recall to be self-defined. The second instrument was the 142 

National Cancer Institute’s Diet History Questionnaire III (DHQIII) [37,38]. This questionnaire 143 

queries one’s usual diet over the past month [38]. Completion of DHQIII added significantly to 144 

participant survey fatigue, and completion rates were 42% for 1 recall, 79% for 2 recalls and 145 

100% for 3 or 4 recalls after the first 5 months. Ultimately, our protocol was modified to request 146 

the completion of the ASA24 at three separate times, at appointments where there are computers 147 

and personnel assistance for online completion, as well as the DHQIII questionnaire. 148 

 149 

DNA extraction 150 

Human stool samples were homogenized with bead beating for 5 min (Mini-Beadbeater-96, 151 

BioSpec) using beads of mixed size and material (Lysing Matrix E 2mL Tube, MP Biomedicals) 152 

in the digestion solution and lysis buffer of a Wizard SV 96 Genomic DNA kit (Promega). The 153 

samples were centrifuged for 10 min at 16,000 g and the supernatant was transferred to the 154 

binding plate. The DNA was then purified according to the manufacturer’s instructions. Mouse 155 

fecal pellets were homogenized with bead beating for 5 min (Mini-Beadbeater-96, BioSpec) 156 

using the ZR BashingBead lysis matrix containing 0.1 and 0.5 mm beads (ZR-96 BashingBead 157 

Lysis Rack, Zymo Research) and the lysis solution provided in the ZymoBIOMICS 96 MagBead 158 

DNA Kit (Zymo Research). The samples were centrifuged for 5 min at 3,000 g and the 159 

supernatant was transferred to 1 mL deep-well plates. The DNA was then purified using the 160 
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ZymoBIOMICS 96 MagBead DNA Kit (Zymo Research) according to the manufacturer's 161 

instructions.  162 

 163 

16S rRNA gene sequencing and analysis 164 

For human samples, 16S rRNA gene amplification was carried out using GoLay-barcoded 165 

515F/806R primers [39] targeting the V4 region of the 16S rRNA gene according to the methods 166 

of the Earth Microbiome Project (earthmicrobiome.org) (Table S2). Briefly, 2 µL of DNA was 167 

combined with 25 µL of AmpliTaq Gold 360 Master Mix (Fisher Scientific), 5 µL of primers (2 168 

µM each GoLay-barcoded 515/806R), and 18 µL H2O. Amplification was as follows: 10 min 169 

95°C, 30x (30s 95°C, 30s 50°C, 30s 72°C), and 7 min 72°C. Amplicons were quantified with 170 

PicoGreen (Quant-It dsDNA; Life Technologies) and pooled at equimolar concentrations. 171 

Aliquots of the pool were then column (MinElute PCR Purification Kit; Qiagen) and gel purified 172 

(QIAquick Gel Extraction Kit; Qiagen). Libraries were then quantified (KAPA Library 173 

Quantification Kit; Illumina) and sequenced with a 600 cycle MiSeq Reagent Kit (250x150; 174 

Illumina) with ~15% PhiX spike-in. For mouse samples, 16S rRNA gene amplification was 175 

carried out as per reference protocol and primers [40]. In brief, the V4 region of the 16S rRNA 176 

gene was amplified with 515F/806R primers containing common adaptor sequences, and then 177 

the Illumina flow cell adaptors and dual indices were added in a secondary amplification step 178 

(see Table S3 for index sequences). Amplicons were pooled and normalized using the 179 

SequalPrep Normalization Plate Kit (Invitrogen). Aliquots of the pool were then column 180 

(MinElute PCR Purification Kit, Qiagen) and gel purified (QIAquick Gel Extraction Kit, 181 

Qiagen). Libraries were then quantified and sequenced with a 600 cycle MiSeq Reagent Kit 182 

(250x250; Illumina) with ~15% PhiX spike-in. 183 
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Demultiplexed sequencing reads were processed using QIIME2 v2020.2 (qiime2.org) 184 

with denoising by DADA2 [41]. Taxonomy was assigned using the DADA2 implementation of 185 

the RDP classifier [42] using the DADA2 formatted training sets for SILVA version 128 186 

(benjjneb.github.io/dada2/assign.html). Amplicon sequence variants (ASVs) were filtered such 187 

that they were present in more than one sample with at least a total of 10 reads across all 188 

samples. Alpha diversity metrics were calculated on subsampled reads using Vegan [43] and 189 

Picante [44] R packages. The PhILR Euclidean distance was calculated by first carrying out the 190 

phylogenetic isometric log ratio transformation (philr, PhILR [45]) followed by calculating the 191 

Euclidean distance (vegdist, Vegan [43]). Principal coordinates analysis was carried out using 192 

the pcoa function of APE [46]. ADONIS calculations were carried out (adonis, Vegan) with 999 193 

replications on each distance metric. Centered log2-ratio (CLR) normalized abundances were 194 

calculated using the Make.CLR function in MicrobeR package [47] with count zero 195 

multiplicative replacement (zCompositions; [48]). ALDEx2 [49] was used to analyze differential 196 

abundances of count data, using features that represented at least 0.05% of total sequencing 197 

reads. Corrections for multiple hypothesis testing to false discovery rate (FDR) using the 198 

Benjamin-Hochberg method [50] were performed where applicable. Analysis of distance 199 

matrices and alpha diversity mirror prior analyses developed in the Turnbaugh lab and were 200 

adapted to the current manuscript [9]. Calculations of associations between ASVs and ASA24 201 

questionnaire data were completed by calculating a Spearman rank correlation and then adjusting 202 

the p-value for a Benjamini-Hochberg FDR using the cor_pmat function in the R package 203 

ggcorrplot. 204 
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 205 

Metagenomic sequencing and analysis 206 

Whole-genome shotgun libraries were prepared using the Nextera XT DNA Library Prep Kit 207 

(Illumina). Paired ends of all libraries were sequenced on the NovaSeq 6000 platform in a single 208 

sequencing run (n=45 subjects; see Table S2 for relevant metadata and statistics). Illumina reads 209 

underwent quality trimming and adaptor removal using fastp [51] and host read removal using 210 

BMTagger v1.1.0 (ftp.ncbi.nlm.nih.gov/pub/agarwala/bmtagger/) in the metaWRAP pipeline 211 

(github.com/bxlab/metaWRAP). Metagenomic samples were taxonomically profiled using 212 

MetaPhlan2 v2.7.7 [52] and functionally profiled using HUMAnN2 v0.11.2 [53], both with 213 

default parameters. Principal coordinates analysis on MetaPhlan2 species-level abundances was 214 

carried out using Bray Curtis distances and the pcoa function of APE [46]. Tables of gene family 215 

abundances from HUMAnN2 were regrouped to KEGG orthologous groups using 216 

humann2_regroup_table. Functional pathways relating to short-chain fatty acid production were 217 

manually curated from the pathway outputs from HUMANn2 and normalized by the estimated 218 

genome equivalents in each microbial community obtained from MicrobeCensus [54]. 219 

 220 

Quantification of bacterial load 221 

Quantitative PCR (qPCR) was performed on DNA extracted from the human stool samples. 222 

DNA templates were diluted to 5 ng/µL before qPCR of total 16S rRNA gene copies was carried 223 

out in triplicate 10 µL reactions with 200 nM 340F/514R primers using a BioRad CFX384 224 

thermocycler with SYBR Select for CFX Master Mix (Life Technologies) according to the 225 

manufacturer's instructions and an annealing temperature of 60˚C. Absolute quantifications were 226 

determined against a standard curve of purified 8F/1542R amplified Akkermansia muciniphila 227 
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DNA. Mean values of triplicate reactions were taken for further downstream analyses. Absolute 228 

bacterial abundance was derived by adjustments for dilutions during DNA extraction and 229 

template normalization dividing by the total fecal mass used for DNA extraction in grams. 230 

 231 

Nuclear magnetic resonance (NMR) metabolomics 232 

NMR spectroscopy was performed at 298K on a Bruker Avance III 600MHz spectrometer 233 

configured with a 5 mm inverse cryogenic probe (Bruker Biospin, Germany) as previously 234 

described [55]. 50 mg of human feces were extracted with 1 mL of phosphate buffer 235 

(K2HPO4/NaH2PO4, 0.1 M, pH 7.4, 50% v/v D2O) containing 0.005% sodium 3-(trimethylsilyl) 236 

[2,2,3,3-2H4] propionate (TSP-d4) as a chemical shift reference (δ 0.00). Samples were freeze-237 

thawed three times with liquid nitrogen and water bath for thorough extraction, then 238 

homogenized (6500 rpm, 1 cycle, 60 s) and centrifuged (11,180 g, 4 °C, 10 min). The 239 

supernatants were transferred to a new 2 mL tube. An additional 600 μL of PBS was added to the 240 

pellets, followed by the same extraction procedure described above. Combined fecal extracts 241 

were centrifuged (11,180 g, 4°C, 10 min), 600 μL of the supernatant was transferred to a 5 mm 242 

NMR tube (Norell, Morganton, NC) for NMR spectroscopy analysis. A standard one-243 

dimensional NOESY pulse sequence noesypr1d (recycle delay-90°-t1-90°-tm-90°-acquisition) is 244 

used with a 90 pulse length of approximately 10s (-9.6 dbW) and 64 transients are recorded into 245 

32k data points with a spectral width of 9.6 KHz. NMR spectra were processed as previously 246 

described [55]. First, spectra quality was improved with Topspin 3.0 (Bruker Biospin, Germany) 247 

for phase and baseline correction and chemical shift calibration. AMIX software (version: 3.9.14, 248 

Bruker Biospin, Germany) was used for bucketing (bucket width 0.004 ppm), removal of 249 
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interfering signal, and scaling (total intensity). Relative concentrations of identified metabolites 250 

were obtained by normalized peak area. 251 

 252 

Targeted gas chromatography mass spectrometry (GC-MS) assays 253 

Targeted analysis of short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) 254 

was performed with an Agilent 7890A gas chromatograph coupled with an Agilent 5975 mass 255 

spectrometer (Agilent Technologies Santa Clara, CA) using a propyl esterification method as 256 

previously described [55]. 50 mg of human fecal samples were pre-weighed, mixed with 1 mL of 257 

0.005 M NaOH containing 10 μg/mL caproic acid-6,6,6-d3 (internal standard) and 1.0 mm 258 

diameter zirconia/silica beads (BioSpec, Bartlesville, OK). The mixture was thoroughly 259 

homogenized and centrifuged (13,200 g, 4°C, 20 min). 500 μL of supernatant was transferred to 260 

a 20 mL glass scintillation vial. 500 μL of 1-propanol/pyridine (v/v=3/2) solvent was added into 261 

the vial, followed by a slow adding of an aliquot of 100 μL of esterification reagent propyl 262 

chloroformate. After a brief vortex of the mixture for 1 min, samples were derivatized at 60°C 263 

for 1 hour. After derivatization, samples were extracted with hexane in a two-step procedure 264 

(300 μL + 200 μL) as described [56]. First, 300 μL of hexane was added to the sample, briefly 265 

vortexed and centrifuged (2,000g, 4°C, 5 min), and 300 μL of the upper layer was transferred to 266 

a glass autosampler vial. Second, an additional 200 μL of hexane was added to the sample, 267 

vortexed, centrifuged, and the 200 μL upper layer was transferred to the glass autosampler vial. 268 

A combination of 500 μL of extracts were obtained for GC-MS analysis. A calibration curve of 269 

each SCFA and BCAA was generated with series dilution of the standard for absolute 270 

quantitation of the biological concentration of SCFAs and BCAAs in human fecal samples. 271 

 272 
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Targeted bile acid quantitation by UPLC-MS/MS 273 

Bile acid quantitation was performed with an ACQUITY ultra performance liquid 274 

chromatography (UPLC) system using a Ethylene Bridged Hybrid C8 column (1,7 µm, 100 mm 275 

x 2.1 mm) coupled with a Xevo TQ-S mass spectrometer equipped with an electrospray 276 

ionization (ESI) source operating in negative mode (All Waters, Milford, MA) as previously 277 

described [57]. Selected ion monitoring (SIM) for non-conjugated bile acids and multiple 278 

reaction monitoring (MRM) for conjugated bile acids was used. 50 mg of human fecal sample 279 

was pre-weighed, mixed with 1 mL of pre-cooled methanol containing 0.5 μM of stable-isotope-280 

labeled bile acids (internal standards) and 1.0 mm diameter zirconia/silica beads (BioSpec, 281 

Bartlesville, OK), followed by thorough homogenization and centrifugation. Supernatant was 282 

transferred to an autosampler vial for analysis. 100 µL of serum was extracted by adding 200 µL 283 

pre-cooled methanol containing 0.5 μM deuterated bile acids as internal standards. Following 284 

centrifugation, the supernatant of the extract was transferred to an autosampler vial for 285 

quantitation. Calibration curves of individual bile acids were drafted with bile acid standards for 286 

quantitation of the biological abundance of bile acids. 287 

 288 

Gnotobiotic mouse experiments 289 

All mouse experiments were approved by the UCSF Institutional Animal Care and Use 290 

Committee and performed accordingly. Germ-free mice were maintained within the UCSF 291 

Gnotobiotic Core Facility and fed ad libitum autoclaved standard chow diet (Lab Diet 5021). 292 

Germ-free adult male C57BL/6J mice between 6-10 weeks of age were used for all the 293 

experiments described in this paper. 10 lean subjects in our IDEO cohort were selected as donors 294 

for the microbiota transplantation experiments, including 5 EA and 5 W donors. Donors matched 295 
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for phenotypic data to the degree possible were selected (Table S4) for gnotobiotic experiments. 296 

Stool samples to be used for transplantation were resuspended in 10 volumes (by weight) of 297 

brain heart infusion media in an anaerobic Coy chamber. Each diluted sample was vortexed for 1 298 

min and left to settle for 5 min, and a single 200 µL aliquot of the clarified supernatant was 299 

administered by oral gavage into each germ-free mouse recipient. In experiments LFPP1 and 300 

LFPP2, microbiome transplantations were performed for 2 donors per experiment (1 W, 1 EA) 301 

with gnotobiotic mice housed in sterile isolators (CBC flexible, softwall isolator) and maintained 302 

on ad libitum standard chow also known as low-fat, high-plant-polysaccharide (LFPP) diet. In 303 

LFPP1, 6 germ-free mice per colonization group received an aliquot of stool from a donor of 304 

either ethnicity and body composition (measured using EchoMRI) were recorded on the day of 305 

colonization and at 6 weeks post-transplantation (per group n=6 recipient mice, 1 isolator, 2 306 

cages). In LFPP2, we shortened the colonization time to 3 weeks and used two new donor 307 

samples. For the third experiment (HFHS experiment), mice were fed an irradiated high-fat, 308 

high-sugar diet (HFHS, TD.88137, Envigo) at weaning for four weeks prior to colonization and 309 

housed in pairs in Tecniplast IsoCages. We included the original 4 donor samples and included 6 310 

new donors (per donor n=2 recipient mice, 1 IsoCage). Body weight and body composition were 311 

recorded on the day of colonization and at 3 weeks post-transplantation. Mice were maintained 312 

on the HFHS diet throughout the experiment. All samples were sequenced in a single pool 313 

(Table S3). 314 

 315 

Glucose tolerance tests 316 

Food was removed from mice 10 hr (LFPP1 experiment) or 4 hr (HFHS experiment) prior to 317 

assessment of glucose tolerance. Mice received i.p. injections of D-glucose (2 mg/kg), followed 318 
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by repeated collection of blood by tail nick and determination of glucose levels by handheld 319 

glucometer (Abbot Diabetes Care) over a 2-hour period. 320 

 321 

Geographic analyses 322 

Map tiles and distance data was obtained using GGMap, OpenStreet Maps, and the Imap R 323 

packages. GGMap was employed using a Google Cloud API key and the final map tiles were 324 

obtained in July 2020 [58]. Spearman ranked correlation coefficients (rho) were calculated as 325 

embedded in the R-package GGScatter and GGPlot2. 2018 US Census data for EA and W 326 

subjects was obtained (B02001 table for race, data.census.gov) for the ZIP codes available in our 327 

study and using the Leaflet package. The census data used is included as part of Table S2 to aid 328 

in reproduction. Each census region is plotted as a percentage of W individuals over a 329 

denominator of W and EA subjects. The leaflet package utilized ZIP Code Tabulation Areas 330 

(ZCTAs) from the 2010 census. We extracted all ZCTAs starting with 9, and the resulting 29 ZIP 331 

codes that overlap with IDEO subjects were analyzed (Table S2). Two ZCTAs (95687 and 332 

95401) were primarily W when comparing W and EA subjects. There were two W subjects 333 

recruited from these ZTCAs. These ZIP codes are cut off based on the zoom magnification for 334 

that figure and as a result ZTCAs for 27 individuals are plotted. Distance to a central point in SF 335 

was calculated. The point of reference was latitude=37.7585102, longitude=-122.4539916. For 336 

the San Francisco Bay Bridge the point of reference was latitude=37.7983, longitude= -337 

122.3778. 338 

 339 
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Dietary questionnaire correlation analysis 340 

DHQIII and ASA24 data were analyzed using a Euclidean distance matrix. These 341 

transformations were completed using the cluster package [59]. Subsequent analysis was 342 

completed using the vegan package [43]. Procrustes transformations were performed using 16S-343 

seq data from human subjects, which was then subjected to a PhILR transformation. The 344 

resulting matrix was rotated against the distance matrix for ASA24 or DHQIII questionnaire data 345 

using the procrustes command in the vegan R package using 999 permutations. Mantel statistics 346 

were calculated utilizing the mantel command of the vegan package. 347 

 348 

R packages used in this study 349 

readxl [60], cluster [59], Rtsne [61], vegan [62], ape [63], ggpubr [64], leaflet [65], tigris [66], 350 

MicrobeR [47], OpenStreetMap [67], IMap [68], lmerTest [69], PhILR [45], qiime2R [70], 351 

ALDEx2 [49], gghighlight [71], Phyloseq [72], Janitor [73], table 1 [74], Picante [44], ggcorrplot 352 

[75]. 353 

 354 

Statistical analyses 355 

Statistical analysis of the human data was performed using the table1 package in R (STATCorp 356 

LLC. College Station, TX). Human data were presented as mean ± SD. Unpaired independent 357 

Student’s t tests were used to compare differences between the two groups in the case of 358 

continuous data and in the case of categorical data the χ2 test was utilized. These tests were 359 

adjusted for a Benjamini-Hochberg false discovery rate utilizing the command p.adjust in R, 360 

which is indicated as an adjusted p-value in the tables. In Tables S8 and S9 no values met an 361 

adjusted p-value cutoff of < 0.1. In Table S1, p-values indicated by numbers were pooled 362 
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together for adjustments and those represented by symbols were separately pooled together for 363 

adjustment. All microbiome-related analyses were carried out in R version 3.5.3 or 4.0.2. Where 364 

indicated, Wilcoxon rank-sum tests were calculated. A Benjamini-Hochberg false discovery rate 365 

of 0.1 was used as the cutoff for statistical significance was utilized in tables as indicated and an 366 

FDR of 0.2 was utilized for Figures S5. Statistical analysis of glucose tolerance tests was carried 367 

out using linear mixed effects models with the lmerTest R package and mouse as random effect. 368 

Graphical representation was carried out using ggplot2. Boxplots indicate the interquartile range 369 

(25th to 75th percentiles), with the center line indicating the median and whiskers representing 370 

1.5x the interquartile range. 371 

 372 

 373 

RESULTS 374 

Ethnicity was associated with marked differences in the human gut microbiota. Whereas there 375 

were no differences between ethnicities in estimated bacterial content per gram of stool (Fig. 376 

S1A), principal coordinates analysis of PhILR Euclidean distances from 16S-seq data (Table S2, 377 

n=22 EA, 24 W subjects) revealed a subtle but significant separation between the gut 378 

microbiotas of EA and W subjects (p=0.037, R2=0.037, ADONIS; Fig. 1A). Statistical 379 

significance was robust to the distance metric used (Table S5). Bacterial diversity, evaluated 380 

using three distinct metrics from our 16S-seq data, were all significantly higher in W individuals, 381 

including Faith’s phylogenetic diversity, ASV richness, and Shannon diversity (Fig. 1B). The 382 

Firmicutes and Bacteroidetes phyla were enriched in EA subjects, Verrucomicrobia were 383 

enriched in W subjects, and Actinobacteria and Proteobacteria were comparable (Fig. 1C). By 384 

contrast, analysis at the genus and ASV level did not reveal any differentially abundant groups 385 
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between ethnicities, suggesting that the phylum-level trends we observed require the integration 386 

of more subtle shifts across multiple component members.  387 

Next, we validated these results by metagenomic sequencing (Table S2, n=21 EA, 24 W 388 

subjects). Consistent with our 16S-seq analysis, we detected a subtle but significant difference in 389 

the gut microbiomes between ethnicities based upon metagenomic species abundances (p=0.025, 390 

R2=0.038, ADONIS) and gene families (p=0.024, R2=0.040, ADONIS). Visualization of species 391 

within each phylum revealed marked variation in the magnitude and direction of change between 392 

ethnicities in our metagenomic (Fig. 1D,E) and 16S-seq data (Fig. S1B,C). Notably, W 393 

individuals had higher levels of Akkermansia muciniphila (Fig. 1D,E and Fig. S1B,C), which 394 

has been implicated in protection from obesity and its associated metabolic diseases [76]. 395 

 Next, we used NMR-based stool metabolomics to gain insight into the potential 396 

functional consequences of ethnicity-associated differences in the human gut microbiome (Table 397 

S2, n=10 subjects/ethnicity). Metabolite profiles were more strongly associated with ethnicity 398 

(p=0.008, R2=0.128, ADONIS; Fig. 2A) than community structure (R2=0.033-0.048, ADONIS; 399 

Table S5) or gene abundance (p=0.024, R2=0.040, ADONIS). Feature annotations revealed 400 

elevated levels of the branched chain amino acid (BCAA) valine and the short-chain fatty acids 401 

(SCFAs) acetate and propionate in EA subjects (Fig. 2B and Table S6). In contrast, proline, 402 

formate, alanine, xanthine, and hypoxanthine were found at higher levels in W subjects (Fig. 403 

2B). To assess the statistical significance and reproducibility of these trends, we used targeted 404 

GC-MS and UPLC-MS/MS to quantify a panel of BCAAs, SCFAs, and bile acids (Table S7). 405 

Confirming our NMR data, EA subjects had significantly higher levels of stool acetate (Fig. 2C) 406 

and propionate (Fig. 2D); however, we did not detect any significant differences in BCAAs or 407 

bile acids (Fig. S2). Isobutyrate (which was not detected by NMR) was also significantly higher 408 
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in EA subjects (Fig. 2E). In agreement with these metabolite levels, a targeted re-analysis of our 409 

metagenomic data revealed a significant enrichment in two SCFA-related pathways: “pyruvate 410 

fermentation to butanoate” (p=0.023, fold-difference=2.216) and “superpathway of Clostridium 411 

acetobutylicum acidogenic fermentation” (p=0.023, fold-difference=2.182). 412 

 Consistent with prior studies [22,23,77], we found that gut bacterial richness in W 413 

individuals was significantly associated with both BMI (Fig. 3A) and body fat percentage (Fig. 414 

3B). Remarkably, these associations were undetectable in EA subjects (Figs. 3A,B) even when 415 

other metrics of bacterial diversity were used (Fig. S3). Re-analysis of our data separating lean 416 

and obese individuals revealed that the previously observed differences between ethnic groups 417 

were driven by lean individuals. Lean W subjects had significantly higher bacterial diversity 418 

(Fig. 3C), in addition to greater differences in both gut microbial community structure (p=0.001, 419 

R2=0.096, ADONIS; Fig. 3D) and metabolite profiles (p=0.006, R2=0.293, ADONIS; Fig. 3E), 420 

than did corresponding EA individuals. By contrast, obese W vs. EA individuals were not 421 

different across any of these metrics (Figs. 3C-E). Lean EA individuals were significantly 422 

enriched for the Actinobacteria and Firmicutes phyla with a trend towards increased 423 

Bacteroidetes (Fig. 3F). At the genus level, lean EA subjects had higher levels of Bacteroides, 424 

Blautia, and an unclassified Lachnospiraceae taxon (Figs. 3G,H). In contrast, the 425 

Verrucomicrobia phylum (which contains A. muciniphila) was consistently enriched in both lean 426 

and obese W subjects relative to EA individuals (Fig. 3F).  427 

 Next, we sought to understand the potential drivers of differences in the gut microbiome 428 

between ethnic groups in lean individuals within the IDEO cohort, focusing on birth location, 429 

time spent in the USA, dietary intake, and host metabolic phenotypes. Although everyone in the 430 

cohort was recruited from the San Francisco Bay Area, birth location varied widely (Fig. S4). 431 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.23.352807doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352807
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

20 

There was no significant difference in the proportion of subjects born in the USA between 432 

ethnicities (75% W, 54.5% EA; p=0.15, Pearson’s χ2 test). There was also no significant 433 

difference in the geographical distance between birth location and San Francisco [W median 434 

2,318 (2.2-6,906) miles; EA median 1,986 (2.2-6,906) miles; p=0.69, Wilcoxon rank-sum test) 435 

or the amount of time spent in the San Francisco Bay Area at the time of sampling [W median 436 

270 (8.00-741) months; EA median 282.5 (8.50-777) years; p=0.42, Wilcoxon rank-sum test). 437 

While obese subjects were markedly distinct from lean individuals of both ethnicities with regard 438 

to measured metabolic and laboratory parameters (Table S1), there were no statistically 439 

significant differences between ethnic groups after separating lean and obese individuals (Table 440 

S1). 441 

Surprisingly, we did not detect any significant differences in either short- (Table S8) or 442 

long-term (Table S9) dietary intake between ethnicities. Consistent with this, Procrustes analysis 443 

did not reveal any significant associations between dietary intake and gut microbial community 444 

structure: procrustes p=0.452 (DHQIII) and p=0.445 (ASA24) relative to PhILR transformed 445 

16S-seq ASV data. The Spearman Mantel statistic was also non-significant [r=0.09511, p=0.094 446 

(DHQIII) and r=0.02953, p=0.313 (ASA24)], relative to PhILR transformed 16S-seq ASV data. 447 

Despite the lack of a strong overall shift in the gut microbiota, we were able to identify 11 ASVs 448 

associated with dietary intake in lean W individuals (Fig. S5). In contrast, there were no 449 

significant ASV-level associations in lean EA subjects. 450 

Given the marked variation in the gut microbiome at the continental scale [1–3], we 451 

hypothesized that the observed differences in lean EA and W individuals may be influenced by a 452 

participant’s current address at the time of sampling. Consistent with this hypothesis, we found 453 

clear trends in ethnic group composition across ZIP codes in the IDEO cohort (Figs. 4A,B) that 454 
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were mirrored by the 2018 US census data (Pearson r=0.52, p=0.026 for neighborhoods with 455 

greater than 50% white subjects; Fig. 4D). Obese individuals from both ethnicities and lean W 456 

subjects tended to live closer to the center of San Francisco relative to lean EA subjects (Fig. 457 

4C). Distance between current ZIP code and the center of San Francisco was associated with 458 

both gut microbial diversity (Fig. 4E) and community structure (Fig. 4F). These analyses were 459 

robust to the central point used, as shown using the Bay Bridge as the central reference point 460 

(Fig. S6). 461 

 Taken together, our results support the hypothesis that there are stable ethnicity-462 

associated signatures within the gut microbiota of lean EA vs. W individuals that are 463 

independent of diet. To experimentally test this hypothesis, we transplanted the gut microbiota of 464 

a representative lean W and lean EA individual into germ-free C57BL/6J mice (Fig. 5A and 465 

Table S4). Despite maintaining the genetically identical recipient mice on the same autoclaved 466 

low-fat, high plant-polysaccharide (LFPP) diet, we detected significant differences in gut 467 

microbial community structure (Fig. 5B), bacterial richness (Fig. 5C), and taxonomic abundance 468 

(Figs. 5D-E) between the two ethnicity-specific recipient groups, reflecting the differences we 469 

saw when initially analyzing the stool samples of the human participants themselves. A 470 

replication experiment using an independent pair of donors revealed similar trends, though they 471 

did not reach statistical significance (Fig. S7). To assess the reproducibility of these findings 472 

across multiple donors and in the context of a distinctive dietary pressure, we next fed 20 germ-473 

free mice a high-fat, high-sugar (HFHS) diet for 4 weeks prior to colonization with microbiota 474 

from a W vs. EA donor, and then maintained the mice on this diet following colonization (per 475 

group n=10 mice, 5 donors; per donor n=2 mice, 1 cage; Fig. 5F). Remarkably, this experiment 476 

replicated our original findings on the LFPP diet, including altered gut microbial community 477 
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structure (Fig. 5G), increased richness in mice receiving W donor microbiota (Fig. 5H), and 478 

higher levels of Bacteroides in mice receiving EA donor gut microbiota (Figs. 5I-J). 479 

 Moreover, mice transplanted with gut microbiomes of EA and W individuals displayed 480 

significant differences in body composition. Mice that received W donor microbiota and were 481 

fed the LFPP diet gained more body weight (Fig. 6A) and increased their adiposity (Fig. 6B), in 482 

conjunction with a reduction in lean mass (Fig. 6C), relative to mice that received the EA donor 483 

microbiota. These overall trends were mirrored in the human microbiota recipient mice that were 484 

fed the HFHS diet (Figs. 6E-G), though they did not reach statistical significance due to marked 485 

variations between donors independent of ethnicity (Fig. S8). There were no significant 486 

differences in glucose tolerance between mice receiving stool transplants from donors of 487 

different ethnicity in either experiment (Figs. 6D,H).  488 

 489 

 490 

DISCUSSION 491 

Our findings suggest that despite the potential for immigration to erase some of the geographical 492 

structure in the gut microbiome [3], there remain stable long-lasting microbial signatures of 493 

ethnicity among W and EA residents of the San Francisco Bay Area. The mechanisms 494 

responsible remain to be elucidated. In lean individuals within the IDEO cohort, these 495 

differences appear to be independent of immigration status, host phenotype, or dietary intake. 496 

Our experiments in inbred germ-free mice support the stability of ethnicity-associated 497 

differences in the gut microbiota on both the LFPP and HFHS diets, while also demonstrating 498 

that variations in host genetics are not necessary to maintain these signatures, at least over short 499 

timescales. Our data also supports a potential role for geographic location of residence in 500 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.23.352807doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352807
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

23 

reinforcing differences in the gut microbiota between ethnic groups. The specific reasons why 501 

current location matters remains unclear. It may be reflective of subtle differences in dietary 502 

intake (e.g., ethnic foods, food source, or phytochemical content) that are hard to capture using 503 

the validated nutritional surveys [78]. Alternative hypotheses include biogeographical patterns in 504 

microbial dispersion [79] or a role for socioeconomic factors, which are correlated with 505 

neighborhood [80]. 506 

 Surprisingly, our findings demonstrate that ethnicity-associated differences in the gut 507 

microbiota are stronger in lean individuals. Obese individuals did not exhibit as clear a 508 

difference in the gut microbiota between ethic groups, either suggesting that established obesity 509 

can overwrite long-lasting microbial signatures or alternatively that there is a shared ethnicity-510 

independent microbiome type that predisposes individuals to obesity. Studies in other disease 511 

areas (e.g., inflammatory bowel disease and cancer) with similar multi-ethnic cohorts are 512 

essential to test the generalizability of these findings and to generate hypotheses as to their 513 

mechanistic underpinnings. 514 

Our results in humans and mouse models support the broad potential for downstream 515 

consequences of ethnicity-associated differences in the gut microbiome for metabolic syndrome 516 

and potentially other disease areas. However, the causal relationships and how they can be 517 

understood in the context of the broader differences in host phenotype between ethnicities 518 

require further study. While these data are consistent with our general hypothesis that ethnicity-519 

associated differences in the gut microbiome are a source of differences in host metabolic 520 

disease, we were surprised by both the nature of the microbiome shifts and their directionality. 521 

Based upon observations in the IDEO [18] and other cohorts [15,16], we anticipated that the gut 522 

microbiomes of lean EA individuals would promote obesity or other features of metabolic 523 
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syndrome. In humans, we did find multiple signals that have been previously linked to obesity 524 

and its associated metabolic diseases in EA individuals, including increased Firmicutes [9,81], 525 

decreased A. muciniphila [76,82], decreased diversity [23], and increased acetate [83,84]. Yet 526 

EA subjects also had higher levels of Bacteroidetes and Bacteroides, which have been linked to 527 

improved metabolic health [85]. More importantly, our microbiome transplantations 528 

demonstrated that the recipients of the lean EA gut microbiome had less body fat despite 529 

consuming the same LFPP and HFHS diets. These seemingly contradictory findings may suggest 530 

that the recipient mice lost some of the microbial features of ethnicity relevant to host metabolic 531 

disease or alternatively that the microbiome acts in a beneficial manner to counteract other 532 

ethnicity-associated factors driving disease.  533 

EA subjects also had elevated levels of the short chain fatty acids propionate and 534 

isobutyrate. The consequences of elevated intestinal propionate levels are unclear given the 535 

seemingly conflicting evidence in the literature that propionate may either exacerbate [86] or 536 

protect [87] from aspects of metabolic syndrome. Clinical data suggests that circulating 537 

propionate may be more relevant for disease than fecal levels [88], emphasizing the importance 538 

of considering both the specific microbial metabolites produced, their intestinal absorption, and 539 

their distribution throughout the body. Isobutyrate is even less well-characterized, with prior 540 

links to dietary intake [89] but no association with obesity [90]. 541 

There are multiple limitations of this study. Due to the investment of resources into 542 

ensuring a high level of phenotypic information on each cohort member, and due to its restricted 543 

geographical catchment area, the IDEO cohort was relatively small at the time of this analysis 544 

(n=46 individuals). This study only focused on two of the major ethnicities in the San Francisco 545 

Bay Area; as IDEO continues to expand and diversify its membership, we hope to study a 546 
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sufficient number of participants from other ethnic groups in the future. Stool samples were 547 

collected at a single time point and analyzed in a cross-sectional manner. While we used 548 

validated tools from the field of nutrition to monitor dietary intake, we cannot fully exclude 549 

subtle dietary differences between ethnicities [91], which would be possible with a controlled 550 

feeding study [81]. In our animal studies, we focused on metabolically healthy wild-type germ-551 

free mice. Follow-up studies in the appropriate disease models coupled to controlled 552 

experimentation with individual strains or more complex synthetic communities are necessary to 553 

elucidate the mechanisms responsible for ethnicity-associated changes in host physiology and 554 

their relevance to disease. 555 

 556 

CONCLUSIONS 557 

Our results support the utility of considering ethnicity as a covariate in microbiome studies, due 558 

to the ability to detect signals that are difficult to capture by more specific metadata such as 559 

individual dietary intake values. On the other hand, these findings raise the importance of 560 

dissecting the sociological and biological components of ethnicity with the goal of identifying 561 

factors that shape the gut microbiota, either alone or in combination. This emerging area of 562 

microbiome research is just one component in the broader efforts to explore the boundaries and 563 

mechanistic underpinning of ethnicity with respect to multiple ethnic groups. The IDEO cohort 564 

provides a valuable research tool to conduct prospective longitudinal and intervention studies 565 

examining diabetes including Asian American participants. More broadly, IDEO provides a 566 

framework to approach other disease states where self-identified race or ethnicity are thought to 567 

contribute to health outcomes related to the microbiome. By understanding the biologic features 568 

that drive differences between ethnic groups, we may be able to achieve similar health outcomes 569 
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and to support more precise therapies informed by a broader appreciation of both microbial and 570 

human diversity. 571 

 572 

 573 

FIGURE LEGENDS 574 

Figure 1. The gut microbiota is distinct between East Asian and White subjects living in the 575 

Bay Area. 576 

(A-C) 16S-seq data for subjects in the IDEO cohort. Each point represents a single individual’s 577 

gut microbiota (n=22 EA, n=24 W). 578 

(A) Principal coordinate analysis of PhILR Euclidean distances reveals significant separation 579 

between ethnic groups (p=0.037, R2=0.037, ADONIS). Additional distance metrics are shown in 580 

Table S5. 581 

(B) Microbial diversity metrics are significantly different between EA and W subjects. p-values 582 

determined using Wilcoxon rank-sum tests.  583 

(C) Three of the five most abundant bacterial phyla are significantly different between EA and 584 

W individuals (p-values determined using Wilcoxon rank-sum test).  585 

(D,E) Metagenomic data (n=21 EA, n=24 W). 586 

(D) Each point represents the average relative abundance for a given species within each ethnic 587 

group, connected with a line that is colored by the ethnic group with higher mean abundance of 588 

each species: EA (yellow) and W (purple). 589 

(E) Pie charts indicate the proportion of species within each phylum that have greater mean 590 

abundance in EA or W subjects. 591 

 592 
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Figure 2. Metabolomics and targeted mass spectrometry highlight significant differences in 593 

bacterial fermentation end-products between ethnicities.  594 

(A) Global profiling of the stool metabolome by proton nuclear magnetic resonance (1H NMR) 595 

revealed a significant separation in metabolomic profiles between EA and W individuals 596 

(p=0.008, R2=0.128, ADONIS). 597 

(B) Representative stool metabolites contributing to the separation of stool metabolomic profiles 598 

between EA and W individuals (p<0.05, Wilcoxon rank-sum test).  599 

(C-E) Gas chromatography-mass spectrometry analysis of short-chain fatty acids (SCFAs) 600 

revealed significantly higher concentrations of acetate (C), propionate (D) and isobutyrate (E) in 601 

the stool samples of EA compared to W individuals. p-values determined using Wilcoxon rank-602 

sum tests. 603 

(A-E) n=10 EA and n=10 W individuals. 604 

Figure 3. Ethnicity-associated differences in gut microbial community structure are 605 

restricted to lean individuals. 606 

(A,B) Faith’s phylogenetic diversity is negatively correlated with (A) BMI and (B) percent body 607 

fat in W but not EA individuals (p-values and Spearman rank correlation coefficients are shown 608 

for each graph). 609 

(C) Microbial diversity metrics were significantly different between lean EA and W individuals, 610 

but not for obese subjects of the two ethnicities. p-values determined using Wilcoxon rank-sum 611 

tests. 612 

(D) Principal coordinate analysis of PhILR Euclidean distances reveals significant separation 613 

between the gut microbiotas of EA and W lean individuals (p=0.001, R2=0.096, ADONIS), with 614 

no separation in obese subjects (p=0.7, R2=0.036, ADONIS). 615 
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(E) Global profiling of the stool metabolome by proton nuclear magnetic resonance (1H NMR) 616 

stratified by lean and obese individuals reveals a significant difference in the metabolomic 617 

profiles of lean EA (n=5) and W (n =5) individuals (p=0.006, R2=0.293, ADONIS) that is not 618 

present in obese individuals (p=0.202, R2=0.141, ADONIS). 619 

(F) Variation in the abundance of the five most abundant phyla in our 16S-seq data reveal 620 

significant differences between lean individuals (Firmicutes, Actinobacteria) but not obese 621 

individuals between ethnicities. Both lean and obese W individuals had greater Verrucomicrobia 622 

compared to their EA counterparts. 623 

(G) Volcano plot of ALDEx2 differential abundance testing on genera in stool microbiomes of 624 

lean EA versus W individuals, with significantly different (FDR < 0.1) genera highlighted.  625 

(H) Abundances of the three genera found to be significantly different between ethnicity: 626 

Bacteroides, Blautia, and an unknown genus in the Lachnospiraceae family. 627 

(A-D, F-H) n=22 EA and n=24 W individuals. 628 

 629 

Figure 4. Ethnicity-associated differences in the gut microbiota of lean individuals are 630 

linked to geographic location. 631 

(A) Each symbol represents a subject's ZIP code. Symbols are colored by ethnicity with shape 632 

representing lean and obese subjects (n=44 subjects). 633 

(B) A subset of ZIP Code Tabulation Areas (ZCTAs) zoomed in to focus on San Francisco are 634 

colored by the proportion of each ethnicity (n=27 ZTCAs). The red star indicates a central point 635 

(latitude=37.7585102, longitude=-122.4539916) within San Francisco used for distances 636 

calculated in (C). 637 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.23.352807doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352807
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 

(C) Distance to the center of San Francisco, which is indicated by a star in (B), for IDEO 638 

subjects stratified by ethnicity and BMI (n=9-13 individuals/group, p-values indicate Wilcoxon 639 

rank-sum test).  640 

(D) US census data for EA and W residents in ZCTAs from (B) is displayed by ethnic make-up 641 

(a total of 489,117 W and 347,200 Asian individuals in these areas).  642 

(E-F) Linear regressions of metrics assessing microbial diversity (E) and principal coordinates 643 

developed in PCoA analysis (F) against distance of subject’s ZIP code to the center of San 644 

Francisco. Spearman rank correlation coefficients and p-values are shown for each graph. 645 

 646 

Figure 5: Differences in the human gut microbiota between ethnicities are maintained 647 

following transplantation to germ-free mice. 648 

(A,F) Experimental designs. (A) Germ-free mice fed a LFPP diet received an aliquot of stool 649 

from a donor of either ethnicity (per donor n=6 recipient mice, 1 isolator, 2 cages). (F) 5 lean EA 650 

and 5 W donors stool microbial communities were transplanted into 20 germ-free recipient mice 651 

fed  a HFHS diet (per donor n=2 recipient mice, 1 IsoCage). 652 

(B,G) Principal coordinate analysis of PhILR Euclidean distances of stool from germ-free 653 

recipient mice sampled at (B) six weeks and (G) three weeks post-transplantation. (B) p=0.004, 654 

R2=0.630, ADONIS. (G) p=0.001, R2=0.124, ADONIS. Germ-free mice receiving the same 655 

donor sample are connected by a dashed line. 656 

(C,H) Bacterial richness is significantly higher in mice who received stool samples from lean W 657 

donors compared to EA donors. p-values determined using Wilcoxon rank-sum tests. 658 

(D,I) Volcano plot of ALDEx2 differential abundance testing on genera in the stool microbiomes 659 

between transplant groups. The x-axis represents the fold difference between EA (numerator) 660 
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and W (denominator) subjects. The y-axis is proportional to the false discovery rate (FDR). 661 

Significantly different genera (FDR < 0.1) are highlighted. 662 

(E,J) Abundance of the Bacteroides genus in each experiment with FDR value shown.  663 

 664 

Figure 6: Microbiome transplantation of samples from EA and W individuals differentially 665 

affects the body composition of genetically identical recipient mice. 666 

See experimental designs and group numbers in Figs. 5A,F and donor phenotypic data in Table 667 

S8. 668 

(A-C, E-G) Percent change in body weight (A,E), fat mass (B, F), and lean mass (C, G) relative 669 

to baseline are shown. p-values determined using Wilcoxon rank-sum tests. 670 

(D,H) Glucose tolerance test results were not significantly different between groups in either 671 

experiment. p-values determined using linear mixed effects models with mouse as a random 672 

effect. 673 

(A-D) n=6 recipient mice per group. (E-H) n=10 recipient mice per group. 674 

 675 

Figure S1: Similar total colonization level with distinct bacterial relative abundance 676 

between East Asian and White subjects. 677 

(A) We did not detect a significant difference in overall gut microbial colonization assessed by 678 

qPCR quantification of 16S rRNA gene copies per gram wet weight (n=18 EA, n=22 W, 679 

Wilcoxon rank-sum test). Samples with average cycle quantification (Cq) values >30 were 680 

excluded from analysis (n=4 EA, n=2 W samples). 681 

(B,C) 16S-seq data (n=22 EA, n=24 W). 682 
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(B) Each point represents the average CLR abundance for a given ASV within each ethnic group, 683 

connected with a line that is colored by the ethnic group with higher mean abundance of each 684 

ASV: EA (yellow) and W (purple).  685 

(C) Pie charts indicate the proportion of ASVs from the top panel and within each phylum that 686 

have higher mean abundance in EA or W subjects).  687 

 688 

Figure S2: Stool concentrations of branched-chain amino acids and bile acids are 689 

comparable between East Asian and White subjects. 690 

We did not detect a significant difference in  the concentrations of BCAAs (A) or bile acids (B) 691 

between EA (n=10) and W (n=10) stool samples. Statistical analyses performed using Wilcoxon 692 

rank-sum tests. 693 

 694 

Figure S3. Microbial diversity metrics are negatively correlated with metabolic parameters 695 

in White but not East Asian individuals.  696 

(A,B) Bacterial richness is significantly correlated with (A) BMI and (B) percent body fat in W 697 

but not EA individuals.  698 

(C,D) Shannon diversity is significantly correlated with (C) BMI in both W and EA individuals, 699 

and with (D) percent body fat in W but not EA individuals.  700 

Spearman rank correlation coefficients and p-values are shown for each graph (n=22 EA, n=24 701 

W individuals). 702 

 703 

Figure S4: Birth location of subjects. 704 
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Symbols representing subjects’ birth locations are plotted on a world map. The size, shape and 705 

color of the symbols represent the number, BMI and ethnicity of subjects at each location. 706 

 707 

Figure S5: Identification of ASVs associated with short-term dietary intake.  708 

Spearman’s correlation was calculated between all 16S-seq ASVs and ASA24 data for lean W 709 

subjects. Colored boxes indicate correlations that met FDR<0.2 and the direction and intensity of 710 

the Spearman’s correlation are shown with correlation color indicated in the figure legend. No 711 

ASVs met this FDR in lean EA subjects. 712 

Abbreviations taken from ASA24: V_LEGUMES, Beans and peas (legumes) computed as 713 

vegetables (cup eq.). PF_LEGUMES, Beans and Peas (legumes) computed as protein foods (oz. 714 

eq.)  Whole grains contain the entire grain kernel, the bran, germ, and endosperm (oz. eq.).  715 

 716 

Figure S6: Distance to the Bay Bridge differentiates lean EA and W individuals. 717 

We repeated our analysis in Fig. 4 using an alternate central point (The San Francisco Bay 718 

Bridge, latitude=37.7983, longitude= -122.3778).  719 

(A) Using the current ZIP codes of subjects, lean W subjects lived closer to the Bay Bridge than 720 

lean EA subjects and obese subjects of either ethnicity (n=9-13 individuals/group, p-values 721 

indicate Wilcoxon rank-sum tests).  722 

(B-C) Linear regressions of metrics assessing microbial diversity (B) and principal coordinates 723 

developed in PCoA analysis (C) against distance of subject’s ZIP code to the Bay Bridge. 724 

Spearman rank correlation coefficients and p-values are shown for each graph (n=44 725 

individuals). 726 

 727 
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Figure S7: Replication experiment assessing gut community structure in mice on the LFPP 728 

diet. 729 

(A) Principal coordinate analysis of PhILR Euclidean distances of stool between the two 730 

transplant groups (p=0.058, R2=0.230, ADONIS). Mice from the same donor group are 731 

connected by a dashed line.  732 

(B) Bacterial richness in stool communities between the two transplant groups. p-value 733 

determined using Wilcoxon rank-sum test. 734 

(C) Volcano plot of ALDEx2 differential abundance testing on genera in the stool communities 735 

between transplant groups. The x-axis represents the fold difference between EA (numerator) 736 

and W (denominator) subjects. The y-axis is proportional to the false discovery rate (FDR). 737 

There was no significant genus based on FDR cutoff of 0.1. Bacteroides is labelled on the 738 

volcano plot. 739 

(D) CLR abundances of the Bacteroides genus. Wilcoxon rank-sum test indicates a significant 740 

difference in Bacteroides abundance between the two transplant groups. 741 

(A-D) n=6 recipient mice per group, sampled at three weeks post-transplantation. 742 

 743 

Figure S8: Donor-specific variations in metabolic phenotypes of gnotobiotic mice 744 

transplanted with human microbiota. 745 

Germ-free C57BL/6J mice were housed in pairs in Tecniplast cage isolators and transplanted 746 

with microbiota from 5 EA donors [EAD 1-5] and 5 W donors [WD 1-5] (n=20 recipient mice 747 

housed in 10 cages; per donor n=2 mice, 1 cage). Percent change in body weight (A), fat mass 748 

(B) and lean mass (C) at three weeks after transplantation are shown. 749 

 750 
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 751 

LIST OF ABBREVIATIONS 752 

 753 

16S-seq: 16S rRNA gene sequencing 754 

ASA24: Automated Self Administered 24-Hour Dietary Assessment Tool 755 

ASV: Amplicon Sequence Variant 756 

BCAA: branched chain amino acid 757 

BMI: body mass index 758 

DHQIII: Diet History Questionnaire III 759 

EA: East Asian 760 

HFHS: high-fat, high-sugar  761 

LFPP: low-fat, plant-polysaccharide rich 762 

SCFA: short-chain fatty acid 763 

W: White 764 

ZCTA: ZIP Code Tabulation Area 765 

 766 
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