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ABSTRACT: The GeneMax (GMX) Advantage test, developed by Zoetis, uses approximately 22 

50,000 single nucleotide polymorphisms (SNP) to predict the genomic potential of a commercial 23 

Angus heifer. Genetic predictions are provided for Calving Ease Maternal, Weaning Weight, 24 

Heifer Pregnancy, Milk, Mature Weight, Dry Matter Intake, Carcass Weight, Marbling,  Yield, 25 

and three economic selection indices. Test results can inform selection and culling decisions 26 

made by commercial beef cattle producers. To measure the accuracy of the trait predictions, data 27 

from commercial Angus females and their progeny at the University of Missouri Thompson 28 

Research Center were utilized to analyze weaning weight, milk, marbling, fat, ribeye area, and 29 

carcass weight. Progeny phenotypic data were matched to the respective dam, then the cow’s 30 

genomic predictions were compared to the calf’s age-adjusted phenotypes using correlation and 31 

linear model effect sizes. All tested GeneMax scores of the dam were significantly correlated 32 

with and predicted calf performance.  Our predicted effect sizes, except for fat thickness, were 33 

similar to those reported by Zoetis. In conclusion, the GeneMax Advantage test accurately ranks 34 

animals based on their genetic merit and is an effective selection tool in commercial cowherds.  35 

 36 

Key words: genomic prediction, validation, Bos taurus, growth, carcass 37 

 38 
Abbreviations:  39 

GMX, GeneMax 40 

SNP, single nucleotide polymorphisms 41 

BIR, Beef Improvement Records 42 

WW, Weaning Weight  43 

MBV, molecular breeding value 44 

BLUP, best linear unbiased prediction 45 
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CW, carcass weight 46 

Marb, marbling 47 

RE, ribeye area 48 

Fat, fat thickness  49 
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INTRODUCTION 50 

 51 

Prediction of quantitative traits using DNA markers in beef cattle was first commercialized in the 52 

1990s. However, many of these tests relied on a small number of markers and failed validation 53 

trials (Van Eenennaam et al., 2007). Genomic prediction, the use of thousands of genome-wide 54 

DNA markers (Nejati-Javaremi et al., 1997; Meuwissen et al., 2001), has proven to be a much 55 

more efficacious strategy in driving genetic improvement (García-Ruiz et al., 2016; Taylor et al., 56 

2016). Still, many farmers, ranchers (Weaber et al., 2014), extension professionals, and even 57 

academics question the effectiveness of genomic prediction in commercial beef cattle. 58 

Demonstrations of the ability of genomic tests to accurately predict genetic merit may encourage 59 

farmers and ranchers to adopt this technology and accelerate genetic progress in commercial 60 

herds. Our objective is to evaluate the effectiveness of the Zoetis GeneMax Advantage (genomic 61 

predictions designed for commercial heifers) in predicting the genetic merit of Angus cattle. We 62 

hypothesize that, because this test was built using principles of genomic prediction, the dam’s 63 

GeneMax scores will significantly predict her calves’ performance.  64 

 65 

MATERIALS AND METHODS 66 

An Animal Care and Use Committee protocol is not necessary for this project as DNA samples 67 

were collected as part of routine animal production practices. However, the University of 68 

Missouri has a demonstration ACUC protocol, number 7491, which covers the procedures used 69 

in this research. 70 

Cows were commercial Angus that were from a crossbred base that were straightbred Angus 71 

since 1995. Phenotypic and pedigree data were collected for commercial animals at the 72 
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University of Missouri’s Thompson Research Center and entered into Angus Genetics Inc. Beef 73 

Improvement Records (BIR) program through AngusOnline.org. Pedigree, phenotype, and 74 

GeneMax Advantage score information were retrieved as Excel files from AngusOnline.org in 75 

June of 2018. Phenotypic records were collected from 1995 to 2018, however only calves born 76 

from 2003 to 2011 and from 2014 to 2018 had data reported to BIR and genotyped dams (Figure 77 

1). Summary statistics are presented in Table 1. Excel files were read into R (Team, 2018) and 78 

similar files from different years were combined. Packages utilized included readr (Wickham et 79 

al., 2018b), ggplot2 (Wickham, 2016), tidyr (Wickham and Henry, 2018), dplyr (Wickham et al., 80 

2018a), and stringr (Wickham, 2018). 81 

 82 

For statistical analyses, the calf phenotype was compared with the dam’s GeneMax score (1 to 83 

100 scale). For each of the traits, Pearson and Spearman correlations were calculated.  84 

 85 

To adjust for additional factors, mixed models were used to evaluate the relationship between 86 

calf phenotype and dam’s GeneMax Score. We used the model:  87 

� �  �� � �� � 	 

where, y is the phenotype of the calf; β are fixed effects of contemporary group, sex, and dam 88 

GMX Score; u is the random effect of sire, and e is the residual. Both u and e are ~N(0, I). For 89 

growth traits, the birth year of the calf was considered the contemporary group. For carcass traits, 90 

contemporary group was defined by the harvest date. There were 47 bulls who sired calves with 91 

weaning weight records, 37 bulls who sired calves with hot carcass weight, marbling, and ribeye 92 

area records, and 23 bulls who sired calves with fat thickness records. For each of the traits, four 93 

models were compared: a full model including dam GMX Score and the random effect of sire, a 94 
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reduced model that did not include the effect of sire, a reduced model that did not include the 95 

effect of dam GMX Score, and a model with effect of sire and maternal grandsire (MGS). For 96 

each trait, a 
� test was also run between the first and third models to determine the significance 97 

of the inclusion of the cow’s GeneMax Advantage score. A 
� test was run between the third 98 

and fourth models to determine if the inclusion of the random effect of maternal grandsire was 99 

significant. Pseudo-R2 values were calculated using the ‘r.squaredLR’ function from the MuMIn 100 

package (Bartoń, 2022). Calf birth weights were not analyzed because GeneMax does not report 101 

a birth weight score or a calving ease direct score (only calving ease maternal). For weaning 102 

weight, phenotypes were pre-adjusted to 205-day weights and adjusted for age-of-dam effects by 103 

Angus Genetics Inc. Further, a model was also executed that included both Weaning Weight 104 

(WW) GMX Score and Milk GMX Score. Models containing 1) WW GMX Score, 2) Milk 105 

GMX Score, and 3) WW and Milk GMX Scores were compared to see which best fit the data. 106 

Because there is a trend over time for weaning weight phenotypes and we do not have a random 107 

sample of DNA tested cows, calves born in the early 2000s may have low weaning weights 108 

compared to calves born in later years (Figure 1d) but ranked high in their own contemporary 109 

group (weaning weight ratio, Figure 1e). In other words, entire contemporary groups were not 110 

analyzed, only calves of genotyped dams. Thus, some contemporary groups only had a small 111 

number of calves represented and the data have inherent selection bias. Therefore, we also 112 

measured the association between the dam’s GMX WW scores and GMX Milk scores with the 113 

calf’s weaning weight ratio (no contemporary group effect was included in these models).  114 

 115 

Estimates of GeneMax Advantage score effects were retrieved from Zoetis technical bulletin 116 

GMX-00116 (Zoetis Genetics and Angus Genetics Inc., 2018). Effects were converted from 117 
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Imperial to metric units, divided by 10 to represent a 1-point GeneMax score increase, and 118 

divided by 2 to change from molecular breeding values to expected progeny differences 119 

(transmitting abilities). Our GeneMax score effect estimates were compared to Zoetis’ published 120 

estimates using a two-tailed Z-test. 121 

 122 

Results 123 

For each trait evaluated, the Pearson’s correlation and Spearman’s correlation between the calf’s 124 

phenotype and the dam’s corresponding GMX Score were statistically different from zero (Table 125 

2). Further, from the six regression models, the dam’s GMX Score had a significant effect on the 126 

calf’s phenotype (Table 3). Except for fat thickness, our estimated effect sizes were not 127 

statistically different compared with those published by Zoetis (Table 3). When weaning weight 128 

ratio was the dependent variable to more accurately account for an animal’s rank in its 129 

contemporary group, WW GMX score was significantly predictive in the simple model with sex 130 

and random sire (0.08944±0.02057, p-value =  1.8e-05). When Milk GMX Score was compared 131 

to weaning weight ratio, the effect was not significant (p-value = 0.16). A model containing both 132 

GMX WW Score and GMX Milk Score provided a better fit to the data and estimated larger 133 

effects for the GMX Scores compared with the models using one GMX Score (Table 4).  Calf 134 

phenotypes were plotted against dam’s GMX Score in Figure 2. 135 

Tables 5 through 10 report additional model statistics. Models that included GeneMax score and 136 

sire fit the data better (lower AIC, lower BIC, higher pseudo-R2, better log likelihoods) than 137 

models that included maternal grandsire (MGS) and sire. Further, GeneMax scores were more 138 

significantly associated with progeny performance (smaller P-values) than the random effect of 139 

maternal grandsire.  140 
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Discussion 141 

In the last ten years, the use of DNA information to produce genomic predictions has changed 142 

substantially. For example, when first launched in 2010, the IGENITY MBVs (molecular 143 

breeding values) were only based on 384 DNA markers (Weber et al., 2012). However, even the 144 

initial genomic predictions (which were use as indicator traits in a multi-step genomic-enhanced 145 

EPD analysis) trained with a couple thousand animals accurately predicted genetic merit (Weber 146 

et al., 2012). In the last ten years, hundreds of thousands of beef cattle have been genotyped from 147 

multiple breeds, increasing the power of these datasets not just for genetic prediction, but also for 148 

basic research (Decker, 2015). Since 2015, breed associations have switched to single-step 149 

methods, in which pedigree and genomic data are combined in a single analysis (Lourenco et al., 150 

2015). Pedigree information is not typically known for commercial cattle, so a DNA marker 151 

effects model is typically used to predict genetic merit for commercial cattle. However, the 152 

estimated breeding values produced by a genomic relationship model and a marker effects model 153 

are equivalent (Hayes et al., 2009). The marker effects used to calculate GMX scores in the 154 

Zoetis GeneMax Advantage test are based on the American Angus Association single-step 155 

BLUP analysis (Zoetis Genetics and Angus Genetics Inc., 2018). 156 

 157 

All traits had relatively weak correlations between the calf’s phenotype and the dam’s GMX 158 

Score. However, this is to be expected as this analysis does not account for Mendelian sampling 159 

(random shuffle of genes between generations), contemporary group effects (management and 160 

environment effects), sire effects, or the heritability of the trait. Nevertheless, as all correlations 161 

were significantly different from zero, it does demonstrate the predictive ability of the GeneMax 162 

Advantage test. 163 
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 164 

Regression analysis allowed a more sophisticated evaluation of the relationship between a dam’s 165 

GMX Score and her calf’s phenotype. These models accounted for variation due to sex, year of 166 

birth or slaughter date, and sire effects. However, this model still did not account for Mendelian 167 

sampling or other non-additive genetic effects, including genotype-by-environment effects. The 168 

amount of variation due to Mendelian sampling is large and theoretically equal to half of the 169 

additive genetic variance. These sources of variation are likely why we still observe substantial 170 

spread around the regression lines in Figure 2. Genetic predictions are not designed to predict 171 

performance of individual animals, but rather the average performance of a large group of 172 

progeny out of a parent compared to the progeny average of a different parent or population 173 

average. Our results show that the GeneMax Advantage test accurately predicts the average 174 

progeny performance for weaning weight, milk, marbling, carcass weight, ribeye area and fat 175 

thickness. Further, GeneMax scores provided more information than simply knowing the sire of 176 

the dam.  177 

 178 

Our estimates of the effects of GeneMax scores did not differ from those published by Zoetis 179 

with respect to Milk (P = 0.88), Marb (P = 0.21), CW (P = 0.19), or RE (P = 0.58). However, our 180 

estimate of the effect of GeneMax score did differ from that published by Zoetis with respect to 181 

Fat (P < 1.0e-22) and tended to differ with respect to WW (P = 0.08). However, for all traits, our 182 

estimated effect sizes were smaller than those reported by Zoetis. These smaller effect sizes 183 

could be for many reasons, including data from a single environment in northwest Missouri, the 184 

size of the dataset, or that this was an external validation.  185 

 186 
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Regardless of whether we expressed weaning growth as a weight or as a ratio within 187 

contemporary group, WW GMX Score significantly predicted variation in weaning growth. 188 

However, Milk GMX scores were not predictive of weaning weight ratio. This likely reflects the 189 

well-known difficulty of predicting maternal effects (Willham, 1980). For example, in the 2014 190 

Angus genomic-enhanced EPD calibration based on 57,550 animals, the correlation between 191 

weaning weight and Milk EPD was 0.36. The average of the other traits was 0.66 (range of 0.45 192 

to 0.78). In 2016, when 108,211 animals were used to estimate molecular breeding values, the 193 

correlation between weaning weight and Milk EPD was 0.37, range of 0.56 to 0.80 for other 194 

traits (Albers, 2016). Further, only 491 observations were available when analyzing weaning 195 

weight ratio, compared to 781 observations for the models that only fit contemporary group, sex, 196 

and sire. Thus, the difficulty of predicting maternal effects and the smaller sample sizes affected 197 

the more complicated Milk GMX models. 198 

 199 

We note that the Zoetis GeneMax Advantage prediction is designed to work in high-percentage 200 

Angus animals and is not designed for cattle with substantial ancestry from other breeds. 201 

However, other similar genomic predictions for crossbred cattle should be equally accurate 202 

provided they contain the appropriate breeds in a large, multi-breed training population 203 

(Kachman et al., 2013).  204 

 205 

Genetic predictions, whether based on pedigree or genomic relationships, work when trained 206 

using ample and appropriately structured data. Models using contemporary group effects and 207 

random effects to account for covariance between relatives appropriately separate additive 208 

genetic variation from other sources of variation, including management and environment. While 209 
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genetic predictions were never intended to predict the performance of a single individual, the 210 

average progeny performance is accurately predicted by the additive genetic merit of the parent. 211 

However, biological variation remains, including non-additive genetic effects and interactions 212 

(Smith et al., 2019; Braz et al., 2020) and especially Mendelian sampling (Cole and VanRaden, 213 

2011) between full- or half-siblings. The increased adoption of genomic technologies in 214 

commercial cattle production has the opportunity to significantly increase long-term genetic gain 215 

through more accurate replacement animal selection. 216 

 217 

Conclusions 218 

Genomic predictions, including the Zoetis GeneMax Advantage, accurately predict a 219 

straightbred, commercial Angus animal’s genetic merit and the average performance of their 220 

offspring. Academics and extension professionals can confidently state to farmers and ranchers 221 

that genomic predictions in commercial animals are accurate and effective. 222 
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Tables and Figures 328 

Table 1. Summary statistics of data used for GeneMax Advantage evaluation. For GeneMax 329 

scores, we report the number of animals with test results (Number) and the number of cows with 330 

calves with phenotypes (Number with matched calves). 331 

Number 
(Number 

with 
matched 
calves) Mean 

Standard 
Deviation Median Minimum Maximum Skew Kurtosis 

Weaning 
Weight, 
kg 

781 263.0 26.3 264.4 178.3 347.5 -0.17 3.05 

Weaning 
Weight 
Ratio 

491 100.1 9.0 100 67 130 -0.08 3.53 

Marbling 
Score 

374 6.5 1.1 6.6 3.2 9.2 -0.22 3.1 

Hot 
Carcass 
Weight, 
kg 

376 398.7 40.3 401.9 249.5 504.9 -0.62 3.93 

Fat 
Thickness, 
cm 

290 1.8 0.5 1.7 0.5 4.1 1.1 6.33 

Ribeye 
Area, cm2 

374 84.8 9.3 84.5 57.4 112.9 0.12 2.87 

WW 
GMX 
Score 

554 (231) 45.6 20.4 45.0 3 97 0.19 2.27 

Milk 
GMX 
Score 

554 (231) 51.6 21.2 53.0 3 97 -0.14 2.18 

CW GMX 
Score 

554 (196) 49.2 19.4 48 7 95 0.11 2.27 

Marb 
GMX 
Score 

555 (196) 64.3 21.2 67 7 98 -0.44 2.25 
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RE GMX 
Score 

556 (196) 50.5 20.1 49 7 97 0.19 2.06 

Fat GMX 
Score 

557 (188) 43.3 19.9 42 3 93 0.26 2.18 

 332 
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Table 2. Pearson and Spearman correlation tests between the dam’s Zoetis GeneMax Advantage 334 

Score (Kalamazoo, MI) and the calf’s phenotype (not adjusted for contemporary group or sire 335 

effects). 336 

GeneMax Trait 

Pearson 
Correlation 

(95% Confidence 
Interval) 

Pearson 
Correlation 

P-value 
Spearman 

Correlation 

Spearman 
Correlation 

P-value 

Weaning Weight 
0.18 

(0.11 to 0.25) 
5.4e-07 0.18 3.0e-07 

Maternal Milk 
0.18 

(0.11 to 0.25) 
2.5e-07 0.16 5.3e-06 

Marbling 
0.27 

(0.18 to 0.36) 
8.4e-08 0.25 1.3e-06 

Carcass Weight 
0.13 

(0.02 to 0.22) 
1.5e-02 0.15 4.8e-03 

Fat Thickness 
-0.18 

(-0.29 to -0.07) 
1.9e-03 -0.19 1.1e-03 

Ribeye Area 
0.12 

(0.02 to 0.22) 
2.0e-02 0.11 3.0e-02 

 337 
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Table 3. Estimated effects of GMX Scores on production traits. Each row represents a different 338 

linear mixed model. Models contained contemporary group and sex as fixed effects and sire as a 339 

random effect. Difference from zero P-values and MGS P-values are from χ2 test comparing full 340 

and reduced model. Difference from Zoetis effects estimated from a Z-test. 341 

GMX 
Score Estimate Std. Error 

GMX 
effect 

difference 
from zero 
P-value 

Zoetis 
effect 

Difference 
from 

Zoetis P-
value 

MGS 
effect P-

value 

WW 0.18 kg 0.04 kg 1.1e-05 0.25 kg 0.08 1.1e-03 
Milk 0.13 kg 0.04 kg 3.2e-04 0.14 kg 0.88 1.1e-03 
Marb 0.01 0.002 1.1e-06 0.01 0.21 3.2e-03 
CW 0.20 kg 0.09 kg 3.3e-02 0.32 kg 0.19 1.0* 
RE 0.06 cm2 0.02 cm2 2.2e-03 0.07 cm2 0.58 9.5e-03 
Fat -0.003 cm 0.001 cm 2.0e-02 -0.03 cm <1.0e-22 1.0* 
*The estimated maternal grandsire variance for these models was zero.342 
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Table 4. Estimated effects of dam’s WW and Milk GMX Scores on calf’s weaning weight. P-343 

values from χ2 test comparing full model with both traits versus reduced models with single trait. 344 

GMX Score Estimate Std. Error P-value 
WW 0.20 kg 0.04 kg 1.0e-06 
Milk 0.15 kg 0.04 kg 3.0e-05 
 345 

 346 
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Table 5.  Summary of weaning weight models.  348 

Model AIC BIC 
Sire 
Variance 

MGSa 
Variance 

Residual 
Variance 

Pseudo-
R2 

L
li

Linear Model with WW GeneMax 
score 

7075.1 7154.3   491.9 0.3023 

Linear Model with Milk GeneMax 
score 

7080.4 7159.7   495.3 0.2975 

Mixed Model with WW GeneMax 
score and sire 

7014.0 7097.9 94.02  412.73 0.3564 

Mixed Model with Milk GeneMax 
score and sire 

7020.4 7104.3 95.12  416.08 0.3511 

Mixed Model with WW GeneMax 
score, Milk GeneMax score, and sire 

6998.6 7087.1 90.71  403.84 0.3706 

Mixed model with sire 7031.4 7110.6 98.09  422.81 0.3402 
Mixed model with MGS and sire 7022.8 7106.7 99.52 41.77 401.89 0.3491 
a MGS stands for Maternal Grand Sire. 349 

Table 6.  Summary of weaning weight ratio models.  350 

Model AIC BIC 
Sire 
Variance 

MGSa 
Variance 

Residual 
Variance 

Pseudo-
R2 

L
li

Linear Model with WW GeneMax 
score 

3512.9 3533.8   74.03 0.0997 

Linear Model with Milk GeneMax 
score 

3525.2 3546.2   75.92 0.0767 

Mixed Model with WW GeneMax 
score and sire 

3496.9 3522.1 8.97  66.37 0.1321 

Mixed Model with Milk GeneMax 
score and sire 

3513.4 3538.5 7.365  69.267 0.1025 

Mixed model with sire 3513.3 3534.3 8.00  69.33 0.0989 
Mixed model with MGS and sire 3509.4 3534.6 8.275 8.337 65.109 0.1097 
a MGS stands for Maternal Grand Sire. 351 

 352 

Table 7.  Summary of marbling models.  353 

Model AIC BIC 
Sire 
Variance 

MGSa 
Variance 

Residual 
Variance 

Pseudo-
R2 

L
li

Linear Model with GeneMax score 1032.2 1181.3   0.8377 0.4404 
Mixed Model with GeneMax score and 
sire 

1002.9 1155.9 0.1050  0.6411 0.4892 

Mixed model with sire 1024.7 1173.8 0.0955  0.6887 0.4525 
Mixed model with MGS and sire 1018.0 1171.1 0.09282 0.07898 0.63735 0.4661 
a MGS stands for Maternal Grand Sire. 354 
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 355 

 356 

Table 8.  Summary of carcass weight models.  357 

Model AIC BIC 
Sire 
Variance 

MGSa 
Variance 

Residual 
Variance 

Pseudo-
R2 

L
li

Linear Model with GeneMax score 3724.2 3873.5   1062.5 0.4089 
Mixed Model with GeneMax score and 
sire 

3713.3 3866.6 161.9  848.3 0.4288 

Mixed model with sire 3715.8 3865.2 152.1  862.0 0.4220 
Mixed model with MGS and sire 3717.8 3871.1 152.1 0.0 862.0 0.4220 
a MGS stands for Maternal Grand Sire. 358 

 359 

Table 9.  Summary of ribeye area models.  360 

Model AIC BIC 
Sire 
Variance 

MGSa 
Variance 

Residual 
Variance 

Pseudo-
R2 

L
li

Linear Model with GeneMax score 2598.3 2747.4   55.17 0.4256 
Mixed Model with GeneMax score and 
sire 

2586.8 2739.9 7.105  44.329 0.4460 

Mixed model with sire 2594.2 2743.4 6.418  45.747 0.4318 
Mixed model with MGS and sire 2589.5 2742.6 7.952 5.821 41.880 0.4420 
a MGS stands for Maternal Grand Sire. 361 

 362 

Table 10.  Summary of fat thickness models.  363 

Model AIC BIC 
Sire 
Variance 

MGSa 
Variance 

Residual 
Variance 

Pseudo-
R2 

L
li

Linear Model with GeneMax score 369.65 432.04   0.1972 0.2527 
Mixed Model with GeneMax score and 
sire 

371.0 437.1 0.006747  0.1808 0.2552 

Mixed model with sire 374.4 436.8 0.007184  0.1840 0.2347 
Mixed model with MGS and sire 376.4 442.5 0.007184 0.00 0.1840 0.2347 
a MGS stands for Maternal Grand Sire. 364 
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 365 
Figure 1. Graphical summary of data available for analysis. a) Counts of animals by sex. An 366 
animal can be counted as both a bull and a steer, for example if it was a bull at weaning but 367 
castrated prior to entering the feedlot. b) Counts of animals by birth month and year. c) Counts of 368 
animals by slaughter month and year. d) Weaning weight plotted against birth date. e) Weaning 369 
weight ratio plotted against birth date.    370 
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 371 

372 

Figure 2. Calf’s phenotype plotted against dam’s  GMX Score. a) Weaning weight versus WW 373 

GMX Score, b) Weaning weight versus Milk GMX Score, c) Carcass weight versus CW GMX 374 

Score, d) Marbling score versus Marb GMX Score, e) Ribeye area versus RE GMX Score, and f) 375 

Fat Thickness versus Fat GMX Score. Red line represents the intercept and slope estimated from 376 

the linear models reported in Table 3. 377 
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