Abstract
Convolutional neural networks trained on object recognition derive some inspiration from the neuroscience of the visual system in primates, and have been used as models of the feedforward computation performed in the primate ventral stream. In contrast to the hierarchical organization of primates, the visual system of the mouse has flatter hierarchy. Since mice are capable of visually guided behavior, this raises questions about the role of architecture in neural computation. In this work, we introduce a framework for building a biologically constrained convolutional neural network model of lateral areas of the mouse visual cortex. The structural parameters of the network are derived from experimental measurements, specifically estimates of numbers of neurons in each area and cortical layer, the interareal connec-tome, and the statistics of connections between cortical layers. This network is constructed to support detailed task-optimized models of mouse visual cortex, with neural populations that can be compared to specific corresponding populations in the mouse brain. The code is freely available to support such research.
Competing Interest Statement
The authors have declared no competing interest.