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Abstract 5 

The analysis of patterns in comparative data has come to be dominated by least-squares 6 

regression, mainly as implemented in phylogenetic generalized least-squares (PGLS). This 7 

approach has two main drawbacks: it makes relatively restrictive assumptions about distributions 8 

and can only address questions about the conditional mean of one variable as a function of other 9 

variables. Here I introduce two new non-parametric constructs for the analysis of a broader range 10 

of comparative questions: phylogenetic permutation tests, based on cyclic permutations and 11 

permutations conserving phylogenetic signal. The cyclic permutation test, an extension of the 12 

restricted permutation test that performs exchanges by rotating nodes on the phylogeny, performs 13 

well within and outside the bounds where PGLS is applicable but can only be used for balanced 14 

trees. The signal-based permutation test has identical statistical properties and works with all 15 

trees. The statistical performance of these tests compares favorably with independent contrasts 16 

and surpasses that of a previously developed permutation test that exchanges closely related pairs 17 

of observations more frequently. Three case studies illustrate the use of phylogenetic 18 

permutations for quantile regression with non-normal and heteroscedastic data, testing 19 

hypotheses about morphospace occupation, and comparative problems in which the data points 20 

are not tips in the phylogeny. 21 

 22 

Introduction 23 

For a biologist interested in the role of natural selection in evolution, questions about 24 

relative trait values are easier to address than questions about absolute trait values. For example, 25 

“do bears from colder climates have longer fur” is far more analytically tractable than “is long 26 

hair an adaptation for cold climates,” even if the latter is the original question of interest (Sober 27 

and Orzack 2003). Comparative or cross-species data are a fruitful source of insights into how 28 

natural selection works in populations, and also into broad-scale phenomena that are interesting 29 

in themselves, but their analysis is non-trivial. Comparative data often carry a detectable signal 30 

of the phylogenies on which they evolved, and covariation between the trait values of close 31 
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relatives can cause serious problems for a statistical analysis, most conspicuously in the form of 32 

inflated false positive rates (Felsenstein 1985). The dominant paradigm for the past several 33 

decades of comparative research was established by Felsenstein (1985), who showed that the 34 

independent values in a comparative analysis are not the trait states at the tips of a phylogeny but 35 

their divergences (or contrasts) at phylogenetic splits. Unlike the raw trait values, these 36 

“phylogenetically independent contrasts” (PICs) can be safely analyzed with least-squares 37 

regression. Phylogenetic generalized least squares (PGLS; Grafen 1989) was developed as a 38 

more general comparative framework that can accommodate non-linear relationships via link 39 

functions (for example, phylogenetic logistic regression; Ives and Garland 2010), trees with 40 

polytomies, and a variety of evolutionary models. PGLS is a kind of generalized least squares 41 

regression that uses a phylogeny as the variance-covariance matrix, and it returns identical 42 

results as the PIC approach in its simplest form. 43 

PICs/PGLS have enjoyed immense success as a framework for understanding 44 

relationships among traits in comparative data while accounting for phylogenetic autocorrelation 45 

(Symonds and Blomberg 2014), but they have two chief limitations. First, as regression tests 46 

they are assumption-rich: their reliability depends on, among other things, the residuals being 47 

normally distributed and homoscedastic (equal variance across the values of the predictors) 48 

(Mundry 2014). The other limitation is that least-squares regression is a rather specific analytical 49 

framework: questions about the relationship between one or more variables and the conditional 50 

mean of another variable occupy only a small corner of the universe of biologically interesting 51 

comparative problems. This has pernicious implications for the use of phylogenetic regression as 52 

the “go-to” method among comparative biologists. In the last section of this paper I highlight 53 

three examples of comparative problems that are off-limits to PGLS: quantile regression, 54 

morphospace occupation, and ecogeographic rules. PICs/PGLS is quite powerful within rather 55 

circumscribed bounds (Orzack and Sober 2001), but methods that promote the creative 56 

exploration of questions and datasets outside those bounds can only improve comparative 57 

biology. Here I develop phylogenetically informed permutation tests, validate them with toy 58 

scenarios, and illustrate their use with empirical case studies. The first of these tests generates a 59 

set of nulls using cyclic permutations and is a conceptually straightforward extension of an 60 

existing test, but it can only be used with balanced trees. The second conserves the phylogenetic 61 
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signal in the data, has identical statistical properties to the first, and can be used with any 62 

phylogeny. 63 

 64 

Phylogenetic permutation tests 65 

Permutation testing is widespread for some questions in evolutionary biology – for 66 

example, in tests of phylogenetic signal (Blomberg et al. 2003) – but strangely has not permeated 67 

to comparative testing (with one important exception, discussed below). The gist of a 68 

permutation test is to take as a null distribution the set of test statistics associated with every 69 

unique rearrangement (or permutation) of the data and to compare the empirical test statistic with 70 

this distribution (Good 2000). In each of these permutations the “labels” on at least one variable 71 

in the dataset are randomly rearranged, breaking the empirical association between variables 72 

without changing their distributions. The proportion of permutations in which the test statistic is 73 

at least as extreme as the empirical one is taken as the probability of obtaining the results under 74 

the null hypothesis: the p-value (Perezgonzalez 2015). For example, the subject in Fisher’s 75 

famous “Lady Tasting Tea” experiment correctly guessed the method of preparation for 8 cups 76 

of tea, and Fisher used permutations of the order of guesses to determine that guessing randomly 77 

would have achieved this result with a low probability of p = 1/70. This example was simple 78 

enough for every possible permutation to be enumerated analytically, but for bigger datasets this 79 

can be computationally infeasible, so in practice the distribution is typically estimated by 80 

permuting randomly many times (Good 2000). Many “flavors” of permutation test have been 81 

developed, differing mainly in the null distribution they generate (Anderson 2001). The primary 82 

virtue of the permutation test is its elegance: unlike parametric tests, it does not rely on 83 

theoretical probability distributions (the population of interest is the empirical one), and it can be 84 

used with a broader range of test statistics (Good 2000). 85 

Despite its strengths, the ordinary permutation test cannot be applied to data that evolved 86 

on phylogenies. The test is, in a sense, distribution-free, but not assumption-free: permutation 87 

tests assume among other things that the observations being shuffled are exchangeable, meaning 88 

that rearrangements of those observations have the same joint probability distribution (Anderson 89 

2001). This is quite close to the assumption in least-squares regression that variables are 90 

independent and identically distributed, and these assumptions are violated by the complex 91 

covariance structure of comparative data. In other words, because the traits of closely related 92 
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taxa tend to covary due to their shared evolutionary history, comparative data are not 93 

exchangeable. However, a modified test that uses phylogenetic information to preserve 94 

exchangeability can be used for sound non-parametric hypothesis-testing with comparative data. 95 

Lapointe-Garland phylogenetic permutations 96 

 Lapointe and Garland (2001) proposed a permutation test for comparative data in which 97 

pairs of values at the tips are exchanged with probability proportional to their phylogenetic 98 

proximity, such that the most probable exchange is between a trait value and itself (Fig. 1A). 99 

This approach uses a relatedness matrix which can be “flattened out” using a parameter k; for 100 

values of k higher than one the test approaches an ordinary permutation test. This was the first 101 

and apparently the only previous attempt at developing a comparative permutation test.  102 

Although the test is less vulnerable than the ordinary permutation test to phylogenetically 103 

induced false positives, it has several undesirable properties. One of these is the high rate of 104 

exchanges between an observation and itself (Fig. 1A), or auto-exchanges, which results in a set 105 

of permutations that is tightly constrained around the empirical statistic (Appendix 1). This 106 

should reduce statistical power because the permutations look so much like the empirical 107 

arrangement. In this respect the Lapointe-Garland (LG) test also strays from one of the essential 108 

features of permutation tests: enumerating each unique rearrangement of the data. The high rate 109 

of auto-exchanges has the effect of up-weighting some possible rearrangements over others; it is 110 

not clear why it would be desirable to give more weight to rearrangements that look more like 111 

the empirical one. The rate of auto-exchanges can be dampened by increasing the value of k, 112 

which makes the exchange matrix flatter, but that defeats the point of incorporating phylogeny. 113 

Moreover, there is no principled way to choose a value of k above one, nor is there a clear use-114 

case for permutations that are only partially informed by phylogeny. Another theoretical problem 115 

with LG permutations is that they do not conserve phylogenetic signal, the key feature that 116 

makes interpreting comparative datasets difficult. For the leftmost tree in Fig. 1C, the 117 

phylogenetic signal of LG permutations varies by a factor of 2.3. 118 

 Simulations show these features of the LG approach have consequences for its statistical 119 

performance. For instance, one desirable feature of a significance test is that the rate of false 120 

positives should be exactly equal to the significance level: thus, 5% of cases in which the null 121 

hypothesis is true should have p < 0.05. I tested the false positive rate of the LG permutation test 122 

by simulating uncorrelated Brownian Motion evolution of two continuous traits on a rooted 8-123 
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taxon tree with two polytomies of four tips each. I computed the absolute correlation coefficient 124 

between the two simulated traits and tested it with an LG permutation test (500 permutations) for 125 

each of 1000 pairs of simulated traits (Fig. 2). I ran the same test with independent contrasts, 126 

after making the tree amenable to PICs by making the two 4-taxon polytomies in the tree into 127 

pectinate subtrees with added branches having length 0. Unlike independent contrasts, LG 128 

permutation tests yielded non-uniformly distributed p-values, returning intermediate values most 129 

frequently (Kolmogorov-Smirnov test against a uniform distribution, p = 0.011). In other words, 130 

the p-values from this test do not tell the user what they are supposed to: the probability of 131 

observing a statistic at least as extreme as the empirical one under the null hypothesis. I also 132 

evaluated the false negative rate with the same procedure, except the two simulated traits were 133 

correlated with an evolutionary covariance of 0.75. LG permutation tests return false negatives at 134 

higher rates than independent contrasts: p < 0.05 for 469 of 1000 simulations of truly correlated 135 

evolution, compared with 564. The LG phylogenetic permutation test is a valuable and 136 

interesting non-parametric approach to comparative data, but, motivated by the conceptual and 137 

statistical problems outlined here, I develop two new phylogenetically informed permutation 138 

tests. The cyclic permutation test is a conceptually straightforward extension of an existing class 139 

of permutation tests that can only be used with balanced trees; the signal-based permutation test 140 

has identical statistical properties to the first and can be used with any phylogeny. 141 

Cyclic permutations 142 

An elegant solution to the problem of relatedness in comparative data can be found in the 143 

restricted permutation test, in which rearrangements are restricted to only occur between 144 

exchangeable data points or sets of data points (Anderson 2001). As a non-phylogenetic 145 

example, an investigator testing the significance of a correlation between environmental 146 

variables sampled in different regions might consider permuting only within regions and not 147 

across them, especially if those variables were spatially autocorrelated by region. The resulting 148 

restricted permutations would retain the same kind of spatial autocorrelation as the empirical 149 

data. In a comparative dataset, the exchangeable units are not the values at the tips but the 150 

descendants of each node in the tree. This is similar to Felsenstein’s (1985) observation that 151 

contrasts at nodes rather than tip values are independent of one another, and similar also to the 152 

“radiation principle” that motivates Grafen’s (1989) PGLS. A set of phylogenetically informed 153 

permutations can therefore be generated with cyclic permutations of the values at the tips; that is, 154 
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by randomly rotating the descendants of each internal node for at least one variable in the dataset 155 

(Fig. 1B). A statistic calculated for the set of these permuted datasets can be compared with the 156 

empirical one in what is here called a cyclic permutation test. Because the units being permuted 157 

can either be tip values (for the shallowest internal nodes) or sets of tip values (for deeper nodes), 158 

this is a form of hierarchical restricted permutation. 159 

 The cyclic permutation test performs at least as well as independent contrasts and lacks 160 

the statistical issues of the LG permutation test. In the test for false positives (Fig. 2), the set of 161 

p-values is indistinguishable from a uniform distribution (Kolmogorov-Smirnov test, p = 0.370), 162 

which is ideal. In the test for false negatives with cyclic permutations, p was below 0.05 for 163 

702/1000 simulations, corresponding to a false negative rate of around 30% (Fig. 2). 164 

Interestingly, this is a better rate than what independent contrasts recovered (p below 0.05 for 165 

564/1000 simulations). This indicates that the cyclic permutation test and PICs have at least 166 

comparable statistical power, even though the former is a non-parametric test. 167 

Cyclic permutations will change an unbalanced tree’s two-dimensional projection, so the 168 

cyclic permutation test can only be used with a topologically balanced tree. If a trait is permuted 169 

cyclically on an unbalanced tree, it will no longer share the same evolutionary history as other 170 

traits in the dataset, and it defeats the point of the test – namely, to ask what kinds of patterns can 171 

result from the independent evolution of different traits on the same phylogeny. Because of the 172 

restriction to balanced trees, the cyclic permutation test cannot be used with most empirical 173 

datasets. However, because it is so conceptually straightforward and because it works (Fig. 2), it 174 

is a useful yardstick against which to measure another new approach in which permutations 175 

conserve the amount of phylogenetic signal in the data. 176 

Signal-based permutations 177 

The following permutation test can be used with real phylogenies: compare an empirical 178 

test statistic with the set of permutations in which phylogenetic signal is equal or sufficiently 179 

close to the empirical signal (Fig. 1C). The logic here is that the only rearrangements that can be 180 

meaningfully compared with empirical data are those in which trait values are just as conserved 181 

on, or structured by, the phylogeny. Phylogenetic signal is quantified here with Moran’s I rather 182 

than another metric like Pagel’s λ or Blomberg’s K in the non-parametric spirit of the 183 

permutation test: whereas those other metrics explicitly model the evolutionary process that 184 

generated a given trait, Moran’s I  simply quantifies the degree to which the trait values of 185 
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closely-related species covary (Gittleman and Kot 1990; Appendix 2). I implement signal-based 186 

permutation with a simple hill-climbing algorithm in which first the values of a trait are shuffled, 187 

then randomly-selected pairs of observations are swapped if doing so brings the phylogenetic 188 

signal closer to the empirical signal, and the procedure stops when the permuted phylogenetic 189 

signal is within some specified tolerance of the empirical value. The test could be implemented 190 

without this hill-climbing procedure, but it would make the test extraordinarily time-consuming 191 

for some datasets. Because phylogenetic signal depends on the values at the tips, the 192 

rearrangements that are included in the set of signal-based permutations depend on the values of 193 

the trait being permuted, unlike cyclic permutations and the LG permutation test. For applicable 194 

trees, the set of signal-based permutations is always at least as inclusive as the set of cyclic 195 

permutations: every cyclic permutation has identical phylogenetic signal, but non-cyclic 196 

permutations of a dataset can too (Fig 1B, rightmost permutation), and additional rearrangements 197 

can be accepted if the specified tolerance is large enough. For example, there are 2^(number of 198 

internal nodes) = 128 possible cyclic permutations of the 8-taxon tree in Figure 1B but 256 199 

permutations with identical phylogenetic signal. The positions of clades (C,D) and (G,H) are 200 

switched in the 128 non-cyclic permutations. 201 

Despite these striking differences from the cyclic permutation test, simulations show that 202 

signal-based and cyclic permutations have apparently identical statistical properties. Like the 203 

other test, the signal-based test correctly returns a uniform distribution of p values for 1000 204 

simulations of uncorrelated evolution (Fig. 2, “Signal-based permutation”; Kolmogorov-Smirnov 205 

test against a uniform distribution, p = 0.413). The false negative rate is also comparable with 206 

that for the cyclic permutation test (Fig. 2; 716/1000 p-values below 0.05), and higher than that 207 

for PICs. Thus, the cyclic and signal-based permutation tests do not have the problems with 208 

statistical power and size that characterize the Lapointe-Garland test. 209 

As a visual illustration of the two new phylogenetic permutation tests, consider their 210 

application to Felsenstein’s (1985) “worst case scenario” in which uncorrelated Brownian 211 

Motion evolution of two traits on a rooted tree of two polytomies with 20 tips each (all branch 212 

lengths equal) generates a spurious correlation among traits (Fig. 3A). An ordinary permutation 213 

test yields a distribution of mainly low absolute correlation coefficients (Fig. 3B) and a very high 214 

level of significance (p < 0.001). The investigator who makes the mistake of treating all tip 215 

values as exchangeable incorrectly rejects the null hypothesis of independent evolution. 216 
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Conversely, the distribution of correlation coefficients for 1000 cyclic permutations is centered 217 

close to the empirical correlation coefficient (Fig. 3B), yielding a p-value of 0.31. Because of the 218 

clustering of trait values within subclades, every cyclic permutation preserves a relatively strong 219 

correlation coefficient: 95% of the cyclic permutations have |r| between 0.34 and 0.65. The null 220 

distribution generated by signal-based permutations depends on the tolerance: a set of 1000 221 

signal-based permutations with the broadest possible tolerance (2) is statistically 222 

indistinguishable from an ordinary permutation test (Kolmogorov-Smirnov test, p = 0.7226) 223 

because the phylogenetic signal of every possible permutation is within its tolerance (Fig. 3B). 224 

For smaller tolerances, the distribution of test statistics for signal-based  permutations more 225 

closely approximates the set of cyclic permutations (Fig. 3B), such that with a margin of 0.01 226 

(Moran’s I of permuted variable Y between 0.512 and 0.532) they are statistically 227 

indistinguishable (p=0.536). Thus, signal-based permutations converge on the statistical 228 

properties of cyclic permutations. 229 

 Interestingly, phylogenetic permutation tests succeed in a case where PICs and PGLS 230 

both fail: a second “worst case” constructed by Uyeda et al. (2018). In this scenario, simulated 231 

traits evolve in the same way and on the same phylogeny as in Felsenstein’s worst case, but with 232 

one modification: a single extreme shift in both traits near the root generates a contrast that is a 233 

strong enough outlier to make the two traits appear significantly associated, even when 234 

“correcting for phylogeny.” PICs/PGLS incorrectly recover significant relationships between 235 

traits because these methods are parametric, and their assumptions are violated by the dramatic 236 

outlier. The cyclic permutation test is unburdened by these assumptions: the extreme outlier is 237 

incorporated into every permutation, and the test correctly yields a non-significant result 238 

(Appendix 3). Likewise, the only rearrangements of the data that conserve phylogenetic signal 239 

are those in which exchanges only occur within clades and not between them, so a signal-based 240 

permutation test succeeds in the same way. Cyclic and signal-based permutations both represent 241 

reasonable null models against which to compare empirical patterns, but only the latter is 242 

applicable to real trees, so I use signal-based permutation tests to explore the following case 243 

studies.  244 

 245 

Case studies 246 
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The preceding sections established that phylogenetic permutations perform at least as 247 

favorably as PICs in “toy scenarios” in which the truth is known. These scenarios involved 248 

modeled BM evolution of traits with normal distributions, and the only test statistic considered 249 

was the correlation between two traits. PICs/PGLS perform comfortably within these bounds. In 250 

the following case studies, I use phylogenetic permutation to explore scientific questions that are 251 

effectively off-limits to PGLS-type methods because they involve strange distributions and test 252 

statistics beyond the least-squares regression framework. The first case study involves quantile 253 

regression on a heteroskedastic dataset with a non-normal response variable. The second 254 

explores the statistical significance of patterns of morphospace occupation. The third tests an 255 

ecogeographic rule: the data points are not tips in the phylogeny but the aggregate property of all 256 

the tips that occur in each geographic area. 257 

The statistical significance of some of these findings could potentially be tested by 258 

comparing empirical statistics with null simulations rather than permutations, like what Mahler 259 

et al. (2013) used to demonstrate exceptional convergence in anoles. However, this requires 260 

assumptions about distributions and the evolutionary processes that generated a dataset which an 261 

investigator may not want or be able to make. If a dataset exhibits a more extreme test statistic 262 

than a set of simulations, is it because there was a mechanistic association between those traits, 263 

or because the simulations were unrealistic? Such questions may be hard to answer and are 264 

avoided by taking the non-parametric approach. 265 

Quantile regression and peculiar distributions: arm number in feather stars 266 

Saulsbury and Baumiller (2020) investigated a wedge-shaped relationship between 267 

absolute latitude and arm number among feather stars, a group of suspension-feeding marine 268 

echinoderms: species near the poles typically have around 10 arms, whereas those around the 269 

equator have between 5 and 150. Arm number varies widely within many families, but across the 270 

dataset it has a strange distribution, probably due to the unique and complex ontogeny of feather 271 

star arms (Shibata and Oji 2003): about half the species in the dataset have exactly 10 arms, and 272 

the rest of the distribution is markedly right skewed. More importantly, this non-normality also 273 

characterizes the residuals in a PGLS regression of arm number, and log(arm number), on 274 

absolute latitude. Another aspect of the dataset that poses obvious problems for least-squares 275 

regression is also the dataset’s most biologically interesting feature: arm number is 276 

heteroskedastic across absolute latitude. Beyond these more technical challenges, questions 277 
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about the spread of a response variable as a function of a predictor cannot be readily addressed 278 

with least-squares regression. Instead they are the purview of quantile regression, which 279 

estimates quantiles (for example, the median, or the 10th percentile) conditional on predictors. 280 

There is not currently an equivalent to quantile regression in the PGLS framework. As such, the 281 

authors used signal-based phylogenetic permutation tests to consider whether the latitudinal 282 

gradient in arm number could have plausibly emerged through independent evolution on feather 283 

star phylogeny. 284 

Although both absolute latitude and arm number exhibit phylogenetic signal, and thus 285 

might be prone to spurious associations, the empirical relationships between the two are more 286 

extreme than almost all phylogenetic permutations. The 90th and 95th conditional percentiles, 287 

which characterize how maximum arm number relates to latitude, were significantly negative (p 288 

= 0.017 and 0.009, respectively), as was Spearman’s rank-correlation coefficient (p < 0.001). 289 

Concluding that the pattern could not be explained away as the result of random evolution, the 290 

authors drew on ecological and functional morphological evidence to argue that a latitudinal 291 

gradient in the intensity of predation represented the most plausible explanation for their 292 

findings. This simple case study illustrates the value of a comparative method that makes 293 

minimal assumptions about the distribution of the data. It also hints at the extent of the patterns 294 

that can be evaluated with phylogenetic permutation, although that is more fully illustrated by 295 

the following examples. 296 

Morphospace occupation: Triassic ammonoids 297 

Why are some theoretically possible morphologies not realized in nature, and why are 298 

some realized more frequently than others? These questions are the domain of theoretical 299 

morphology, a subdiscipline catapulted to the forefront of evolutionary biology for a time by 300 

David Raup. He found (1966) that the breadth of shell morphologies realized by mollusks and 301 

brachiopods was surprisingly well-summarized by a model in which a generating curve or whorl 302 

increases in size as it revolves around an axis. Shell geometry is controlled by three parameters: 303 

whorl expansion rate, translation of successive whorls along the axis, and the distance of 304 

successive whorls from the shell axis. Interestingly, most theoretically possible combinations of 305 

parameter values are not realized in nature; Raup cautiously submitted that either these 306 

unrealized forms were physiologically impossible, or shell-building invertebrates simply had not 307 

had time to reach those parts of morphospace yet. A companion paper (Raup 1967) focused on 308 
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ammonoids, an extinct group of mostly “planispiral” mollusks in which typically no whorl 309 

translation occurs and variation is constrained along two axes of theoretical shell morphospace: 310 

the distance of successive whorls from the axis (D), and the whorl expansion rate (W) (Fig. 4A). 311 

Again, much of the rectangle defined by ammonoid occupation in D-W space is unoccupied – for 312 

example, almost no ammonoids fall above the line W = 1/D (Fig. 4A). Shells above this curve 313 

are open-coiled, making them, among other things, weaker and easier for a predator to crush. For 314 

shells under this curve, each whorl can incorporate part of the previous whorl in its construction, 315 

so open-coiled shells (W > 1/D) also waste the building materials they otherwise would have 316 

saved. Thus, the patterns in theoretical morphospace occupation are interesting because of the 317 

underlying fitness surface they suggest. 318 

The problem with inferences of selective forces from the pattern of morphospace 319 

occupation is that they rely on the equilibrium assumption (Lauder 1982): namely, that the 320 

phenotypes under study are at equilibrium with the selective forces that act on them. The 321 

alternate explanation for un- or under-occupied regions of morphospace is that, by chance, 322 

ammonoids simply have not had time to reach those regions yet – in other words, the system is 323 

historical and not at equilibrium. Raup (1967) raised this possibility, but admitted that in order to 324 

make headway he had to “assume that the observed morphology has had, in evolution, a 325 

selective advantage over other possible morphologies.” Subsequent studies have made the same 326 

assumption: for example, Tendler et al. (2015) tested whether ammonoids fill out a triangle in D-327 

W space as a demonstration of Pareto optimality theory, which predicts that functional 328 

“archetypes” should form the vertices of polygons in trait space (Fig. 4A). They tested whether 329 

the ammonoid data are more triangular than the set of ordinary permutations, but this procedure 330 

incorrectly assumes that the data are exchangeable, or in other words that each data point 331 

obtained its morphology independently – a problem pointed out by Edelaar (2013) for another 332 

study of Pareto optimality. The equilibrium assumption leaves comparative studies vulnerable to 333 

the kinds of false positives discussed by Felsenstein (1985) in which a pattern apparently 334 

supported by a high number of replicates actually only represents a few evolutionary events. 335 

Theoretical morphology has not been incorporated with phylogeny in the way other comparative 336 

subdisciplines have in recent decades. However, it is not amenable to PGLS because it is not a 337 

regression problem: the question is not about the conditional mean of a response variable but 338 

about why certain combinations of traits are unrealized. 339 
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The phylogenetic permutation approach is a promising way forward for theoretical 340 

morphology because it can be used to ask what kinds of patterns in morphospace occupation can 341 

emerge without any dependence between traits. If empirical patterns fall outside the range of 342 

phylogenetic permutations, more interesting evolutionary explanations for the pattern in 343 

morphospace occupation can be explored – for example, certain morphologies could be 344 

unrealized because they are less fit. No broad-scale phylogeny of ammonoids is available, so I 345 

used taxonomy as a polytomy-rich phylogeny to explore morphospace occupation in the database 346 

of 322 Triassic ammonoid genera from McGowan (2004). These genera belong to 79 families in 347 

18 superfamilies. This is a very coarse way to approximate phylogeny, so this exploration should 348 

be taken as a proof of concept and a hint at the role of contingency in ammonoid evolution. 349 

I used ordinary and signal-based phylogenetic permutations to test the significance of two 350 

test statistics: the number of genera over the W=1/D line (6/322 genera), and the triangularity of 351 

the dataset in D-W space, defined as the ratio of the area of the convex hull to the area of the 352 

smallest triangle that encloses all the data (triangularity = 0.8535; Fig. 4A; Appendix 4). Both D 353 

and W have low signal on the “phylogeny”, with values of Moran’s I of 0.072 and 0.049, 354 

respectively. So, inasmuch as ammonoid taxonomy approximates phylogeny, the various 355 

ammonoid clades appear to have independently explored a lot of D-W space: for example, there 356 

are five superfamilies that each occupy more than half the area of the total convex hull. In a 357 

system characterized by this much exploration of morphospace, it seems unlikely that 358 

particularly strong patterns could emerge from random chance alone. The phylogenetic 359 

permutation test quantifies this preliminary impression: p < 0.001 for both test statistics for both 360 

ordinary and phylogenetic permutations (Fig. 4B-C). In other words, all phylogenetic 361 

permutations of the data have more open-coiled genera and are less triangular than the empirical 362 

dataset. Considering phylogeny (that is, going from ordinary to phylogenetic permutations) does 363 

not visibly affect the null distribution for the first test statistic; it does slightly for triangularity, 364 

shifting it to the right. So, because of phylogeny there is a slight tendency for permuted datasets 365 

to look more triangular, but not enough to make a difference for the p-value. 366 

Thus, the independent evolution of shell growth parameters D and W constitutes a poor 367 

explanation for both the triangularity of the dataset and the paucity of open-coiled genera. One 368 

could easily imagine a hypothetical phylogenetic history for which a non-significant result would 369 

be obtained – for example, if every ammonoid with D > 0.3 were part of the same clade, it would 370 
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be easier to explain away the pattern of morphospace occupation as a historical accident. The 371 

phylogenetic permutation test is well-suited for this problem because characterizing the 372 

biologically interesting features of morphospace occupation often requires the use of creative or 373 

novel statistics. Note that this is not the only way to evaluate the evolutionary “significance” of 374 

morphospace occupation: Tendler et al. (2015) showed that ammonoids refilled roughly the same 375 

region of morphospace several times after mass extinctions, representing semi-independent 376 

replicates. In the final case study, I explore a comparative problem in which the data points are 377 

not tips in the phylogeny. 378 

Ecogeographic rules: Thorson’s rule in muricid gastropods 379 

 Some of the most productive hypotheses in biology predict the way some biological 380 

feature changes across space. Well-known examples of “ecogeographic rules” like these include 381 

Bergmann’s rule, the tendency for endotherms to be larger toward the poles (Olalla-Tárraga 382 

2011), and Rapoport’s rule, the putative tendency for species’ latitudinal ranges to be smaller in 383 

the tropics (Stevens 1989). The analysis of ecogeographic rules entails an interesting and under-384 

researched problem: species typically exist in more than one place, rather than at a single point 385 

as in other kinds of comparative studies. It might seem that a straightforward comparative 386 

analysis could address this by using a summary statistic of the range of each species, such as the 387 

range midpoint, and indeed many studies take this shortcut. However, such an approach removes 388 

biological information and is susceptible to false positives, especially if the trait in question 389 

corresponds with range size in some way (Saulsbury and Baumiller 2020; Colwell and Hurtt 390 

1994). In the most well-known and straightforward example, a test for a relationship between 391 

absolute latitudinal midpoint and range size tends to recover strong negative relationships even 392 

none really exists: geometrically, large ranges cannot be centered at high latitude, so these taxa 393 

have their latitudinal midpoints “pulled” toward the equator (Colwell and Hurtt 1994). An 394 

alternative approach is to consider the ecogeographical data as such – that is, as a set of places 395 

and the aggregate properties of all the species in each place (Stevens 1989) – but this is 396 

analytically fraught as well. Such data are beset not only by the phylogenetic autocorrelation that 397 

complicates other comparative studies, but also by spatial autocorrelation to the degree that 398 

species occur in multiple places (Rohde et al. 1993). Here I show that both the phylogenetic 399 

permutation test can circumvent both sources of autocorrelation using a case study of larval 400 

development across latitude in muricid gastropods. 401 
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 Thorson’s rule predicts that the larvae of marine invertebrates near the equator are more 402 

likely to be planktotrophs – feeding larvae that persist in the water column for a long time –  403 

whereas toward the poles there should be a predominance of non-feeding larvae, including direct 404 

developers and lecithotrophs (yolk-supplied larvae) (Thorson 1950). Thorson proposed that 405 

vulnerable planktotrophic larvae would not be able to cope with the extreme conditions and 406 

variable food supply at high latitudes, but this mechanism and the latitudinal pattern have 407 

subsequently received mixed empirical support (Marshall et al. 2012). Yet the idea persists: 408 

Pappalardo et al. (2014) claimed support for Thorson’s rule in a dataset of 44 muricid gastropod 409 

species (Fig 5A). A logistic PGLS regression of larval development (planktotrophic vs. non-410 

feeding) on sea surface temperature [taken either from a single confirmed occurrence (69%) or 411 

from the latitudinal midpoint of each species (31%)] recovered marginally significant 412 

relationships: p = 0.087 for the regression of feeding (planktotrophic) vs. non-feeding mode on 413 

temperature, and p = 0.045 for the regression of pelagic (planktotrophic and lecithotrophic) vs. 414 

non-pelagic mode on temperature. Analyzing the same dataset, I found a similar degree of 415 

support in a PGLS logistic regression of larval development on latitudinal midpoints (Appendix 416 

5). Other recent studies of Thorson’s rule use latitudinal or environmental midpoints as well 417 

(Ibáñez et al. 2018; Ewers-Saucedo and Pappalardo 2019), presumably because the PGLS 418 

framework requires it. Notably this seems to be a recent development, as Thorson and others 419 

who worked on this problem since were mostly considering the proportion of planktotrophic 420 

species at each latitude (Thorson 1950; Mileikovsky 1971; Jablonski and Lutz 1983; Collin 421 

2003). Importantly, the use of midpoints can be vulnerable to complications involving range 422 

size: for example, if planktotrophic species have larger ranges, it would artificially strengthen the 423 

relationship between latitude and development by dragging the latitudinal midpoints of wide-424 

ranging species toward the equator (Colwell and Hurtt 1994). In fact, the broad geographic 425 

ranges of feeding larvae are famous among invertebrate zoologists (Jablonski 1986), and the 426 

median latitudinal range of planktotrophic species in the muricid dataset is 3.25 times that of 427 

non-planktotrophs (Fig 5A). Using a latitude or temperature value selected randomly from the 428 

range might not be biased like the midpoint method is, but is not an ideal solution because it 429 

removes information and adds noise. 430 

 If instead the ecogeographic data are considered as such – for example, with a plot of the 431 

percentage of species with planktotrophic larvae in each 1° latitudinal bin – the trend is still 432 
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apparent, with a strong correlation of r = 0.927 (Fig. 5B). A non-phylogenetic significance test 433 

that nevertheless accounts for spatial autocorrelation can be performed by permuting modes of 434 

larval development randomly across the tips of the phylogeny and re-computing the correlation 435 

coefficient (Fig. 5C). The resulting absolute correlation coefficients are spread evenly between 0 436 

and 1, yielding marginal statistical significance with a p-value of 0.033. We can take both spatial 437 

and phylogenetic autocorrelation into account with signal-based phylogenetic permutations of 438 

mode of larval development. Phylogenetic signal of planktotrophic vs. non-planktotrophic 439 

development is high (Moran’s I = 0.60), and indeed larval development only appears to have 440 

transitioned on the phylogeny a few times, providing an investigator with very low sample size: 441 

the most parsimonious history of development involves only three transitions to or away from 442 

planktotrophy. Accordingly, almost all phylogenetic permutations have high absolute correlation 443 

coefficients, from which the empirical correlation is statistically indistinguishable (p = 0.387). 444 

Thus, the muricid dataset cannot provide strong evidence against the completely independent 445 

evolution of latitude and larval development. Notably, the authors focused on temperature not 446 

latitude; it is unclear if a similarly non-significant result would be obtained for the correlation 447 

between temperature and larval development, but temperature and latitude are closely correlated, 448 

and the same analytical problem applies because species occupy a range of temperatures. 449 

Ecogeographic data present an interesting challenge to the comparative biologist because 450 

the data points, cast most directly, do not represent tips in the phylogeny but the aggregate 451 

properties of all the tips in the phylogeny that occur in each place. It might be possible to 452 

consider such data in a PGLS framework, but it would require the specification of a rather 453 

complex variance-covariance matrix. Crucially, this phylogenetic permutation test does not 454 

provide evidence against Thorson’s rule in this group. At the pattern level, the group is a clear 455 

example of the rule, with a strong negative correlation between latitude and the proportion of 456 

species with planktotrophic larvae. This trend probably has important implications for their 457 

modern ecology and future evolution, because it predicts, for example, that low-latitude 458 

planktotrophic species should be buffered against extinction by their broad ranges (Jablonski and 459 

Lutz 1983; Jablonski 1986). However, the key point is that, with phylogenetic and spatial 460 

autocorrelation this strong, such a trend could have easily arisen without any mechanistic 461 

relationship between latitude and larval development. In fact, given the distribution of 462 

phylogenetic permutations (Fig. 5C), it would be much more surprising to find no latitudinal 463 
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trend in larval development. This might explain why so many groups appear to follow the rule 464 

(Ibáñez et al. 2018), especially since mode of larval development appears to evolve infrequently 465 

among marine invertebrates (Collin 2004). It would require an exceptionally strong trend to 466 

support a mechanistic Thorson’s rule in a dataset like this one – or more plausibly, a different 467 

kind of data. This might mean a clade in which larval development transitions more frequently, 468 

or it might mean a different kind and scale of evolutionary repetition. 469 

 470 

Conclusions 471 

 The regression-based approach to comparative biology has been hugely successful, but it 472 

is also inflexible: it fails for strangely distributed response variables, but more importantly, the 473 

range of questions it can address is limited. Permutation tests represent a powerful alternative 474 

that performs well both within and outside the bounds where PGLS is applicable. Case studies 475 

illustrate the use of phylogenetic permutations for pushing comparative methods to new places. 476 

 Rather than being a purely technical matter, the distinction between PGLS and 477 

permutation-based approaches is underlain by a more substantive difference in attitude toward 478 

comparative data. PGLS is typically described as a way to “correct for phylogeny” (Symonds 479 

and Blomberg 2014). Other comparative methods take an even more direct approach by 480 

transforming the data to “remove phylogenetic effects” (Stearns 1984; Cheverud et al. 1985; 481 

Felsenstein 1985; Gittleman and Kot 1990). The implication is that comparative data have been 482 

contaminated or affected by an agent called phylogeny, and that this contamination needs to be 483 

isolated and removed before the real relationships in the data can be studied. It is a drawback of 484 

these methods that they put the user at a remove from the raw data. Patterns in phylogenetically 485 

autocorrelated data are also no less real than those in transformed data: biological phenomena 486 

that could have arisen purely by chance, like Thorson’s rule in some taxa, can nevertheless have 487 

real and important consequences. Transformations and corrections also remove information and 488 

limit the kinds of statistics and questions that can be applied to a dataset.  489 

The phylogenetic permutation test is mostly unique among comparative methods in that it 490 

treats the raw data as such. The test is subject to some of the same criticisms to which all 491 

frequentist tests are subject, including that statistical significance tells an investigator nothing 492 

about effect size (a reaction to the widespread conflation of “significance” with importance; 493 

Dushoff et al. 2019). This is true, but for many biological phenomena including the case studies 494 
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discussed here, the most relevant effect size is arguably the empirical test statistic. Only six of 495 

322 Triassic ammonoid genera have open-coiled shells; it is hard to imagine a more meaningful 496 

phylogenetic transformation of this test statistic. The phylogenetic permutation framework, 497 

which considers whether raw data look typical for cases of independent evolution, is in a way the 498 

reverse of the reigning paradigm of transforming comparative data or their expected covariances 499 

to fit into a regression analysis. Hopefully, these new approaches can help facilitate scientific 500 

creativity among comparative biologists. 501 

Figures 502 

 503 

Figure 1. The three kinds of phylogenetic permutations discussed in this paper, with examples of 504 

each kind on a balanced, rooted tree of 8 taxa A-H. In a test, each kind of permutation is applied 505 

to at least one variable in the dataset, and a population of many such permuted datasets is 506 

compared with the empirical arrangement. 1A. The phylogenetic permutation approach 507 

developed by Lapointe and Garland (2001). Note that many trait values do not change position 508 

across permutations because the highest probability of exchange is between a trait and itself. 1B. 509 

Cyclic permutations: the set of permutations that can be generated by rotating about nodes in the 510 
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tree (double-sided arrows). 1C. Signal-based permutations. These are more inclusive than cyclic 511 

permutations: they include all possible cyclic permutations because the latter always conserves 512 

phylogenetic signal, but also non-cyclic permutations that retain the same or nearly the same 513 

signal (rightmost rearrangement). This is the only test in which the set of permutations depends 514 

on the values at the tips.  515 

 516 

Figure 2. p-values for three phylogenetic permutation tests of correlation and one test with 517 

independent contrasts, applied to uncorrelated evolution of X and Y (above) and correlated 518 

evolution with an evolutionary covariation of 0.75 (below). Traits simulated on a rooted 8-taxon 519 

tree containing two polytomies with 4 taxa each, all branch lengths equal. p-values should ideally 520 

be uniformly distributed for uncorrelated evolution and as low as possible for correlated 521 

evolution. Red horizontal line indicates a uniform distribution; only Lapointe-Garland 522 

permutations differ significantly from this distribution. All bins have width 0.05. 523 
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 524 

Figure 3. Phylogenetic permutations applied to Felsenstein’s “worst case” in which two traits 525 

evolve independently on a tree whose shape tends to induce spurious correlations. 3A. 526 

Scatterplot of traits X and Y with lines connecting values at the tips to ancestral state 527 

reconstructions. 3B. Histograms showing the correlation between X and Y for sets of 1000 528 
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permutations of the variable Y with different approaches: ordinary permutations, signal-based 529 

permutations with progressively smaller signal tolerances, and cyclic permutations. With a 530 

tolerance of 0.01, signal-based permutations are statistically indistinguishable from cyclic 531 

permutations. Vertical orange bars indicate the empirical correlation coefficient. 532 

 533 

Figure 4. Phylogenetic permutation tests applied to theoretical morphospace occupation in 534 

Triassic ammonoids. 4A. Two parameters controlling shell geometry in 322 Triassic ammonoid 535 

genera from McGowan (2004). Four theoretical ammonoid shells redrawn from Raup (1967) 536 

illustrate how different shell geometries correspond to different combinations of these 537 

parameters. Also plotted are the convex hull around the points, the smallest possible triangle 538 

around the points, and the line W = 1/D, above which shells are open-coiled. 4B. The empirical 539 

number of genera with W > 1/D compared with the same statistic for 1000 ordinary and 1000 540 

signal-based phylogenetic permutations. This statistic was taken by Raup (1967) as evidence for 541 

the reduced fitness of open-coiled forms. 4C. The empirical ratio of the area of the convex hull 542 

around the data to the area of the smallest triangle that fits around the data, compared with the 543 

same statistic for 1000 ordinary and 1000 phylogenetic permutations. This metric of triangularity 544 

was interpreted by Tendler et al. (2015) in light of Pareto optimality theory. 545 
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 546 

Figure 5. Phylogenetic permutation applied to Thorson’s rule in muricid gastropods. 5A. Mode 547 

of larval development (color-coded), absolute latitudinal range, and phylogeny for the 44 species 548 

from Pappalardo et al. (2014). 5B. Thorson’s rule plotted “as such”: the percentage of species 549 

with planktotrophic larval development in each 1° bin of absolute latitude. 5C. The correlation 550 

between absolute latitude and the percentage of planktotrophic species in each 1° latitudinal bin, 551 

shown for the empirical data, 1000 ordinary permutations of mode of larval development, and 552 

1000 phylogenetic permutations. 553 

 554 

  555 
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