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Abstract: Mycobacterium tuberculosis lung infection results in a complex multicellular structure, 56 

the granuloma. In some granulomas, immune activity promotes bacterial clearance; in others, 57 

bacteria persist and grow. We identified correlates of bacterial control in cynomolgus macaque 58 

lung granulomas by co-registering longitudinal PET-CT imaging, single-cell RNA-sequencing, 59 

and measures of bacterial clearance. We find that bacterial persistence occurs in granulomas 60 

enriched for mast, endothelial, fibroblast and plasma cells, signaling amongst themselves via Type 61 

II immunity and wound healing pathways. In contrast, these interactions are largely absent in 62 

granulomas that drive bacterial control, which are often those that form later in the course of 63 

infection; these restrictive lesions are characterized by cellular ecosystems enriched for Type1-64 

Type17, stem-like, and cytotoxic T cells engaged in pro-inflammatory signaling networks that 65 

involve diverse myeloid and non-immune cell populations. There is also a temporal aspect to 66 

bacterial control, in that granulomas that arise later in infection (in the context of an established 67 

immune response) share the functional characteristics of restrictive granulomas and are more 68 

capable of killing Mtb. Taken together, our results define the complex multicellular ecosystems 69 

underlying (lack of) granuloma resolution and highlight host immune targets that can be leveraged 70 

to develop new vaccine and therapeutic strategies for TB. 71 
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 72 

One-Sentence Summary: Bacterial control in TB lung granulomas correlates with distinct 73 

cellular immune microenvironments and time of formation after infection.   74 
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Introduction 75 

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a major global health 76 

threat (WHO, 2019). Mtb infection is characterized by the formation of granulomas predominantly 77 

in the lungs and lymph nodes (Flynn, 2010; Lin et al., 2014b; Russell et al., 2010; Ulrichs and 78 

Kaufmann, 2006). These spatially organized structures, composed of a mixture of immune and 79 

non-immune cells (Ehlers and Schaible, 2012; Flynn, 2010; Gideon et al., 2019; Lin et al., 2006; 80 

Mattila et al., 2013; Pagan and Ramakrishnan, 2014; Phuah et al., 2012; Reece and Kaufmann, 81 

2012; Ulrichs and Kaufmann, 2006), are key sites of host-pathogen interactions which can either 82 

restrict or facilitate bacterial survival (Fig S1A). Understanding the cellular and molecular features 83 

in granulomas that are associated with bacterial restriction versus failure to control infection is 84 

critical for the development of next-generation treatments and vaccines for TB. Delineating such 85 

protective responses in humans has been challenging given the limited accessibility of affected 86 

lung tissue and difficulty determining the true extent of bacterial control. The cynomolgus 87 

macaque model of Mtb infection, which recapitulates the diversity of human infection outcomes 88 

and granuloma pathologies, has been a transformative advance in the field, enabling detailed 89 

studies of the features of immunologic success and failure in Mtb granulomas (Canetti, 1955; 90 

Flynn, 2010; Lin et al., 2006). 91 

 92 

A spectrum of granuloma types, organization and cellular composition has been described in both 93 

humans and non-human primates (NHP) (Canetti, 1955; Flynn, 2010; Hunter, 2011; 2016; Lin et 94 

al., 2006). Studies of Mtb infection in NHP have demonstrated that individual granulomas are 95 

dynamic (Coleman et al., 2014b; Lin et al., 2013; Lin et al., 2014b), changing in response to 96 

evolving interactions between bacteria and diverse host cell types (Ehlers and Schaible, 2012; 97 

Flynn, 2010; Flynn et al., 2003; Mattila et al., 2013; Phuah et al., 2012; Ulrichs and Kaufmann, 98 
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2006). The bacterial burden in individual granulomas is highest early in infection and then 99 

decreases due to increased bacterial killing as the immune response matures, even in animals that 100 

ultimately develop active TB (Fig S1B-C) (Cadena et al., 2016; Lin et al., 2014b; Maiello et al., 101 

2018). Strikingly, however, individual granulomas within a single host follow independent 102 

trajectories with respect to inflammation, cellular composition, reactivation risk, and ability to kill 103 

Mtb (Coleman et al., 2014b; Gideon et al., 2015; Lenaerts et al., 2015; Lin et al., 2013; Lin et al., 104 

2014b; Malherbe et al., 2016; Martin et al., 2017). We and others have profiled immune responses 105 

among individual cell types in macaque lung granulomas, including those of T cells (Diedrich et 106 

al., 2020; Foreman et al., 2016; Gideon et al., 2015; Lin et al., 2012; Mattila et al., 2011; Wong et 107 

al., 2018), macrophages (Mattila et al., 2013), B cells (Phuah et al., 2016; Phuah et al., 2012), and 108 

neutrophils (Gideon et al., 2019; Mattila et al., 2015), and also examined the instructive roles of 109 

cytokines, including IFN-g, IL-2, TNF, IL-17 and IL-10 (Gideon et al., 2015; Lin et al., 2010; 110 

Wong et al., 2020). While these analyses have enabled key insights into how specific canonical 111 

cell types and effector molecules relate to bacterial burden, they have been relatively narrow and 112 

directed in focus, and have not revealed how the integrated actions of diverse cell types within 113 

individual granulomas influence control.  114 

 115 

The emergence of high-throughput single-cell genomic profiling methods affords transformative 116 

opportunities to define the cell types, phenotypic states and intercellular circuits that comprise 117 

granulomas and inform their dynamics (Prakadan et al., 2017). Here, we developed and applied a 118 

multifactorial profiling pipeline—integrating longitudinal PET-CT imaging, single-cell RNA-119 

sequencing (scRNA-seq)-based immunophenotyping, molecular measures of bacterial killing with 120 

immunohistochemistry and flow cytometry—to identify features of TB lung granulomas that 121 

correlate with bacterial clearance in cynomolgus macaques (Fig 1A). Leveraging it, we define the 122 
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general cellular compositions and specific cell states associated with bacterial persistence or 123 

control. We further uncover TB-associated intercellular signaling networks and how they differ 124 

across granulomas that have different levels of bacterial clearance, identifying distinct 125 

participating cell types and pathways implicated in bacterial persistence or control. Collectively, 126 

our data define the cellular environments and holistic interaction networks within TB lung 127 

granulomas in which Mtb is controlled or alternatively survives and multiplies, nominating novel 128 

therapeutic and prophylactic targets for future investigation.   129 
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Results 130 

We sought to define the complex cellular ecosystems of granulomas that manifest different degrees 131 

of bacterial control in NHP. Four cynomolgus macaques were infected with a low dose of Mtb 132 

(<10 CFU; Erdman strain) and followed for 10 weeks (Fig 1A). 10 weeks post-infection was 133 

chosen as a pivotal time point in which bacterial killing can be identified in some but not all 134 

granulomas (Fig S1B), providing the potential to examine a range of bacterial burdens across 135 

granulomas in our analyses. Progression of Mtb infection and individual granuloma dynamics were 136 

monitored at 4, 8, and 10 weeks post infection (p.i.) using PET-CT imaging of FDG avidity as a 137 

proxy for inflammation (Fig S1D-E, Table S1) (Coleman et al., 2014b; White et al., 2017). At 138 

necropsy, individual PET-CT identified lung granulomas were excised and dissociated to obtain a 139 

single-cell suspension; viable bacterial burden (CFU, colony forming units – i.e., culturable live 140 

bacterial burden) and cumulative (live + dead) bacterial load (chromosomal equivalents, CEQ) 141 

were measured to define the extent of bacterial growth and killing in each granuloma (Lin et al., 142 

2014b; Munoz-Elias et al., 2005).  143 

 144 

Twenty-six granulomas from these four animals were randomly selected at the time of necropsy 145 

for scRNA-seq analysis. Among the 26, there was a range of granuloma-level bacterial burdens, 146 

from sterile (0 CFU/granuloma) to high (4.6 log10 CFU/granuloma) (Fig 1B-C; Table S1). The 147 

granulomas were binned based on bacterial burden (low, n=13 and high, n=13). There was a 148 

significant difference in CFU between low and high CFU granulomas (median 2.2 (low) vs 3.6 149 

(high) log10 CFU/granuloma, p<0.0001, Mann Whitney U test) (Fig 1C). To determine whether 150 

low CFU reflected reduced bacterial growth or increased bacterial killing, we assessed the total 151 

number of bacterial genomes (CEQ), where we have previously shown that the genomes of dead 152 

bacteria are not readily cleared and that CEQ provides a measure of cumulative bacterial load 153 
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(Munoz-Elias et al., 2005). We observed no significant difference in CEQ values between low and 154 

high burden granulomas, indicating that the granulomas supported roughly similar cumulative Mtb 155 

growth over the course of infection (Fig 1D). However, the extent of bacterial killing, calculated 156 

as the ratio of CFU to CEQ, was significantly higher in the low bacterial burden granulomas (Fig 157 

1E), indicating that the lower CFU reflected greater killing rather than more limited bacterial 158 

growth.  159 

 160 

We then sought to identify granuloma features correlated with the degree of bacterial control. Post-161 

hoc analysis of serial PET CT imaging data revealed a strong association between the apparent 162 

timing of lesion formation and the extent of bacterial control. All the high bacterial burden 163 

granulomas were detected at the 4-week scan, while most (11/13) of the low bacterial burden 164 

granulomas were first detected at the final pre-necropsy scan (10 weeks) (Fig S1E, Fig 1F-G). 165 

Consistent with these data, we further evaluated bacterial burden between early and late appearing 166 

granulomas in a total of 10 animals at 10 weeks p.i. (Fig S1G-H) and again found that the median 167 

CFU/granuloma per animal was significantly lower in late granulomas as compared to early ones. 168 

We considered the model that late lesions have lower CFU because the bacterial population has 169 

simply not had sufficient time to expand. However, since the cumulative bacterial burdens (CEQ) 170 

in early and late lesions were not significantly different (Fig 1H), the data are consistent with more 171 

bacterial killing in late appearing granulomas (-2.1 log10 CFU/CEQ per granuloma) as compared 172 

to early appearing ones (-1.2 log10 CFU/CEQ per granuloma, p=0.01, Mann Whitney U test) 173 

(Figure 1I). Late appearing granulomas could be due to differences in the timing of lesion 174 

formation, most likely due to a dissemination event from an early granuloma, such that bacterial 175 

replication occurred in the context of an activated immune response (Martin et al., 2017) or 176 
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differences in the characteristics of the initial inflammatory response such that late appearing 177 

granulomas were not detectable by imaging until later in infection. 178 

 179 

Cellular composition of TB lung granulomas 180 

To identify cellular and molecular factors associated with increased Mtb killing in an unbiased 181 

fashion, we loaded a single-cell suspension from each of the 26 granulomas onto a Seq-Well array 182 

(Gierahn et al., 2017) under Biosafety Level 3 conditions, and then processed and sequenced as 183 

previously described (Gierahn et al., 2017). After aligning the data to the Macaca fascicularis 184 

(cynomolgus macaque) genome and performing robust quality controls and granuloma-specific 185 

technical corrections, we retained 109,584 high-quality single-cell transcriptomes for downstream 186 

analysis (Fig S2; Table S2).  187 

 188 

Among these, we resolved 13 general cell types (Fig 2A,B and Fig S3A-G) through dimensionality 189 

reduction, Louvain clustering, and examination of canonical lineage defining genes and reference 190 

signatures from the Tabula Muris (Tabula Muris et al., 2018), Mouse Cell Atlas (Han et al., 2018) 191 

and SaVanT database (Lopez et al., 2017) (Fig S3 A-G, Table S3). These 13 encompass groups 192 

of lymphocytes, including B cells (defined by expression of MS4A1, CD79B, & BANK1), T and 193 

NK cells (T/NK; GNLY, TRAC, CD3D, & GZMH) and plasma cells (IGHG1 & JCHAIN)); myeloid 194 

cells, including conventional dendritic cells (cDCs; CLEC9A, CST3, & CPVL), plasmacytoid 195 

dendritic cells (pDCs; LILRA4 and IRF8), and macrophages (APOC1, LYZ, and APOE); mast cells 196 

(CPA3 & TPSAB1); neutrophils (CCL2, CXCL8, & CSF3R); erythroid cells (HBA1 & HBB); 197 

stromal cells, including endothelial cells (RNASE1, EPAS1, & FCN3) and fibroblasts (COL3A1, 198 

COL1A1, & DCN); Type-1 pneumocytes (AGER); and, Type-2 pneumocytes (SFTPC, SFTPB, 199 

and SFTPA1) (Fig 2A & B, Fig S3G and Table S3 & S4). For each of the 13 cell types, we also 200 
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performed further within cell-type sub-clustering; in these analyses, we only detected substructure 201 

among the T/NK and macrophage clusters (detailed below, Methods). 202 

 203 

Cell types associated with timing of granuloma formation and control  204 

To investigate the relationship between cell type composition and bacterial burden, we quantified 205 

the correlation between cellular frequency and CFU across all granulomas. We considered cellular 206 

frequencies in granulomas as a function of viable bacterial burden. Our data reveal multiple cell 207 

types that are significantly enriched in higher bacterial burden (early appearing) granulomas, 208 

including plasma cells (relative cell abundance vs CFU, p<0.0001, non-parametric Spearman’s rho 209 

correlation test), mast cells (p=0.002), endothelial cells (p=0.001) and fibroblasts (p=0.011) (Fig 210 

2C, Table S5). By contrast, T/NK cells were more abundant in lower bacterial burden (late 211 

appearing) granulomas (p=0.0055) (Fig 2C, Table S5). Cynomolgus macaques are variable in 212 

their infection outcomes (Fig 1B), so to control for inter-subject variability, each of the cellular 213 

associations between granuloma dynamics and bacterial control was examined both across all 214 

animals and lesions, and through a directed analysis of the granulomas from a single NHP host 215 

(4017) (Fig S3H). We further confirmed these trends by performing deconvolution on bulk RNA-216 

sequencing data of 12 additional granulomas (6 high CFU (early) and 6 low (late) bacterial burden 217 

granulomas) from separate macaques (Fig S4A).  218 

 219 

High bacterial burden granulomas are characterized by fibrosis and Type II immune features 220 

The presence and function of mast cells in Mtb lung granulomas has not been previously described. 221 

Therefore, to validate this observation, we performed immunohistochemistry on NHP and human 222 

granuloma sections using Tryptase and C-kit/CD117 markers (Fig S4D & E). This confirmed the 223 

presence of mast cells within both NHP and human granulomas, and further revealed that they 224 
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primarily localize to the outer regions of NHP granulomas, including the lymphocyte cuff (Fig 225 

S4D), and can be found within and around human granulomas (Fig S4E). In our data, mast cells 226 

are distinguished by their expression of IL4 and IL13 (Fig S4B), which we also recently observed 227 

in a study of human nasal polyposis, a Type II inflammatory disease associated with dramatic 228 

epithelial remodeling (Ordovas-Montanes et al., 2018). Mast cells are also marked by expression 229 

of ALOX5A and ALOX5AP, which encode the system to synthesize the anti-inflammatory lipoxin 230 

LXA4; the balance between LXA4 and the pro-inflammatory lipoxin LTB4 has been strongly 231 

implicated in the progression of TB disease in humans (Tobin et al., 2012; Tobin et al., 2010). 232 

 233 

Plasma cells are also abundant in high burden lesions, consistent with previous findings (Jacobs et 234 

al., 2016; Phuah et al., 2012). Recruitment of mast cells can be characteristic of allergic Type II 235 

immune responses mediated by IgE (Kanagaratham et al., 2020), but mast cell function is also 236 

regulated by IgG, which is much more abundant in the circulation and tissues. Among the plasma 237 

cells in our scRNA-seq dataset, the vast majority express either IGHG or IGHA (Collins and 238 

Jackson, 2013) constant chains (Fig S4B, C), suggesting that IgG and IgA are the dominant 239 

antibody classes induced by Mtb infection in the granuloma microenvironment. Taken together, 240 

these data suggest that granulomas with failed bacterial clearance are characterized by a Type II 241 

immune environment, but the antibody features are not consistent with a canonical allergic 242 

response. 243 

 244 

T and NK functional subclusters as mediators of protection 245 

Of the 13 broad cell types, only the T/NK cell subcluster is associated with more robust bacterial 246 

control in granulomas (p=0.0055, non-parametric Spearman’s rho correlation test) (Fig 2C). To 247 

further assess functional diversity within the 41,622 cells that comprise the T and NK cell cluster 248 
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and their association with bacterial burden, we performed additional sub-clustering analyses. This 249 

revealed 13 T/NK cell subclusters which we annotated based upon expression of lineage defining 250 

markers, known cytotoxic, regulatory and proliferation genes (Fig 3A, C and S5, Tables 1 and 251 

S6) and TCR constant gene (TRAC, TRBC, and TRDC) expression (Fig 3B). The process of 252 

annotation revealed that most subclusters did not correspond neatly to canonical T and NK cell 253 

subsets, consistent with recent studies in other systems (Rath et al., 2020). Where possible, we 254 

annotated each based on known T cell markers and literature-derived genes of interest; we note 255 

that these genes are parts of broader transcriptional signatures that appear to reflect dominant 256 

cellular response states superimposed on cell lineage-associated gene expression programs. 257 

Among the 13 T/NK cell subclusters, 6 were significantly negatively associated with bacterial 258 

burden (Fig 3D, Table S5).  259 

 260 

A prominent role for Type1-Type 17 T cells in bacterial control 261 

One T/NK cell subcluster represented the most abundant cell type identified across all granulomas 262 

(8.8%) (Table S4) and the strongest correlate with bacterial control (p=0.001, non-parametric 263 

Spearman’s rho correlation test) (Fig 3D; Table S4 & S5). This subcluster, which we designated 264 

Type1-Type17 (T1-T17) (Fig 3C), is enriched for expression of classical Th1-associated genes, 265 

including IFNG and TNF (Raphael et al., 2015), as well as transcription factors associated with 266 

Th17 differentiation (Yosef et al., 2013), including RORA (Yang et al., 2008), RORC (Ivanov et 267 

al., 2006), RBPJ (Meyer Zu Horste et al., 2016), and BHLHE40 (Huynh et al., 2018; Lin et al., 268 

2016; Lin et al., 2014a). While we also detected additional features of T17 cells, including CCR6 269 

(Hirota et al., 2007) and IL23R (Kobayashi et al., 2008), we did not observe expression of either 270 

IL17A or IL17F (Fig 4A; Table S6-7). Collectively, this hybrid gene expression state is consistent 271 

with previously described expression programs for Th1* or ex-Th17 cells, which are believed to 272 
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be precursors to tissue resident memory cells (Amezcua Vesely et al., 2019). Previous studies have 273 

revealed a prominent role for CD4 Th1 and Th17 cytokines in control of Mtb infection, including 274 

IFN-𝛾, TNF, and IL-17 (Algood et al., 2005; Green et al., 2013; Khader et al., 2007; Khader and 275 

Gopal, 2010; Lin et al., 2007; Lyadova and Panteleev, 2015; Millington et al., 2007; O'Garra et 276 

al., 2013; Scriba et al., 2017), and studies in NHP granulomas suggest an association between T1 277 

and T17 cytokine expression and bacterial burden (Gideon et al., 2015). In addition, in murine 278 

models, BHLHE40 is required for control of Mtb infection, as a repressor of IL-10 production 279 

(Huynh et al., 2018). Notably, while Th1* and ex-Th17 subsets are described primarily as CD4 T 280 

cells (Darrah et al., 2020; Gideon et al., 2015; Lyadova and Panteleev, 2015; Mpande et al., 2018), 281 

our T1-T17 sub-cluster is characterized by the expression of both CD4 and CD8A/B transcripts 282 

(Fig 3C and 4C, Fig S5D-E).  283 

 284 

To better resolve the identities of the cells in this cluster, we further sub-clustered the 9,234 T1-285 

T17 cells. This revealed 4 distinct subpopulations, each of which expressed T1-T17 cluster 286 

markers (RORA, RORC, IL23R, and BHLHE40) but were further distinguished by markers of cell 287 

type and state (Fig 4B, Table S7): T1-T17 subpopulation 1 is distinguished by expression of CD4 288 

and markers of activation and motility, including IL7R, CD6, TXNIP, PDE4D, ZFP36L2, ITGB1, 289 

CCR6, and CXCR3 (Fig 4B,C; Tables 1 and S7), making it most akin to ex-Th17 cells; T1-T17 290 

subpopulation 2 is characterized by increased relative expression of both CD8A and CD8B and 291 

cytotoxic effector molecules; T1-T17 subpopulation 3, which includes cells expressing either 292 

CD8A/B or CD4, is characterized by cytokine gene expression (IFNG, TNF, LTA, and LTB) and 293 

markers of an inhibitory cell state (CTLA4, GADD45B, and SLA); T1-T17 subpopulation 4 is very 294 

low in abundance and characterized by heat shock and DNA damage associated transcripts 295 

(DNAJB1 and HSPH1). There was a trend towards negative association between bacterial burden 296 
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and higher abundance of T1-T17 subpopulation 1 (p=0.055, non-parametric Spearman’s rho 297 

correlation test) and a significant negative association between bacterial burden and abundance of 298 

T1-T17 subpopulation 2 (p=0.02). Surprisingly, T1-T17 subpopulation 3 was not correlated with 299 

bacterial burden, despite expressing elevated levels of IFNG and TNF (Fig 4E, Table S5), 300 

cytokines generally considered as critical mediators of control in Mtb infection (O'Garra et al., 301 

2013; Scriba et al., 2017).  302 

 303 

CD4 and CD8 subclusters associated with low bacterial burden  304 

Among the remaining 12 T/NK cell subclusters, 6 are enriched for both CD4 and CD8 expression 305 

(Fig 3A-C, Fig S5D&E, Table 1, S6). Of these, 5 are significantly associated with more robust 306 

bacterial control (Figure 3D & S5D-E). We annotated the most abundant of these as stem-like T 307 

cells (8.3% of granuloma cells, p=0.03 non-parametric Spearman’s rho correlation test, Fig 3D, 308 

Table S5) based on elevated expression of markers of naïve and memory T cells (TCF7, CCR7, 309 

IL7R, and TXNIP) and activation or memory state (CD69 and ITGB1) (Fig 3C, Table S6). These 310 

cells may represent a “stem-like” population of T cells, which has been described as an early 311 

differentiating memory phenotype, distinct from naïve T cells, that are long-lived and possess a 312 

unique ability to proliferate and self-renew (Ahmed et al., 2016; Caccamo et al., 2018; Gattinoni 313 

et al., 2011). The second CD4/CD8 subcluster associated with control contains proliferating T cells 314 

(2.4%; p=0.03; Fig 3D, Table S5) and is characterized by high expression of transcripts associated 315 

with cellular proliferation (MKI67, STMN1, and TOP2A) (Fig 3C, Table S6), consistent with 316 

published data that T cell proliferation occurs within NHP and human granulomas (Gideon et al., 317 

2015; McCaffrey et al., 2020; Ohtani, 2013; Phuah et al., 2016; Phuah et al., 2012; Wong et al., 318 

2018). The third is a very small population of Metallothionein expressing T cells (0.05%; p=0.03; 319 

Fig 3D, Table S5), defined by metallothionein genes, such as MT1 and MT2 (Fig 3C, Table S6), 320 
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which play a role in negative regulation of Type 1 regulatory (Tr1) CD4+ cells (Wu et al., 2013). 321 

The fourth, SRRM2-T cells (0.6%, p=0.007), is characterized by enrichment of genes associated 322 

with nuclear speckles and splicing factors such as PNISR and SRRM2 (Figure 3C&D, Table S5-323 

6), the latter of which has been associated with alternate splicing in Parkinson disease (Shehadeh 324 

et al., 2010) and has a critical role in the structural organization of the genome (Hu et al., 2019).  325 

 326 

The remaining two CD4/CD8 subclusters are not associated with bacterial control. Interestingly, 327 

one is regulatory T cells (1.2%), defined by elevated expression of canonical Treg markers 328 

(FOXP3, CTLA4, TIGIT, and IL1RL1) and GATA3, a Th2 lineage-defining transcription factor that 329 

has been observed in a subset of tissue-resident Tregs (Fig 3C&D, Table S5-6). The final 330 

subcluster is interferon responsive T cells (0.4%), which are enriched for Type-I interferon 331 

inducible molecules (MX1, ISG15, IFIT3, IFI6, IFIT1, RSAD2, and MX2) (Szabo et al., 2019) (Fig 332 

3C-D, Table S5-6).  333 

 334 

Bacterial control is associated with a specific cytotoxic T cell population  335 

The remaining 6 T/NK subclusters are broadly defined by expression of CD8A and/or CD8B and 336 

cytotoxic genes, including granzymes (GZMA, GZMB, GZMH, GZMK, and GZMM), granulysin 337 

(GNLY), and/or perforin (PRF1) (designated Cytotoxic 1-6, Fig 3C, Table 1). We confirmed 338 

expression of multiple granzymes among CD8𝛼𝛽 T cells in Mtb granulomas by flow cytometry 339 

(Fig S6) from animals in other ongoing studies.  340 

 341 

Low bacterial burden granulomas are associated with a higher proportion of cells from cytotoxic 342 

subcluster C4 (3.8% of granuloma cells; p=0.02, non-parametric Spearman’s rho correlation test) 343 

(Fig 3D; Table S5). C4 expresses both CD8A and CD8B and TCRA and TCRB, but not TCRD, 344 
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indicating that it is composed primarily of conventional CD8𝛼𝛽	T cells (Fig 3B&C, S5D). C4 is 345 

further enriched for genes associated with cytotoxic effector functions (PRF1, GZMH, GZMB, and 346 

GZMM), motility, migration and tissue residency (CX3CR1, TGFBR3, and S100A10), and 347 

regulators of cell state (AHNAK, KLF3, and ZEB2; Fig 3C, Table S6).  348 

 349 

The remaining 5 cytotoxic subclusters did not associate with bacterial control. Cytotoxic 350 

subclusters C1-3 are enriched for the expression of CD8A but not CD8B and elevated TCRD, 351 

implying that these cells possess innate cytotoxic function (Fig 3B-C). C1 is further characterized 352 

by high expression of cytotoxic effector genes—GNLY and PRF1; GZMH, GZMA and GZMB; as 353 

well as KLRD1, KLRC1, KLRC2, and NKG7—which suggests that subcluster 1 contains a greater 354 

proportion of highly cytotoxic innate CD8+ T cells (possibly NKT cells), 𝛾𝛿	T cells, and NK cells 355 

(Fig 3B-C, Table 1, S6). C2 is also enriched for NK receptors and CD8 T cell activation markers 356 

in addition to a trio of transcription factors (EGR1, EGR2, and DUSP2) described to distinguish 357 

peripheral tolerant CD8 T cells (Schietinger et al., 2012) (Fig 3B-C, Table 1, S6). C3 appears to 358 

be more selectively enriched for NK cells with elevated expression of cytotoxic and NK cell 359 

markers and low expression of CD3D and CD3G. C5, which like C4 expresses both CD8A and 360 

CD8B and TCRA and TCRB, but not TCRD, is distinguished by elevated expression of GZMK (Fig 361 

3C); granzyme K expressing CD8 cells have been recently described as a hallmark of immune 362 

dysfunction in inflammation (Mogilenko et al., 2021). C6 was not detected in sufficient frequency 363 

(<0.3%) to draw meaningful conclusions. The functional complexity of these 6 subclusters, along 364 

with the common and distinct responses they represent, suggests a significant and 365 

underappreciated role for cytotoxic cells in TB granulomas.  366 

 367 

 368 
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Macrophage heterogeneity in Mtb granulomas 369 

While macrophages are responsible for much of the bacterial killing within granulomas, we did 370 

not observe any association between overall macrophage abundance and bacterial burden (Fig 2 371 

and S7). Yet, like the T/NK cell cluster, the macrophage cluster had discernable substructure based 372 

on unbiased gene expression analyses. Among the 27,670 macrophages, we identified 9 373 

subclusters (Table S8), none of which were independently associated with bacterial control with 374 

the exception of Mac 4 (0.07%), a very small subpopulation of macrophages expressing INSIG1 375 

and EREG (p<0.0001) (Fig S7E, Table S8)). 376 

 377 

Cellular ecology of pulmonary TB granulomas 378 

Given demonstrable differences in cellular composition across the bacterial burden spectrum, we 379 

wondered whether specific cell types significantly co-occur in TB lung granulomas and 380 

collectively influence control. We calculated the pairwise Pearson correlation matrix between all 381 

major cell types, subclusters, and subpopulations across the 26 granulomas (Fig 5A). Using 382 

hierarchical clustering of this pairwise correlation matrix, we defined 5 groups of cell types whose 383 

collective abundances are associated across granulomas (Fig 5A, Table S9). Of these, Group 2 384 

(shown in red), which includes mast cells, plasma cells, macrophage subcluster 4 and certain 385 

stromal populations, is significantly expanded in high bacterial burden granulomas (Mann-386 

Whitney U Test, p=3*10-4; Fig 5B, Table S10, S11). Group 3 (shown in blue) is significantly more 387 

abundant in low bacterial burden granulomas (p=0.026; Fig 5B, Table S10, S11) and consists of 388 

many T cell subclusters/subpopulations, including Stem-like, Cytotoxic subclusters C2, C4, & C6, 389 

Metallothionein, Proliferating, SRRM2+, T1-T17 subpopulations 1,3 and 4, as well as a single 390 

macrophage subset, Mac7. This macrophage subset is distinguished in part, by expression of the 391 

immunomodulatory genes IDO and CHIT (encoding chitotriosidase), which is abundantly 392 
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produced by lipid-laden macrophages in other conditions such as Gaucher’s disease, Niemenn-393 

Pick disease, and atherosclerosis (Barone et al., 2007; Yap et al., 2020).  394 

 395 

Distinct cellular ecosystems associate with granuloma-level bacterial burden 396 

To further explore how specific cellular compositions might constitute distinct tissue niches that 397 

support different levels of bacterial control, we examined putative cell-cell interactions within each 398 

granuloma. For each potential interacting cell-type pair, we constructed edge weights for receptor-399 

ligand combinations, adjusting to account for differences in the abundance of the sender cell type, 400 

relative ligand/receptor expression, and the percent of receptor positive cells (Methods).  401 

 402 

To obtain an initial view of cell-cell signaling across granulomas of different burden, we examined 403 

the extent and strengths of interactions across cell type groups. High bacterial burden lesions are 404 

dominated by signals sent by Group 2 cell types (i.e., mast, fibroblast, endothelial, plasma, type I 405 

pneumocyte, and macrophage subset 4); these cell types display the highest counts of high burden-406 

linked interactions as well as those most strengthened in high burden granulomas (p < 2.2E-16, 407 

binomial test against null of all Groups having equal interaction likelihoods) (Fig 5C-D). In 408 

contrast, interactions in low burden granulomas more evenly involve Groups 1, 3, 4 and 5, with 409 

Group 3 showing the strongest enrichment for signaling activity strengthened in low burden 410 

granulomas (p = 1.2E-4, binomial test against null of all Groups having equal interaction 411 

likelihoods; p = 0.008, binomial test against null of equal interaction likelihoods among non-Group 412 

2 cells) (Fig 5E-F). These contrasting patterns of intercellular communication suggest distinct 413 

signaling architectures underlying different degree of bacterial control, with Group 2 cells 414 

dominating activity within high-burden lesions, compared to coordinated signaling across Groups 415 

in low-burden cases. 416 
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 417 

We further examined shifts in intercellular interaction network topology by more comprehensively 418 

quantifying the sender and receiver activity associated with different levels of bacterial burden. 419 

This more directed investigation revealed significantly different patterns of intercellular signaling 420 

between high and low burden granulomas (p < 2.2E-16, Pearson’s chi-squared test). Subsetting all 421 

interactions to those strengthened in high burden granulomas, we find that Group 2 cell types are 422 

the key source of intercellular signals (i.e., senders in 67% of interactions strengthened in high 423 

burden granulomas) (Fig 5G). High burden lesions also exhibit strong intra-Group 2 signaling, 424 

with 58% of signals received by Group 2 cell types originating from Group 2 cell types themselves. 425 

This suggests that high burden lesions are driven by self-reinforcing interactions amongst Group 426 

2 cell types (e.g., between mast cells, plasma cells, fibroblasts, and endothelial cells). In contrast, 427 

when subsetting to interactions strengthened in low burden granulomas, we find only sparse 428 

contributions from Group 2 cell types (Fig 5H); instead, low burden granulomas are characterized 429 

by a more even distribution of signals stemming and terminating in Group 1, 3, 4, and 5 cell types, 430 

suggestive of a coordinated immune response involving multiple cellular subsets (e.g., the T cell 431 

and macrophage subsets present in these Groups).  432 

 433 

We next examined which specific axes of intercellular communication, and among whom, 434 

associate with varying levels of bacterial control. In looking more directly at the signals underlying 435 

the interaction networks that associate with burden, we find dramatic differences in intercellular 436 

crosstalk involving both canonical and non-canonical immune mediators that may impair or 437 

facilitate bacterial control. Among the ligands whose interactions are most strengthened in high 438 

burden granulomas, we identify genes implicated in fibrosis (e.g, FGF1, PDGFB, CTGF, FGF7, 439 

IL34), vascular remodeling (VEGFB, VEGFC, ANGPTL4) and TGFb signaling (TGFB3, BMP6), 440 
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suggestive of a wound healing response (Fig 5I) (Joshi et al., 2020; Padela et al., 2008). In addition, 441 

we observe evidence of intercellular communication via genes implicated in Type II immunity 442 

(CCL11, CCL13, CD5L, IL4, IL5, IL13, IL24) and allergy-linked inflammation (CCL19) (Nakano 443 

et al., 2019). We note that these specific ligands are largely produced and received by Group 2 cell 444 

types (with only sparse contributions from Groups 3-5). Collectively, this supports a model where 445 

intra-Group 2 signaling drives a self-reinforcing high burden microenvironment via wound 446 

healing-like responses and associated Type II immune activity (Fig 5J). This interpretation is 447 

further supported by an enrichment of pathways such as FGF, VEGFR, and PI3K signaling, as 448 

well as organogenesis and tissue remodeling processes (Fig S8A).  449 

 450 

In contrast, low burden granulomas exhibit cell-cell interactions consistent with Type I immune 451 

responses (CCL3, CXCL9/10/11, DLL1, IFNG, IL18) and Th17 chemoattraction (CXCL16, 452 

CCL20) and successful immune mobilization and activation (Li et al., 2013; Lim et al., 2008; 453 

Touzot et al., 2014). Ligands specifically associated with low burden granulomas include co-454 

stimulatory molecules important in immune activation (CD40LG, CD48, CD70, CD80, CD86), 455 

those involved in lymphocyte adhesion (CD58), and antimicrobial peptides (DEFB1, SLPI) (Fig. 456 

5I) (Tateosian et al., 2012). Various antimicrobial peptides have been implicated previously in 457 

direct control of MTB infection (Fabri et al., 2011; Liu et al., 2006); whether intercellular 458 

communication is an essential or auxiliary role remains to be determined. Importantly, production 459 

of low burden-linked ligands is distributed across the cell types of Groups 1, 3, 4, and 5, but not 460 

Group 2 (Fig. 5J); signaling occurs between multiple T and macrophage cell subsets, suggesting 461 

that successful Mtb control requires coordinated interactions across diverse innate and adaptive 462 

immune cell types. Supporting this interpretation, gene set enrichment analyses on ligands and 463 

receptors whose interactions are strengthened in low burden granulomas revealed enrichment for 464 
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processes including T cell activation and differentiation and signaling associated with pro-465 

inflammatory cytokines (e.g., TNF) (Fig S8A). Likewise enriched in interactions associated with 466 

low burden granulomas are additional metabolic processes such as fatty acid metabolism and heat 467 

generation, which have been individually studied extensively in Mtb but here connect to broader 468 

signaling interactions associated with Mtb control.  469 

 470 

Beyond ascribing a simple binary role to each cell type, our cell-cell interaction analyses also 471 

indicate context-dependent roles for particular cell types and ligands. For instance, with respect to 472 

cell types, the macrophage-dominated Group 1 is not statistically correlated with granuloma 473 

control in our compositional analyses (Fig 5A), but participates in the second most interactions in 474 

both high and low burden granulomas (Fig 5B-C,E,G-H). The idea of dual roles for Group 1 cells 475 

is borne out by examination of the ligands produced by Group 1 cell types in high (e.g., PDGFB, 476 

CD5L, TNFSF13) and low burden (e.g., CXCL9/10/11, CD86, IL18, CCL20) microenvironments 477 

(Fig 5I-J). Similarly, we observe that some individual ligands participate in interactions 478 

strengthened in both high and low burden granulomas, suggesting pleiotropic effects for these 479 

molecules. As one specific example, IL-1’s effects on Mtb control vary based on disease stage and 480 

model (Juffermans et al., 2000; Law et al., 1996; Mayer-Barber et al., 2014); based on our analyses, 481 

IL1A and IL1B each mediate interactions associated with both high and low bacterial burden, but 482 

are derived from different sender cell populations in the two instances. Thus, our intercellular 483 

interaction analyses uncover axes of cellular plasticity and ligand pleiotropy across granuloma 484 

microenvironments, important for improved understanding and therapeutic modulation of Mtb.  485 

 486 

 487 

 488 
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Discussion 489 

Within an individual with Mtb infection, distinct granulomas can achieve sterilizing immunity, 490 

immune standoff, or frank immune failure (Flynn, 2006; 2010; Lin et al., 2014b; Lin et al., 2009). 491 

In NHPs, which most closely recapitulate human Mtb infection and disease (Coleman et al., 492 

2014a), this heterogeneity provides an opportunity to define the cellular and molecular factors that 493 

correlate with bacterial control to identify potential host-directed prevention and cure strategies 494 

for TB. While a spectrum of granuloma-level bacterial control has been appreciated previously, 495 

the immune correlates of bacterial control within granulomas have not been mapped 496 

comprehensively. By coupling advanced serial imaging, scRNA-seq, and molecular measures of 497 

bacterial growth and killing, the present study provides new insights into the immunologic control 498 

and temporal evolution of granulomas in Mtb infection: we discover and define how the timing of 499 

granuloma appearance correlates with distinct microenvironmental signaling networks formed 500 

through host responses and shapes eventual bacterial persistence or control. Overall, our data 501 

substantiate a model where the state of the surrounding host cellular ecosystem informs a 502 

granuloma’s infection trajectory, leading to long-term, stable states which either permit or restrict 503 

bacterial survival. 504 

 505 

We find that high CFU, early granulomas are characterized by significantly higher proportions of 506 

mast cells and plasma cells, as well as a central group of cell types (further including fibroblasts, 507 

and endothelial cells) that exhibits extensive self-directed signaling exchanges. While mast cells 508 

have been described in granulomatous conditions, such as TB lymphadenitis (Taweevisit and 509 

Poumsuk, 2007), leprosy skin lesions (Bagwan et al., 2004), and liver granulomas (Celasun et al., 510 

1992), and may orchestrate immune cross talk in TB (Garcia-Rodriguez et al., 2017), this is the 511 

first description of direct correlation with failure of Mtb control in TB granulomas. Structurally, 512 
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we find mast cells inter-digited in the lymphocyte cuff of TB granulomas, physically well 513 

positioned to play significant regulatory roles.  514 

 515 

The mast cells in high-burden granulomas are major producers of Type II cytokines, especially 516 

IL4, IL5, and IL13, which are important down-modulators of lymphocyte and macrophage 517 

antimicrobial activity, including inhibiting the cytolytic functions of CD8+ T cells (Kienzle et al., 518 

2005; Wijesundara et al., 2013). However, IL4 and IL13 have broader functions in the context of 519 

wound healing. Indeed, the cellular interactions in high burden granulomas reveal both specific 520 

signaling molecules (e.g., FGF1 from Type 1 pneumocytes, PDGFB from endothelial cells, 521 

ANGPTL4 from plasma and mast cells, among others) and broad pathways (e.g., FGF and VEGF, 522 

among others) that reflect fibrosis, metabolic remodeling, and angiogenesis. Collectively, these 523 

data suggest a cascade of interactions in early appearing granulomas with failed control, whereby 524 

an initially permissive environment is reinforced by a tissue remodeling response that seeks to 525 

limit and wall off pathologic activity, thereby allowing for persistence of both Mtb and the Type 526 

II/wound healing microenvironment itself. While more detailed studies on the roles of wound 527 

healing responses and tissue remodeling in TB are indicated, these features may represent critical 528 

targets for host-directed therapies that not only need to enhance restrictive adaptive immune 529 

responses but also address the maladaptive features of microenvironments permissive to 530 

granuloma persistence. 531 

 532 

Indeed, it is striking how strongly the timing of granuloma appearance (as identified by PET-CT 533 

imaging) correlates with the formation of distinct classes of complex yet stable cellular 534 

communities and their accompanying levels of bacterial control. We note that granulomas 535 

identified late by PET-CT imaging may either be formed later—for example through 536 
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dissemination (Martin et al., 2017) —or take more time to reach the threshold to be identified by 537 

PET-CT scans (limit of detection >1mm) because of more efficient immune control or differences 538 

in the quality of the inflammatory response (Cronan et al., 2021). Regardless of the exact 539 

mechanism, late appearing granulomas are characterized by the enrichment of multiple T and NK 540 

cell subsets, as well as extensive pro-inflammatory, pro-activating, and pro-migratory signaling 541 

networks predominated by T cell subsets, which may exclude or prevent the establishment of self-542 

reinforcing Type II signaling. Moreover, our measures of cumulative bacterial burden (CEQ) 543 

indicate that late granulomas have lower bacterial burden because of greater bacterial killing 544 

(CFU/CEQ), linking these adaptive immune features to true sterilizing immunity.  545 

 546 

The strongest cellular correlate of bacterial control was a subcluster of cells with transcriptional 547 

features of both Type 1 and Type 17 T cells that was expanded in granulomas with bacterial 548 

control. Aspects of these data are consistent with recent observations that granulomas established 549 

in immune primed environments—e.g., existing Mtb infection (Cadena et al., 2018) or intravenous 550 

or intrabronchial BCG vaccination—are characterized by Th1/17 expression patterns that are 551 

associated with protection (Darrah et al., 2020; Dijkman et al., 2019); however, we extend these 552 

findings, defining appreciable substructure among the T1-T17 subcluster of relevance to control. 553 

The CD4 T1-T17 subpopulation (subpopulation 1) is most consistent with published descriptions 554 

of Th1/17 cells (e.g., Th1* or ex-Th17) (Amezcua Vesely et al., 2019). These cells may represent 555 

precursors to long lived tissue memory, which has been shown to play a crucial protective role in 556 

autoimmunity, bacterial control, and memory immune responses to pathogens (Amezcua Vesely 557 

et al., 2019; Liang et al., 2015; van Hamburg and Tas, 2018; Wacleche et al., 2016), including Mtb 558 

infection. A recent study using flow cytometry and immunohistochemistry in Mtb infected rhesus 559 

macaques support an association of Th1 (IFNg+) and Th17 (IL-17+) cells in lung tissue with latent 560 
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infection (Shanmugasundaram et al., 2020); in contrast, another study using scRNA-seq reported 561 

activated CD4 and CD8 T cells including Th1 and Th17 in the lung tissue of macaques with 562 

pulmonary TB (Esaulova et al., 2021). The CD8 subsets within the T1/T17 subcluster 563 

(subpopulations 2 & 3), meanwhile, have not been described previously. The former of these is 564 

strongly associated with bacterial control and may represent a novel immunologic paradigm that 565 

can be exploited for vaccine development. Subpopulation 3 intriguingly, expresses elevated TNF 566 

and IFNG but does not associate with bacterial restriction; further profiling will be necessary to 567 

establish the significance of this subset and its relation to previously appreciated Type 1 and Type 568 

17 features of control (Algood et al., 2005; Gideon et al., 2015; Green et al., 2013; Khader et al., 569 

2007; Khader and Gopal, 2010; Lin et al., 2007; Lyadova and Panteleev, 2015; Millington et al., 570 

2007; O'Garra et al., 2013; Scriba et al., 2017).  571 

 572 

Our data also revealed an interesting CD4 and CD8 expressing T cell subcluster associated with 573 

low burden granulomas that resembles stem-like T cells (Ahmed et al., 2016; Caccamo et al., 574 

2018; Cartwright et al., 2016; Fuertes Marraco et al., 2015; Gattinoni et al., 2011; Mateus et al., 575 

2015; Todryk, 2018). We hypothesize that these cells may be a source of T cell renewal in 576 

granulomas and may differentiate into the various functional subsets we observe within them. It is 577 

possible, however, that these represent memory T cells that are not specific for Mtb antigens but 578 

migrate to the granuloma in response to inflammation and/or chemokine gradients. Indeed, flow-579 

cytometry based studies support that a majority of T cells in granulomas do not respond to Mtb 580 

antigens by making cytokines and do not display hallmarks of exhaustion (Gideon et al., 2015; 581 

Sakai et al., 2016; Wong et al., 2018). These stem-like T cells warrant additional study, as they 582 

associate with control of Mtb in granulomas and, if antigen specific, could be explored as a 583 

potential vaccine target.  584 
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 585 

Although both CD4 and CD8 T cells have been implicated in control of Mtb infection, the 586 

cytotoxic function of lymphocytes in Mtb infection has been relatively understudied, with 587 

emphasis placed instead on macrophage activating cytokines, such as IFN-𝛾 and TNF. However, 588 

we also find previously unappreciated complexity among granuloma cytotoxic cells of relevance 589 

to bacterial control. In accordance with another recent study (Rath et al., 2020), our 6 cytotoxic 590 

T/NK subclusters do not align neatly with canonical markers of cellular identity that would define 591 

them as classical CD8𝛼𝛽 or CD4 T cells, NK, NK T cells, or 𝛾𝛿 T cells, but instead appear to be 592 

variable mixtures of innate and adaptive cell types with common transcriptional programming. Of 593 

these, cytotoxic subcluster 4, which is enriched in CD8𝛼𝛽 T cells and defined by expression of 594 

several granzymes and perforin, likely represents cytotoxic effector T cells that target infected 595 

cells for apoptosis and is associated with low burden granulomas. A recent study on lung tissue 596 

from Mtb infected macaques also found evidence of cytotoxic molecule expression associated with 597 

controlled infection (Esaulova et al., 2021). These findings reveal the importance of cytotoxic 598 

innate and adaptive lymphocytes in temporal control of Mtb in granulomas, and a potential role 599 

for in future prevention and cure strategies.  600 

 601 

Complementing analyses that characterize individual cell states associated with Mtb control, our 602 

cell-cell interaction analyses support connections between control, timing of granuloma 603 

appearance, and primed immune responses. Robust control of Mtb at the granuloma level 604 

correlated with interactions between particular subsets of T cells and macrophages and was 605 

mediated via specific proinflammatory cytokines (e.g., CCL3, IFN𝛾), T cell chemoattractants (e.g., 606 

CXCL9/10/11/16, CCL20), and co-stimulatory molecules (e.g., CD40LG, CD80, CD86). The pro-607 

inflammatory T cell-mediated signaling in late-appearing, low bacterial burden granulomas stands 608 
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in contrast to early type II immune and would healing activities in high bacterial burden 609 

granulomas, highlighting key cell types and interdependencies behind integrated, holistic host 610 

responses.  611 

 612 

Importantly, our analyses reveal not just sets of biological pathways utilized in the host cells of 613 

high vs. low burden granulomas, but also assign roles to the specific cell types that drive these 614 

signaling patterns. In particular, the strong internal signaling among Group 2 cell types and 615 

comparatively weaker cross-talk to other groups in early lesions may drive establishment of a 616 

cellular ecosystem dominated by Type II immune and wound healing responses that preclude 617 

effective T cell engagement and conversion to a more restrictive state. By comparison, in late-618 

appearing lesions, primed T cell populations, in concert with different innate populations, may use 619 

a variety of pro-inflammatory and pro-activation interactions to control Mtb growth or 620 

dissemination; a similar phenomenon might explain how infection with Mtb can protect against 621 

subsequent reinfection (Lin et al., 2014b), even in the presence of ongoing original infection, by 622 

locally recruiting adaptive responses that can act before self-reinforcing Group 2 responses work 623 

to limit pathology. Future work will be necessary to determine the relative importance of each 624 

adaptive response for control. More broadly, we will need to define the relative stability of these 625 

two broad cellular microenvironments and how host perturbations—whether vaccination, 626 

therapies or coinfections—impact their balance.  627 

 628 

In addition to identifying cellular populations that relatively exclusively associate with high or low 629 

burden granulomas, we find cellular plasticity among some cell populations which appear capable 630 

of producing ligands linked to either bacterial persistence or control. For example, the Group 1 631 

macrophage populations vary their interaction patterns, perhaps based on the signals they receive 632 
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from their microenvironment. These responses may, in turn, help mold the phenotypes of 633 

surrounding cell types via an immunologic feedback loop (e.g., contributing to persistence of 634 

wound healing and Type II immune signaling, or to effective immune recruitment and activation 635 

for granuloma clearance). Indeed, we find that individual ligands (IL15, TNFSF13, IL1A and 636 

IL1B) can also exhibit pleiotropic effects and participate in interactions enriched in either high or 637 

low burden granulomas. Such pleiotropic ligand effects may arise from differing spatial contexts 638 

around sender cells (e.g., whether TNFSF13 is secreted from lymphocyte cuff-localized mast cells 639 

vs. from macrophage populations closer to the granuloma core), or from combinatorial interactions 640 

with other ligands whose presence varies with the distinct microenvironmental ecosystems of high 641 

vs. low burden granulomas. These results may help reconcile contrasting findings on ligands’ roles 642 

differing by disease stage and model (e.g., IL-1), but also inform the selection of targets for 643 

therapies seeking to unwind deleterious microenvironments or reinforce adaptive responses 644 

(Juffermans et al., 2000; Law et al., 1996; Mayer-Barber et al., 2014).  645 

  646 

Importantly, we note that the contrasting microenvironments revealed through our analyses can 647 

occur within the same individual. This suggests the importance of rationally designing new classes 648 

of host directed TB preventions and cures that seek to destabilize one set of interactions while 649 

reinforcing the other. Indeed, the current standard of care for Mtb calls for multiple antibiotics to 650 

be administered for months and has largely remained unchanged for decades (Keshavjee and 651 

Farmer, 2012). Our work now defines the complexities of cellular ecosystems encapsulated as 652 

granulomas (e.g., reprogramming of plastic tissue-resident cells, recruitment of non-resident 653 

immune cells, etc.). Knowledge of intercellular networks underlying granuloma stability will spur 654 

future research efforts that identify and manipulate linchpins that serve as key nodes in limiting or 655 

enhancing the efficacy of therapeutic and prophylactic measures. For instance, the ligands and 656 
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receptors implicated in interactions strengthened in high burden granulomas are also enriched for 657 

targets of several vitamin A derivatives, including alitretinoin, beta-carotene, and retinol (Fig 658 

S8B), consistent with vitamin A’s known activity in promoting wound healing. We note, however, 659 

that vitamin A deficiency is a strong risk factor for progression to TB disease (Albana et al., 2017). 660 

These observations may be consistent with wound healing responses that create conditions in 661 

which bacteria cannot be eradicated but can be contained, speaking to the complexity of 662 

intervening in Mtb pathology. In contrast, low burden-linked signaling molecules are also enriched 663 

for targets of immunomodulatory drugs used to treat dermatoses and keratoses (e.g., 664 

fludroxycortide, imiquimod) (Fig S8B), aligning with a model where successful immune 665 

activation circumvents the need for wound healing responses. To most effectively target these 666 

complex granuloma ecosystems, we will need new computational methods that can pinpoint the 667 

relative importance of different molecular targets and cell types to granuloma stability and 668 

determine the most promising points of intervention to destabilize and modulate a densely 669 

interacting multicellular community toward adaptive states.  670 

 671 

To fully optimize these host directed therapies, additional work on intercellular communication 672 

will be necessary since certain classes of regulatory and effector interactions are not fully captured 673 

in this type of analysis. For example, as part of our cell-cell interaction analyses, we found strong 674 

enrichment for the expression of distinct neuro-hormonal modulators by Group 2 (e.g., NRG1, 675 

RLN3, NTS) and Group 3 cells (e.g., NRG2, UCN3) but did not capture any potential neural 676 

interactors in our scRNA-seq dataset, limiting our ability to discern fully how they associate with, 677 

and might be leveraged to achieve, control. Nonetheless, ligands and receptors implicated in low-678 

burden interactions are enriched for targets of several neuropsychiatric agents, including 679 

spiperone, scopolamine and serotonin, where serotonin reuptake inhibitors have already been 680 
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identified in screens for host-acting compounds that improve macrophage control of Mtb, 681 

supporting potential for their further investigation (Heemskerk et al., 2021; Stanley et al., 2014) . 682 

Equally critically, a significant proportion of cell types in Group 3 expressed cytolytic effector 683 

genes that can directly drive bacterial control, suggesting a potential therapeutic role for IL15 684 

super-agonists in clinical development that can drive expansion of cytotoxic populations.  685 

 686 

It should be noted that granulomas are inherently heterogenous and include necrotic debris, 687 

requiring robust technical correction and quality control; this results in an analysis of only high-688 

quality cells. Since only a fraction of cells from each granuloma are analyzed, proportions may not 689 

reflect the true composition of cells within a granuloma and may be skewed toward lymphocytes, 690 

highlighting the importance of orthogonal validations. In bulk RNA-sequencing analysis of a 691 

distinct set of early and late granulomas, we observe generally similar trends in cell-type 692 

composition, supporting our conclusions. Relatedly, the transcriptomic granuloma landscape 693 

investigated here is from a single (albeit pivotal) time point, while including granulomas across a 694 

spectrum of growth trajectories. It is likely that expression of certain genes that arise early in 695 

infection and then are downregulated as infection progresses will be missed, as will some 696 

populations critical to guiding overall granuloma outcome. More generally, matched analyses of 697 

earlier and later time point post-infection, along with analysis of lung tissue and granulomas from 698 

vaccinated or reinfected and protected animals, will provide a more complete picture of the 699 

temporal control of Mtb in granulomas and is the subject of future work.  700 

 701 

In summary, our data represent the first scRNA-seq investigation of the cellular and molecular 702 

features that dynamically associate with natural control of Mtb in pulmonary granulomas. Beyond 703 

recapitulating canonical correlates, our analysis defines nuanced actionable innate and adaptive 704 
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functional cell states, and sheds light on essential dynamics among host-pathogen interactions 705 

(Iwasaki and Medzhitov, 2015). Collectively, our data substantiate a model where high Mtb burden 706 

within granulomas is dictated at a local level by Type II immune and tissue-protective (wound 707 

healing) responses that seek to maintain essential tissue functionality, at the expense of creating a 708 

niche for bacterial persistence. In granulomas that form later in infection and therefore in the 709 

context of an adaptive immune response, this balance is tipped towards bacterial control by the 710 

emergence of adaptive T1-T17 and cytotoxic responses, with interactions involving innate immune 711 

cell types enabling sufficient infiltration and activation of these T cell subsets. As a result, 712 

successful immune coordination across cell types in late-forming granulomas may obviate the self-713 

reinforcing Type II/wound healing response that would otherwise exclude immune effector 714 

functions needed for Mtb control. We also identify cell types and ligands that participate in both 715 

high and low burden granulomas, potentially indictive of phenotypic plasticity and pleiotropic 716 

effects that may both be molded by and (in turn) reinforce distinct, pathology-associated 717 

granuloma microenvironments. Such a framework is consistent with previous observations of 718 

natural (Cadena et al., 2018) or induced (Darrah et al., 2020) control, and supports the need to 719 

look to new combinatorial host-directed paradigms for the development of novel efficacious 720 

therapeutic and prophylactic measures. Moving beyond the perspective of individual molecular 721 

targets, our work highlights the importance of the complexities of divergent host cellular 722 

ecosystems in driving Mtb persistence or control. By defining and nominating several putative 723 

axes of intra- and intercellular signaling associated with contrasting Mtb outcomes, our work 724 

provides a foundation for enabling effective manipulation of the properties and states of complex 725 

cellular ecosystems, therapeutically-relevant destabilization of pathologic molecular environments 726 

to enable adaptive immune access, and fundamental connections to other inflammatory and 727 
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infectious diseases that affect epithelial barrier tissues (Hughes et al., 2020; Ordovas-Montanes et 728 

al., 2018). 729 

 730 
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Materials and Methods 1222 

Ethics Statement 1223 

All experimental manipulations, protocols, and care of the animals were approved by the University of 1224 

Pittsburgh School of Medicine Institutional Animal Care and Use Committee (IACUC). The protocol assurance 1225 

number for our IACUC is D16-00118. Our specific protocol approval numbers for this project are 18124275 and IM-1226 

18124275-1. The IACUC adheres to national guidelines established in the Animal Welfare Act (7 U.S.C. Sections 1227 

2131 - 2159) and the Guide for the Care and Use of Laboratory Animals (8th Edition) as mandated by the U.S. Public 1228 

Health Service Policy. 1229 

All macaques used in this study were housed at the University of Pittsburgh in rooms with autonomously 1230 

controlled temperature, humidity, and lighting. Animals were singly housed in caging at least 2 square meters apart 1231 

that allowed visual and tactile contact with neighboring conspecifics. The macaques were fed twice daily with biscuits 1232 

formulated for nonhuman primates, supplemented at least 4 days/week with large pieces of fresh fruits or vegetables. 1233 

Animals had access to water ad libitem. Because our macaques were singly housed due to the infectious nature of 1234 

these studies, an enhanced enrichment plan was designed and overseen by our nonhuman primate enrichment 1235 

specialist. This plan has three components. First, species-specific behaviors are encouraged. All animals have access 1236 

to toys and other manipulata, some of which will be filled with food treats (e.g. frozen fruit, peanut butter, etc.). These 1237 

are rotated on a regular basis. Puzzle feeders foraging boards, and cardboard tubes containing small food items also 1238 

are placed in the cage to stimulate foraging behaviors. Adjustable mirrors accessible to the animals stimulate 1239 

interaction between animals. Second, routine interaction between humans and macaques are encouraged. These 1240 

interactions occur daily and consist mainly of small food objects offered as enrichment and adhere to established 1241 

safety protocols. Animal caretakers are encouraged to interact with the animals (by talking or with facial expressions) 1242 

while performing tasks in the housing area. Routine procedures (e.g. feeding, cage cleaning, etc) are done on a strict 1243 

schedule to allow the animals to acclimate to a routine daily schedule. Third, all macaques are provided with a variety 1244 

of visual and auditory stimulation. Housing areas contain either radios or TV/video equipment that play cartoons or 1245 

other formats designed for children for at least 3 hours each day. The videos and radios are rotated between animal 1246 

rooms so that the same enrichment is not played repetitively for the same group of animals. 1247 

All animals are checked at least twice daily to assess appetite, attitude, activity level, hydration status, etc. 1248 

Following M. tuberculosis infection, the animals are monitored closely for evidence of disease (e.g., anorexia, weight 1249 

loss, tachypnea, dyspnea, coughing). Physical exams, including weights, are performed on a regular basis. Animals 1250 
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are sedated prior to all veterinary procedures (e.g. blood draws, etc.) using ketamine or other approved drugs. Regular 1251 

PET/CT imaging is conducted on most of our macaques following infection and has proved very useful for monitoring 1252 

disease progression. Our veterinary technicians monitor animals especially closely for any signs of pain or distress. If 1253 

any are noted, appropriate supportive care (e.g. dietary supplementation, rehydration) and clinical treatments 1254 

(analgesics) are given. Any animal considered to have advanced disease or intractable pain or distress from any cause 1255 

is sedated with ketamine and then humanely euthanatized using sodium pentobarbital. 1256 

 1257 

Research Animals 1258 

Four Cynomolgus macaques (Macaca fascicularis), >4 years of age, (Valley Biosystems, Sacramento, CA) 1259 

were housed within a Biosafety Level 3 (BSL-3) primate facility as previously described and as above. Animals were 1260 

infected with low dose (~10 colony-forming units (CFUs)) M tuberculosis (Erdman strain) via bronchoscopic 1261 

instillation. Infection was confirmed by PET-CT scan at 4 weeks and monitored with clinical and radiographic 1262 

examinations until 10 weeks post infection. 1263 

 1264 

Serial PET-CT Imaging 1265 

Animals underwent PET-CT scans after Mtb infection at 4 weeks, 8 weeks and pre necropsy (i.e. 10 weeks 1266 

post-infection) as previously described (White et al., 2017). Briefly, animals were sedated, intubated and imaged by 1267 

2-deoxy-2-18F-D-deoxyglucose (FDG) PET imaging (microPET Focus 220 preclinical PET scanner, Seimens Medical 1268 

Solutions, USA, Malvern, PA) and Cretom CT scanner (Neurologica Corp, Danvers, MA, USA) within biosafety level 1269 

3 facility. The total lung FDG avidity was analyzed using Osirix viewer, an open-source PACS workstation and 1270 

DICOM viewer (Pixmeo, Bernex, Switzerland). The whole lung was segmented on CT by using the growing region 1271 

algorithm on the Osirix viewer to create a ROI of normal lung (Hounsfield units < 200). The closing tool was used to 1272 

include individual nodules and other pulmonary disease. The ROI was transferred to the co-registered PET scan and 1273 

manually edited to ensure all pulmonary disease was included. Voxels outside the ROI were set to zero and voxels 1274 

with an SUV greater than or equal to normal lung (SUV > 2.3) were isolated. Finally, the “Export ROIs” plug-in was 1275 

then used to export the data from these isolated ROIs to a spreadsheet where the total SUV per voxel were summed 1276 

to represent the total lung FDG activity. Total FDG activity in lungs was used to estimate thoracic bacterial burden 1277 

prior to reinfection (Figure 1C), as previously published(Coleman et al., 2014b; White et al., 2017). Granulomas were 1278 

individually characterized by their date of establishment (scan date), size (mm), and relative metabolic activity as a 1279 
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proxy for inflammation ([18F]-FDG standard uptake normalized to muscle [SUVR])(Coleman et al., 2014b; White et 1280 

al., 2017). Granulomas greater than 1mm are detected by CT scan. 1281 

 1282 

Necropsy 1283 

Necropsy was performed as previously described (Gideon et al., 2015; Lin et al., 2013; Lin et al., 2009; 1284 

Maiello et al., 2018). Briefly, an 18F-FDG PET-CT scan was performed on every animal 1-3 days prior to necropsy to 1285 

measure disease progression and identify individual granulomas. At necropsy, monkeys were maximally bled and 1286 

humanely sacrificed using pentobarbital and phenytoin (Beuthanasia; Schering-Plough, Kenilworth, NJ). Individual 1287 

granulomas previously identified by PET-CT and those that were not seen on imaging from lung and mediastinal 1288 

lymph nodes were excised for histological analysis, bacterial burden, and other immunological studies. TB specific 1289 

gross pathologic lesions and overall gross pathologic disease burden was quantified using a previously published 1290 

method (Maiello et al., 2018). The size of each granuloma was measured by pre-necropsy scans and at necropsy. 1291 

Granulomas were enzymatically dissociated using the Gentlemacs dissociator system (Miltenyi Biotec Inc) to obtain 1292 

single cell suspension and used to enumerate bacterial burden and applied on a Seq-Well device for single cell RNA-1293 

sequencing (scRNA-seq).  1294 

 1295 

Bacterial burden 1296 

200 μl of each granuloma homogenate were plated in serial dilutions onto 7H11 medium, and the CFU of M. 1297 

tuberculosis growth were enumerated 21 days later to determine the number of bacilli in each granuloma (Gideon et 1298 

al., 2015). As a quantitative measure of overall bacterial burden, a CFU score was derived from the summation of the 1299 

log-transformed CFU/gram of each sample at the time of necropsy. 1300 

 1301 

Chromosomal equivalents, CEQ 1302 

DNA extraction and qPCR was performed with modifications as described previously ((Lin et al., 2014b)). 1303 

Briefly, frozen aliquots of homogenates were thawed and volumes recorded throughout the extraction process. 1304 

Samples were transferred to tubes containing 150 μl of 0.1mm zirconia-silica beads (Biospec Products) before adding 1305 

600μl of Tris-EDTA buffer, pH 8.0. Three hundred microliters of phenol/chloroform/isoamyl alcohol (25:24:1, Sigma-1306 

Aldrich) at 70°C were subsequently added and the samples incubated at room temperature for 10 minutes. The samples 1307 

were then vortexed, the aqueous layer separated and supplemented with 50 μl 5M NaCl and a second phenol 1308 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2020.10.24.352492doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.24.352492
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

48 
 

chloroform extraction performed on the extracted aqueous layer. DNA was precipitated with the addition of one 1309 

volume of 100% isopropanol and one-tenth volume of 3M sodium acetate and incubating at -20°C overnight. The 1310 

DNA pellet was washed with 70% ethanol, dried and resuspended in nuclease-free water. Mtb genomes were then 1311 

quantified using Taqman Universal Master Mix II (Life Technologies) and previously published sigF primer-probe 1312 

combination (Lin et al., 2014b). Each sample was amplified in triplicate using an ABI Systems 7900HT machine. 1313 

Chromosomal equivalents (CEQ) were quantified by comparing the samples with a standard curve derived from serial 1314 

dilution of Mtb genomes prepared from liquid culture. Our detection limit for the standard curve was 10 copies per 1315 

reaction. When we calculated the number of genomes for the whole granuloma, our detection limit was 1,000 copies 1316 

per granuloma. Of the 26 granulomas analysed, 2 granulomas failed at the CEQ quantification and they were 1317 

eliminated from CEQ and CFU/CEQ analysis.  1318 

 1319 

Immunohistochemistry analysis  1320 

Granulomas from macaques were harvested at 10 or 11 weeks post Mtb infection from other published 1321 

(Phuah et al., 2016) and unpublished studies at the University of Pittsburgh. Following formalin fixation and paraffin 1322 

embedding, 5 µm sections were placed on slides for staining. Slides were deparaffinized in xylenes, hydrated in a 1323 

series of graded ethanol dips, and then antigen retrieval was performed by boiling the slides in a pressure cooker 1324 

containing antigen retrieval citrate buffer for slides stained with c-kit and tryptase or Tris-EDTA buffer (Mattila et al., 1325 

2013) for slides stained with CD11c, CD20, and CD3. Sections were cooled to room temperature and washed with 1X 1326 

PBS then stained overnight at 4°C in a humidified chamber using anti-human c-kit , anti-mast cell tryptase antibodies, 1327 

or rabbit-anti-CD3 and mouse anti-CD11c antibodies as previously described (Phuah et al., 2016). For the c-kit and 1328 

tryptase stained slides, the tissue sections were washed three times using 1X PBS and then incubated with anti-mouse 1329 

IgG1 AF546 to label the anti-c-kit antibodies for 1 hour at room temperature in a humidified chamber. Tryptase 1330 

staining was performed overnight at 4°C with anti-tryptase antibodies that were labeled with an Alexa Fluor 488 anti-1331 

rabbit IgG Zenon labeling kit. For the CD3, C11c, and CD20 stained sections, the CD3 and CD11c antibodies were 1332 

labeled with donkey anti-rabbit IgG Alexa Fluor 647 and anti-mouse IgG Alexa Fluor 488-conjugated secondaries 1333 

purchased Jackson ImmunoResearch Laboratories (West Grove, PA) or ThermoFisher, respectively. After the 1334 

secondary antibodies were removed with PBS washes, CD20 was stained with rabbit anti-CD20 that was labeled with 1335 

Alex Fluor 546 anti-rabbit IgG Zenon labeling kit. For both staining panels, the sections were washed again in 1X 1336 

PBS and coverslips were applied using ProLong Gold Antifade Mountant with DAPI. For the slides stained with CD3, 1337 
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CD11c, and CD20, individual image channels were acquired with an Olympus FluoView 500 laser scanning confocal 1338 

microscope (Olympus, Life Sciences Waltham, MA) maintained by the University of Pittsburgh’s Center for Biologic 1339 

Imaging and combined and pseudocolored with the FIJI build of ImageJ (Schindelin et al., 2012). Images of c-kit and 1340 

tryptase-stained slides were acquired with a Nikon e1000 epifluorescence microscope (Nikon Instruments, Melville, 1341 

NY) operated by the NIS-Elements AR software package (Nikon). 1342 

Human granulomas were identified from sections of lung tissue obtained at subjects undergoing partial lung 1343 

resection for clinical indications at King Dinzulu Hospital and Inksosi Albert Luthili central Hospital in Durban, South 1344 

Africa. Gross pathology was assessed by Haematoxylin and Eosin (H&E) staining. Briefly, samples of lung were fixed 1345 

in 10% neutral buffered formalin and processed routinely in a vacuum filtration processor using a xylene-free method 1346 

with isopropanol as the main substitute fixative. Tissue sections were embedded in paraffin wax. Sections cut at 4 µm 1347 

using a microtome, heated at 56°C for 15 min, dewaxed through two changes of xylene and rehydrated through 1348 

descending grades of alcohol to water and stained with Haematoxylin & Eosin (H&E, 5 minute incubation with each 1349 

stain). Slides were dehydrated in ascending grades of alcohol, cleared in xylene, and mounted with a mixture of 1350 

distyrene, plasticizer, and xylene (DPX). For immunohistochemistry, 4 µm sections and were mounted on charged 1351 

slides and heated at 56°C for 15 min. Mounted sections were dewaxed in xylene followed by rinsing in 100% ethanol 1352 

and 1 change of SVR (95%). Slides were then washed under running water for 2 min followed by antigen retrieval via 1353 

Heat Induced Epitope Retrieval (HIER) in Tris-sodium chloride (pH 6.0) for 30 minutes. Slides were then cooled for 1354 

15 min and rinsed under running water for 2 min. Endogenous peroxide activity was blocked using 3% hydrogen 1355 

peroxide for 10 min at room temperature (RT). Slides were then washed in phosphate-buffered saline with 1% Tween 1356 

(PBST) and blocked with protein block (Novolink) for 5 min at RT. Sections were incubated with primary antibodies 1357 

for CD117 (A4502-CD117,c-kit, DAKO, 1:500), followed by washing and incubation with post primary (Novolink) 1358 

for 30 minutes at RT. Slides were washed with PBST followed by incubation with the polymer (Novolink) for 30 min 1359 

at RT. Slides were then washed and stained with DAB for 5 min, washed under running water and counterstained with 1360 

hematoxylin for 2 min. Slides were rinsed under running water, blued in 3% ammoniated water for 30 s, washed under 1361 

water, dehydrated and mounted in DPX.  1362 

 1363 

Flow cytometry 1364 

Granulomas harvested from other Mtb infected NHPs were used in the flow cytometery analysis and processed as 1365 

previously published(Gideon et al., 2015). Cells were counted and stained for viability using fixable viability dye 1366 
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(Zombie NIR, Biolegend) and other surface and intracellular markers using the standard protocols. Surface markers 1367 

include: CD3 (SP34-2, BD), CD4 (L200, BD), CD8a (RPA-T8, BD), CD8b (2ST8.5H7, BD), TCR gd (5A6.E9, 1368 

ThermoFisher), CD16 (3G8, BD), NKG2A (Z199, Beckman Coulter and intracellular markers include: Granzyme B 1369 

(GB11, BD), Granzyme A (CB9, BD) and Granzyme K (G3H69, BD). Samples were acquired on a Cytek Aurora 1370 

spectral cytometer (5 laser configuration) and unmixed using SpectroFlo software (Cytek). Final analysis was 1371 

performed in FlowJo (v10, FlowJo) 1372 

Single-cell RNA-Sequencing (scRNA-seq) 1373 

High-throughput scRNA-seq was performed using the Seq-Well platform as previously described (Gierahn 1374 

et al., 2017). Briefly, total cell counts from single-cell suspension of granuloma homogenate were enumerated and 1375 

~15,000-30,000 cells were applied to the surface of a Seq-Well device loaded with capture beads in the BSL-3 facility 1376 

at University of Pittsburgh. Following cell loading, Seq-Well devices were reversibly sealed with a polycarbonate 1377 

membrane and incubated at 37°C for 30 minutes. After membrane sealing, Seq-Well devices were submerged in lysis 1378 

buffer (5 M guanidine thiocyanate, 10 mM EDTA, 0.1% b-mercaptoethanol, 0.1% Sarkosyl) and rocked for 30 1379 

minutes. Following cell lysis, arrays were rocked for 40 minutes in 2 M NaCl to promote hybridization of mRNA to 1380 

bead-bound capture oligos. Beads were removed from arrays by centrifugation and reverse transcription was 1381 

performed at 52°C for 2 hours. Following reverse transcription, arrays were washed with TE-SDS (TE Buffer + 0.1% 1382 

SDS) and twice with TE-Tween (TE Buffer + 0.01% Tween20). Following ExoI digestion, PCR amplification was 1383 

performed to generate whole-transcriptome amplification (WTA) libraries. Specifically, a total of 2,000 beads were 1384 

amplified in each PCR reaction using 16 cycles as previously described (Gierahn et al., 2017). Following PCR 1385 

amplification, SPRI purification was performed at 0.6x and 0.8x volumetric ratios and eluted samples were quantified 1386 

using a Qubit. Sequencing libraries were prepared by tagmentation of 800 pg of cDNA input using Illumina Nextera 1387 

XT reagents. Tagmented libraries were purified using 0.6x and 0.8x volumetric SPRI ratios and final library 1388 

concentrations were determined using a Qubit. Library size distributions were established using an Agilent 1389 

TapeStation with D1000 High Sensitivity ScreenTapes (Agilent, Inc., USA). 1390 

 1391 

Bulk RNA Sequencing 1392 

Bulk RNA sequencing was performed using cells obtained from a total of 12 granulomas from a separate set of animals 1393 

infected with Mtb for 10 weeks. Initially, granulomas were enzymatically dissociated and cells from each granuloma 1394 

were placed in 100 uL of lysis buffer. RNA was then extracted from whole lysates using RNEasy kits (Qiagen, Inc.) 1395 
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and combined with mRNA capture beads. Reverse transcription, whole transcriptome amplification, tagmentation and 1396 

sequencing were performed as described above. Within each bulk RNA sequencing sample, expression values were 1397 

summarized across bead barcodes to obtain an aggregate expression profile for each population.  1398 

 1399 

Sequencing and Alignment 1400 

Libraries for each sample were sequenced on a NextSeq550 75 Cycle High Output sequencing kit (Illumina 1401 

Inc., Sunnyvale, CA, USA). For each library, 20 bases were sequenced in read 1, which contains information for cell 1402 

barcode (12 bp) and unique molecular identifier (UMI, 8bp), while 50 bases were obtained for each read 2 sequence. 1403 

Cell barcode and UMI tagging of transcript reads was performed using DropSeqTools v1.12 (Macosko et al., 2015). 1404 

Barcode and UMI-tagged sequencing reads were aligned to the Macaca fascicularis v5 genome 1405 

(https://useast.ensembl.org/Macaca_fascicularis/Info/Index) using the STAR aligner. Aligned reads were then 1406 

collapsed by barcode and UMI sequences to generate digital gene expression matrices with 10,000 barcodes for each 1407 

array. 1408 

 1409 

QUANTIFICATION AND STATISTICAL ANALYSIS 1410 

Data Processing and Quality Control 1411 

Initially, after examining a range of cell inclusion thresholds, a combined dataset of 169,830 barcodes was 1412 

generated by applying a cutoff of 500 genes and 750 transcripts (UMIs). We visualized cells from each array using t-1413 

SNE across 30 principal components and performed Louvain clustering in Seurat. For many arrays, large clusters of 1414 

cell barcodes were identified that were not marked by distinct cell-type defining gene expression. Instead, these cells 1415 

were marked by distributed, low-level expression of genes presumed to originate from other cell types (e.g. HBB from 1416 

erythrocytes, JCHAIN from plasma cells, and CPA3 from mast cells). To understand the identity of these barcodes 1417 

more fully, sequencing quality metrics were initially examined, and non-descript clusters did not significantly differ 1418 

in the total number of aligned reads, detected genes, UMIs/cell, or mitochondrial percentage.  1419 

 1420 

To more fully understand the identity of these clusters, multiple modeling approaches were pursued (Figure S2):  1421 

 1422 

1. Initially, low-quality clusters were modelled as array-specific doublets. Here, models were constructed in which 1423 

pseudo-doublets/multiplets (n=2, 5, 10, 15, or 20 cells) were created from random sampling of the remaining cell 1424 
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type clusters. However, in these models, there was not significant overlap between the generated pseudo-1425 

multiplets and the clusters with non-distinct gene expression patterns.  1426 

 1427 

2. Random cells were created by binomial sampling a pseudo-population average expression vector generated by 1428 

summation of expression profiles across all cell type clusters not suspected to be derived from ambient 1429 

contamination. In these models, direct overlap was not observed between the simulated mixed population and 1430 

those clusters with non-distinct gene expression patterns.  1431 

 1432 

3. Finally, we examined whether these clusters might represent deep sampling of ambient contamination or cellular 1433 

debris by generating a “contamination” scoring scheme. First, to identify the clusters within each array, 30 1434 

principal components were calculated (this was observed to consistently capture the majority of variation in each 1435 

array), and Louvain clustering (resolution = 1.25) was performed using all significant principal components 1436 

(JackStraw Empirical P-value < 0.05). Next, within each array, cluster-specific “contamination” scores were 1437 

generated that consisted of 3 components:  1438 

 1439 

a. A measure of array-specific background contamination by cluster (“soup expression”). For each 1440 

array, a background expression profile was generated based on low-UMI barcodes (See Correction for 1441 

Residual Background Contamination below for full details). A set of “soup”-defining genes was 1442 

identified at a range of thresholds for soup-defining gene expression (0.01, 0.005, 0.001, and 0.0005;), a 1443 

value that represents the proportional contribution of a given gene to the cumulative soup expression 1444 

profile for each array. Array-specific, background-contamination scores were generated for the set of 1445 

soup-defining transcripts using the AddModuleScore function in Seurat. Clusters with 1446 

ambiguous/overlapping expression of lineage-defining gene expression signatures (Erythrocytes: HBB, 1447 

Plasma cells: JCHAIN, Mast cells: CPA3, etc.) were observed to be significantly enriched for soup-1448 

defining gene expression. Finally, to calculate “contamination’ scores, expression scores for soup genes 1449 

at a threshold of 0.001 were generated to calculate the average soup-profile score for each cluster within 1450 

each array.  1451 

 1452 
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b. An estimate of biological signal (“biological signal”). Here, the average log-fold change for the top 5 1453 

genes enriched within each cluster was calculated. For clusters dominated by ambient RNA, lower fold 1454 

change enrichments for their biological signature genes were observed relative to clusters characterized 1455 

by expression of canonical cluster-defining genes. In cases where the highest average log-fold change 1456 

values within a cluster were below the “return threshold” in Seurat, we set the value to the default return 1457 

threshold of 0.25.  1458 

 1459 
 1460 

c. A measure of co-expression of lineage-defining genes (“soup linage coexpression”). 5 genes were 1461 

manually selected that were recurrently over-represented in clusters suspected to arise from ambient 1462 

contamination and cellular debris. Specifically, the following genes were selected: HBB (An erythrocyte-1463 

defining gene), JCHAIN (A plasma cell defining gene), COL3A1 (A fibroblast defining gene), SFTPC 1464 

(A type 2 pneumocyte defining genes), and CPA3 (A mast cell defining gene). For each cell barcode, 1465 

the number of these five genes with non-zero expression was calculated as a measure of lineage-defining 1466 

co-expression. Within each cluster, the average co-expression of these genes was calculated and one was 1467 

subtracted from this average to allow for endogenous expression of 1 lineage-defining gene. This 1468 

parameter was specifically added to avoid exclusion of bona fide cell clusters with high-background 1469 

contamination (presumably due to low endogenous RNA content) and low biological signal (e.g., naïve 1470 

T cells). Here, cell populations that scored high for markers of a single lineage yet had higher soup-1471 

expression scores presented with lower rates of co-expression of these soup and lineage defining 1472 

transcripts relative to clusters which did not, likely representing ambient RNA and debris. 1473 

 1474 

Using these three values, cluster-specific background “contamination” scores were calculated for each array in 2 ways:  1475 

 1476 

𝐶𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑆𝑐𝑜𝑟𝑒	1 =
(𝑆𝑜𝑢𝑝	𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)	𝑥	(𝑆𝑜𝑢𝑝	𝐿𝑖𝑛𝑒𝑎𝑔𝑒	𝐶𝑜𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

𝐵𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙	𝑆𝑖𝑔𝑛𝑎𝑙  1477 

 1478 

	𝐶𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑆𝑐𝑜𝑟𝑒	2 =
(𝑆𝑐𝑎𝑙𝑒𝑑 − 𝑆𝑜𝑢𝑝	𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)	𝑥	(𝑆𝑜𝑢𝑝	𝐿𝑖𝑛𝑒𝑎𝑔𝑒	𝐶𝑜𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

𝐵𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙	𝑆𝑖𝑔𝑛𝑎𝑙  1479 

 1480 
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These two “contamination” scores quantify both the (1) absolute and (2) relative soup-profile contamination in 1481 

subsequent cluster classification.  1482 

Next, for each array, clustering was performed to identify clusters with array-specific ambient contamination 1483 

and debris. Specifically, hierarchical clustering was performed using a total of 7 variables to identify clusters defined 1484 

by ambient contamination: the 2 contamination scores (shown above), three scaled soup scores (soup gene thresholds: 1485 

0.01, 0.05 and 0.001), the average log-fold change for the top 5 cluster genes, and soup/lineage gene co-expression. 1486 

For each array, the hierarchical clustering tree was cut at the first branch point to identify clusters with a signature of 1487 

ambient contamination. In total, 41 array-specific clusters, comprising 56,590 barcodes from 21 out of 32 total arrays, 1488 

were identified as characterized by ambient RNA contamination and cellular debris and removed them in all 1489 

subsequent analyses.  1490 

 1491 

Correction for Residual Background Contamination 1492 

After removal of cell barcodes that were derived from background contamination and extracellular debris, 1493 

additional correction for ambient RNA contamination was performed among remaining cell barcodes on an array-by-1494 

array basis. Among filtered cell barcodes, array-specific, ambient RNA contamination was observed to be marked by 1495 

ectopic expression of cell-type defining genes (e.g. widespread expression of JCHAIN, HBB, and CPA3 etc.). 1496 

Specifically, this contamination was observed to vary in relation to the overall distribution of cell types recovered 1497 

from each array. To correct for residual ambient contamination within each array, SoupX (Young, 2018) was used to: 1498 

(1) generate array-specific profiles of background contamination, (2) estimate per-cell contamination fractions, and 1499 

(3) generate corrected background-corrected UMI counts matrices. To generate background expression profiles, 1500 

counts matrices containing up to 50,000 barcodes were generated to assemble a collection of low-UMI cell barcodes 1501 

that presumably represent extracellular mRNA. For each array, a UMI threshold for background expression was 1502 

determined using EmptyDrops (Lun et al., 2019) to estimate the likelihood distribution that low-UMI barcodes 1503 

represent cells rather than ambient contamination. Using an array-specific UMI-threshold (Range: 20-100 UMIs), a 1504 

composite background profile was created for each array. To estimate the per-cell contamination fraction, a set of 1505 

lineage-defining genes was first identified with bimodal expression patterns across cells (i.e., lineage defining genes 1506 

with leaky expression). For each array, this set of soup-defining, lineage genes was used to estimate contamination 1507 

fraction for cell types with known endogenous expression. Finally, the composite soup profile was subtracted from 1508 

each the transcriptional profile of each cell based on the estimated contamination fraction. For each array, individual 1509 
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transcripts most likely to be contamination were removed from each single-cell based on the estimated contamination 1510 

fraction. Specifically, individual transcripts were sequentially removed from each single-cell transcriptome until the 1511 

probability of subsequent transcripts being soup-derived was less than 0.5 to generate a background-corrected counts 1512 

matrix for each array (Table S2b). 1513 

 1514 

Separation of Doublets 1515 

Within each array, doublet identification and separation were performed using DoubletFinder. To account 1516 

for differences in cell loading densities and expected cell doublet frequencies, array-specific estimates of the expected 1517 

number of doublets were generated (Table S2a). For example, for a total of 20,000 cells applied to a Seq-Well device 1518 

containing 85,000 wells (lambda = 20,000), an expected doublet rate of >2.37% (since not all of the array’s surface 1519 

area contains wells) was calculated. For each array, pseudo-doublets were generated using DoubletFinder (McGinnis 1520 

et al., 2019). Here, the pK parameter estimate was separately optimized for each array by performing a parameter 1521 

sweep in which we selected the pK value with the maximum bimodality coefficient, while a pN = 0.25 was maintained 1522 

across all arrays based on published recommendations (McGinnis et al., 2019). Cells were identified as doublets based 1523 

on their rank order in the distribution of the proportion of artificial nearest neighbors (pANN). Specifically, the pANN 1524 

value for the cell at the expected doublet percentile was identified and the corresponding pANN value was used as a 1525 

threshold to remove additional cells in the event of ties. In total, we excluded 3,656 cells as doublets (Table S2a,c).  1526 

 1527 

Integrated Cell Type Classification 1528 

Following the aforementioned quality filtering, a combined dataset of 109,584 cells was used in downstream 1529 

analysis (Table S2d). An initial dimensionality reduction was performed on these cells by selecting 1580 variable 1530 

genes, performing principal component analysis (PCA), UMAP dimensionality reduction and Louvain clustering 1531 

using Scanpy (Wolf et al., 2018). To identify broad cell types, we examined cluster assignments at multiple levels of 1532 

clustering resolution (Resolutions: 0.5 to 2.25). We selected a cluster resolution of 1.00 because this was the resolution 1533 

beyond which branching did not result in discovery of clusters that represent distinct cell lineages (e.g., division of 1534 

Type 1 and Type 2 pneumocytes) (Table S5). To define major cell populations, extensive comparisons to existing 1535 

signatures of lung parenchyma and immune cell populations were performed using data from the Tabula Muris (Tabula 1536 

Muris et al., 2018) and Mouse Cell Atlas (Han et al., 2018) studies. Specifically, lung scRNA-seq data from both 1537 

studies were collected and used to calculate enriched gene expression signatures for each lung cell type cluster using 1538 
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a Wilcox rank-sum test. For each cluster, the top 20 genes (Table S3) were selected as a cluster-specific expression 1539 

signature and then used them to score all cells in the granuloma dataset. The average signature score within each 1540 

cluster was calculated and the distribution of signature score was examined within each granuloma cell type, and 1541 

significance was determined via permutation testing.  1542 

 1543 

Cell Type Assignment of Proliferating Cells 1544 

Among our top-level clusters was one defined by markers of cellular proliferation (MKI67, TOP2A, and 1545 

CDK1). To identify the underlying cell type identity for these cells, a separate dimensionality reduction and clustering 1546 

was performed among 3,123 cells defined by this proliferation signature. UMAP dimensionality reduction and 1547 

Louvain clustering was running at multiple clustering resolutions (0.4-0.8), and a resolution of 0.70 was selected as 1548 

the value beyond which no additional major cell type clusters were observed (Figure S3E). For each of the major cell 1549 

types identified in the global clustering analysis, we generated a gene signature using the top 20 enriched genes and 1550 

scored the proliferating cells clusters using the AddModuleScore function in Seurat. We then examined the distribution 1551 

of cell-type signature scores across each of the sub-clusters of proliferating cells and re-assigned clusters based on 1552 

enrichment of lineage-specific gene expression. Here, we assessed the significance of the cluster scores using a 1553 

permutation test. More specifically, 1,000 permutations were performed in which the proliferating clusters were down-1554 

sampled to have the same number of cells. Cluster assignments of the cells were randomized and the average generic 1555 

cell type signature score was calculated for each randomized cluster. The significance of a cell type score for each 1556 

proliferating cluster was determined by comparing the observed average signature score to the random null 1557 

distribution. Through this approach, distinct clusters of proliferating B cells, macrophages, neutrophils, plasma cells, 1558 

and T cells were identified and re-assigned to their respective cell types.  1559 

 1560 

Filtering of Soup-Defining Transcripts 1561 

To avoid artifacts from ambient RNA contamination and cellular debris in sub-clustering of T cells and 1562 

macrophages, genes that were observed to be soup-defining for any array were excluded. Specifically, a set of 210 1563 

soup defining genes was identified that comprised 0.001 of total soup expression in any array. The threshold of 0.001 1564 

was selected to maximize the cumulative fraction of soup expression with the least number of genes to avoid removing 1565 

underlying biology. Here, this threshold value represents cumulative fraction of soup expression accounted for by a 1566 

given gene for each array. In a further effort to avoid removing cell type specific biology, any genes with average log-1567 
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fold changes greater than 1.00 in T cells and macrophages compared to all other generic cell types were retained. In 1568 

total, 204 and 180 genes were removed prior to sub-clustering analysis of T cells and macrophages, respectively.  1569 

 1570 

Sub-clustering of Granuloma unified T and NK cells 1571 

Across the complete set of 44,766 T and NK cells, Louvain clustering was initially performed at a range of 1572 

resolution of values (0.30 – 0.75) to examine the relationships between cluster membership. In this analysis, a cluster 1573 

was observed to be defined by persistent expression of contaminating transcripts derived from macrophage and mast 1574 

cells (Cluster 4 - Louvain Resolution 0.60). To confirm that these cells did not represent persistent doublets, all T cells 1575 

were scored by expression of the top 20 cluster defining T cells and similar signature scores between the contaminated 1576 

cell population were observed. Additional sub-clustering within the “contaminated” T cell cluster was performed to 1577 

understand whether residual contamination obscured additional T cell biology; this failed to reveal additional T cell 1578 

clusters not identified among the remaining non-contaminated populations. Since this contamination cluster was not 1579 

observed to obscure a novel T cell phenotype, this population was excluded from downstream analysis. Following 1580 

removal of the cluster of T cells defined by residual contamination, dimensionality reduction and clustering at multiple 1581 

clustering resolutions (Louvain resolution: 0.25 – 0.75) were performed. In this final analysis, a total of 12 T cell 1582 

populations were identified at a clustering resolution of 0.75. Finally, additional sub-clustering was performed within 1583 

the population of 2,377 gd and cytotoxic T cells, including dimensionality reduction and clustering at multiple 1584 

resolutions (0.30 – 0.75). Here, 2 primary populations of cells were identified: sub-cluster 2, a population of cytotoxic 1585 

cells enriched for expression of TRDC and sub-cluster 3, a population of XCL1+ NK cells. Differential expression 1586 

analysis was performed to determine differences in gene expression between these clusters upon which the 1587 

classification of these cells was based. 1588 

Additional sub-clustering analysis was performed within the T1-T17 population through repeated variable 1589 

gene identification, dimensionality reduction and Louvain clustering (Resolution = 0.55), and 4 distinct sub-1590 

populations were discovered. Differential expression analysis was performed within the 9,234 T1-T17 cells using a 1591 

Wilcox test in Seurat to identify sub-cluster defining gene signatures.  1592 

 1593 

Annotation of T /NK subclusters 1594 
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T cell populations were classified using a combination of manual curation and comparison to literature-derived 1595 

sequences. Granuloma T cell populations were compared to publicly available T cell population and scRNA-seq 1596 

signatures. Specifically, comparisons were performed in the following ways:  1597 

 1598 

1. For each T cell cluster, cluster-defining genes were compared to publicly available databases of immune 1599 

signatures, including IPA, GeneGO, MSigDb (Liberzon et al., 2011) and SaVant (Lopez et al., 2017). This 1600 

was performed by comparing the set of T cell cluster-defining genes (Adjusted p-value < 0.001 and log-FC 1601 

> 0.2) to the signatures in GSEA and the SaVant data using Piano (Lopez et al., 2017; Varemo et al., 2013). 1602 

Specifically, significance was assessed using a hypergeometic test to examine the likelihood of the observed 1603 

frequency of enriched genes. Among cluster-defining genes for each T/NK cell sub-cluster, comparisons 1604 

were performed within each GSEA collection C1-7 (https://www.gsea-1605 

msigdb.org/gsea/msigdb/collections.jsp) and to the SaVant database. Expression signatures were also 1606 

compared to MSigDB signatures using GSEA. Here, pseudo-bulk expression signatures were generated for 1607 

each T/NK sub-population as the average gene expression across all cells within each cluster. These average 1608 

expression values were used to perform GSEA for each cluster in which the expression values were compared 1609 

to all other clusters using 1,000 permutations. 1610 

 1611 

2. Each T cell cluster was compared to literature-derived signatures of T cells from another scRNA-seq study. 1612 

Here, cell signature scores were generated in Seurat using the AddModuleScore function using gene 1613 

expression signatures obtained from human lung cancer (Guo et al., 2018). To determine the significance of 1614 

these score, 1,000 permutations were performed in which T cell cluster identity was randomly re-assigned to 1615 

generate a null distribution of module scores.  1616 

 1617 

3. Finally, extensive manual curation was performed based on literature evidence. For each cell population, an 1618 

extensive literature search was performed to support classification of T cell sub-populations based on patterns 1619 

of enriched gene expression. For example, regulatory T cells were identified on the basis of expression of 1620 

known regulatory T cell markers (FOXP3, IKZF1, and TNFSF18/GITR). However, in many cases, surface 1621 

markers used to define canonical T cell populations were not detected in the scRNA-seq data. 1622 

 1623 
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Next, expression of TRAC and TRBC or TRDC was evaluated within T cells in the scRNA-seq data and the 1624 

frequency of cells expressing either TRAC/TRBC (yellow) or TRDC (green) within each of the 13 clusters was 1625 

calculated. While TRAC/TRBC expression was observed in all 13 subclusters, TRDC expression was observed mainly 1626 

in subclusters 1-3 compared to subclusters 4-13. Finally, cluster-specific expression of CD4 and CD8A and CD8B 1627 

were examined as the proportion of cells with non-zero expression of CD4, CD8A/B or CD4&CD8 (A/B).  1628 

 1629 

Sub-clustering of Granuloma Macrophages 1630 

Across 27,670 macrophages, dimensionality reduction and Louvain clustering at multiple clustering 1631 

resolutions was performed. In initial clustering, a cluster defined by contaminating transcripts derived from other cell 1632 

types (including mast cells (KIT and CLU), T cells (CD3D), and plasma cells (JCHAIN)) and soup-defining gene 1633 

expression was identified. By comparing the distribution of macrophage-defining gene expression in this cluster to 1634 

other clusters, this cluster was observed to have enriched signature scores relative other clusters. The enrichment of 1635 

macrophage expression signatures was examined to determine the population of macrophages that have a core 1636 

macrophage expression program. While this population of macrophages is primarily soup-defining gene expression, 1637 

this cluster was not excluded due to the possibility that this represents an efferocytotic macrophage population.  1638 

 1639 

Classification of Macrophage Populations 1640 

Identities of the macrophage clusters were established through a combination of manual curation and comparison 1641 

to published gene expression signatures from both population and scRNA-seq studies. More specifically: 1642 

 1643 

1. For each macrophage cluster, similar comparison to databases of immune signatures including MSigDb and 1644 

SaVanT were performed (See Identification of T cell Populations).  1645 

 1646 

2. A series of gene expression signatures were generated from published scRNA-Seq studies of macrophage 1647 

states. For example, a recently published atlas of myeloid states in lung (Zilionis et al., 2019) was used to 1648 

score granuloma macrophages. Further, a list of myeloid expression signatures was generated using lung 1649 

myeloid cells from the Mouse Cell Atlas (Han et al., 2018). For each study, signatures for the top 20 cluster-1650 

defining genes were selected to generate gene expression signatures (Table S5). Signature scores were 1651 

generated for each cell using the AddModuleScore function in Seurat.  1652 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2020.10.24.352492doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.24.352492
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

60 
 

 1653 

3. Finally, in cases where an existing description of a macrophage population was not discovered, extensive 1654 

literature searches were performed to contextualize possible identities of macrophage populations.  1655 

 1656 
Deconvolution of Bulk RNA-Sequencing Data 1657 

Population deconvolution was performed using CiberSort (Newman et al., 2015) using reference populations 1658 

generated from random sampling of a quarter of the single cells within each of the 13 generic cell types identified in 1659 

our single-cell analysis.  1660 

 1661 

Co-variation in Granuloma Composition 1662 

We calculated correlations in cell-type proportions to identify underlying structure in the co-occurrence of 1663 

cell types across all granulomas. Specifically, we calculated Pearson correlation coefficients for all pair-wise cell-type 1664 

combinations (NB we also performed each analysis using Spearman correlation coefficients and obtained similar 1665 

results). For each pairwise combination of cell types, we calculated permutation p-values by randomly re-assigning 1666 

cell type labels to generate a set of background correlation values (Table S9,S10)  1667 

We then performed hierarchical clustering to identify clusters of correlated cell-types across granulomas, 1668 

calculating the proportional composition of correlated cell-type clusters within each lesion. For each of the 5 clusters 1669 

identified through hierarchical clustering, we calculated permutation p-values to examine average correlation values. 1670 

To understand the relationship between identified cell-type clusters and granuloma-level bacterial burden, we 1671 

examined the abundance of correlated cell types by grouping lesions by timing of granuloma formation.  1672 

 1673 

Cell-Communication Analysis 1674 

To examine cell-cell interactions, we first generated a curated list of receptor-ligand pairs through a 1675 

combination of publicly-available databases and literature review. Within each granuloma, we generated edge weights 1676 

between cell types for a given receptor ligand pair by multiplying the average receptor expression in Cell Type 1 by 1677 

the average ligand expression in Cell Type 2. Edge weights were constructed for all receptor-ligand pairs and pairwise-1678 

cell type combinations within granulomas individually. Within each granuloma, we performed a total of 1,000 1679 

permutations for each receptor-ligand pair in which cell-type identifiers were randomly resorted and the resulting edge 1680 
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weight was recorded. For each receptor-ligand pair, the significance of the observed value was calculated from a z-1681 

score comparison of the observed value relative the permuted values.  1682 

We further performed adjustment of receptor-ligand edge weights at multiple levels. (1) To account for 1683 

differences in the relative abundance of ‘sender’ cell types, we multiplied receptor-ligand edge weights by the 1684 

proportion of all ‘sender’ cells within a granuloma. In effect, this generates a pool of ‘sender’ cell derived ligand that 1685 

is available to act upon cell types bearing appropriate receptors. (2) To identify the most likely receiver cells, we 1686 

weighted receptor-ligand edge-weights by the proportion of total receptor expression within the receiving cell subset 1687 

cluster relative to the average receptor expression across all cells in the granuloma. In this scheme, receptors with 1688 

more uniform expression across the entire granuloma will be down-weighted to reflect non-autonomous sinks of 1689 

extracellular ligands, while receptors predominantly expressed by a single cell subset will be up-weighted. (3) Finally, 1690 

we adjusted receptor-ligand edge weights to account for the percent of cells within the receiver cell subset expressing 1691 

a given receptor by multiplying our receptor-ligand edge weights by the proportion of all ‘receiver’ cells expressing 1692 

the receptor within a the receiver cell subset.  1693 

To identify axes of intercellular communication with differential weights across granulomas, we performed 1694 

student’s t-tests of receptor-ligand edge weights between (A) high-burden and low-burden lesions, and (B) original 1695 

and late-blooming lesions. We filtered results based on the following criteria: (1) the average permutation p-values 1696 

for the receptor-ligand pair within high or low-burden lesions < 0.05, (2) p-value from student’s t-test in (A) or (B) 1697 

above < 0.05, and (3) fold-change of the adjusted receptor edge-weight > 0 in the (A) or (B) comparisons. The “dplyr” 1698 

package in R was used to filter the resulting cell-cell interaction database to count significant interactions across cell 1699 

type groups and granuloma burdens, identify cell type groups contributing to the top 10% of ligands most strengthened 1700 

in either high or low burden granulomas, identify ligands most associated with high or low burden granulomas, and 1701 

identify cell type specificity of these ligands. The “circlize” package in R was used to generate circus plots of the 1702 

topology of signaling networks across high and low burden granulomas.  1703 

 1704 

Statistical methods 1705 

Non-parametric Spearman’s rho was calculated for correlation analysis for evaluating the degree of 1706 

relationship between cellular abundance and bacterial burden. Non parametric t-test was used when comparing two 1707 

groups (Mann- Whitney U). P values, or where appropriate adjusted or permutation p values, ≤ 0.05 were considered 1708 
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significant. Statistical analysis was performed using GraphPad Prism v8 (GraphPad software, San Diego, CA), JMP 1709 

Pro v12 and R base statistics.   1710 
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Table legends: 1711 

Table 1: T/NK subclusters characteristics and annotations 1712 

Table S1: Granuloma CFU, CEQ, CFU/CEQ; PET-CT: SUV-R, Size and Time of detection  1713 

Table S2a: Seq-Well array loading densities and doublet rate 1714 

Table S2b: Technical correction data: SoupX  1715 

Table S2c: Doublet removal Metadata 1716 

Table S2d: Cell level metadata 1717 

Tablet S3: Canonical cell type enrichment gene list: 13 cell type clusters 1718 

Table S4: Cell type composition: percentage of assigned granuloma cells. A) canonical cell type clusters, 1719 

b)macrophage subclusters, c) T/NK subclusters and d) T1T17 subpopulation 1720 

Table S5: Correlation (Spearman’s rho) with bacterial burden and difference between in percentage of 1721 

cells in early high burden and late low burden granulomas (Mann Whitney U): A) canonical cell type 1722 

clusters, b) T/NK subclusters and C) T1T17 subpopulation 1723 

Table S6: T/NK subclustering: enrichment gene list :13 T/NK subclusters 1724 

Table S7: Type1-Type-17 subpopulation enrichment 1725 

Tablet S8: Macrophage subcluster enrichment: 9 subclusters 1726 

Table S9: Cellular ecology 1727 

Table S10: Cellular ecology correlation permutations (Spearman and Pearson) 1728 

Table S11: Association of cell group abundance with bacterial burden: (1) All: CFU low vs high, (2) 1729 

timing of granuloma detection (Early vs late) 1730 

Table S12: Interaction analysis: receptor-ligand senders and receivers in early and late granulomas. 1731 
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Figure 1. Study design, experimental set up, characteristics of animals over the course of Mtb infection and granuloma bacterial
burden

(A) Study design: Cynomolgus macaques (n=4) were infected with a low-dose inoculum of Mtb (Erdman strain) and serial PET-CT scans
were performed at 4, 8, and 10 weeks post-infection with the final scan used as a map for lesion identification at necropsy. Individual
granulomas were excised and homogenized. CFU and CEQ assays were performed on all granulomas (top right) and 26 individual
granulomas across 4 animals were randomly selected at necropsy for Seq-Well assays (bottom right). (B) Distribution of CFU per
granuloma sampled for Seq-Well assay for each animal. Each dot is an individual granuloma. (C) /(G) CFU log10 per granuloma (total live
bacteria); (D)/ (H) CEQ log10 per granuloma (Chromosomal equivalents, CEQ, live + dead Mtb) organized by time of detection; (E)/(I)
Ratio between CFU (viable bacteria) and CEQ (total bacterial burden) i.e., relative bacterial survival. Lower ratio (negative values)
corresponds to increased killing and higher ratio corresponds to increased Mtb survival. (C-E) organized by bacterial burden: low
(Green); high (orange). (F) Individual Granuloma bacterial burden (log CFU) ploted with time of detection by PET-CT scans: 4 weeks post
infection (early) or 10 weeks post infection (late). The granulomas in X axis is arranged in order of bacterial burden and time of
detection. (F-I) time of detection by PET-CT scan (Table S1): early granulomas (maroon), late granulomas (blue). Each symbol is a
granuloma. Box plot showing median, IQR and range. Mann Whitney U for panels E-G.
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Figure 2 Analysis of single-cell sequencing of tuberculosis lung granulomas

(A) UMAP plot of 109,584 cells from 26 granulomas colored by identities of 13 generic cell types. (B) Expression levels of
cluster defining genes enriched across 13 generic cell types. Color intensity corresponds to the level of gene expression,
while the size of dots represents the percent of cells with non-zero expression in each cluster. (C) Significant correlations
between proportion of canonical cell types with bacterial burden of individual granulomas (Log10 CFU per granuloma) using
non-parametric Spearman’s rho correlation test. Color indicated binned granuloma bacterial burden: low (green) and high
(orange).
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Figure 3.Diversity in the unified T and NK cell cluster and relationship to granuloma-level bacterial burden

(A) Subclustering 41,222 cells in the unified T/NK cell cluster, colored by subclusters. Subclusters are numbered based the expression
patterns. (B) Frequency of expression of TCR genes TRAC, TRBC1 or TRBC2 (yellow) and TRDC (green) across 13 T/NK cell subclusters.
(C) Expression levels of T/NK cell cluster-defining genes. Color intensity corresponds to the level of gene expression and the size of
dots represents the percent of cells with non-zero expression in each cluster. Y-axis identifies subclusters. (D) Significant correlations
between proportion of T/NK subclusters with bacterial burden of individual granulomas (Log10 CFU per granuloma) using non-
parametric Spearman’s rho correlation test. Color indicated binned granuloma bacterial burden: low (green) and high (orange).
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Figure 4 Phenotypic Diversity in T1-T17 cells

(A) T1-T17 subcluster overlaid on unified T/NK cell cluster (left) and colored by normalized expression values for T1-T17 subcluster-
defining genes (bold outlined boxes) and non-enriched canonical Type1 and Type 17 genes (right). (B) Subclustering of 9,234 T1-T17
cells resulting in 4 phenotypic sub-populations. (C) Cluster defining genes for T1-T17 subpopulation 1, 2, 3 and 4. Color intensity
corresponds to the level of gene expression and the size of dots represents the percent of cells with non-zero expression in each
cluster. (D) Subclustering of T1-T17 cells colored by normalized gene expression values for selected subcluster (top row) and sub-
population defining genes. (E) Significant correlations between proportion of T1-T17 subcluster and subpopulations with bacterial
burden of individual granulomas (Log10 CFU per granuloma) using non-parametric Spearman’s rho correlation test.
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Fig 5
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Figure 5 Cellular ecosystem in TB lung granulomas

(A) Pairwise Pearson correlation values proportions of canonical cell types and T/NK and macrophage subclusters across 26 granulomas.
Hierarchical clustering of correlation coefficients identified 5 groups (indicated by color and number) of cell types with correlated
abundance in granulomas. (B) Composition of each granuloma by cell type group. Left bar graph shows all high burden and all low
burden granulomas grouped together, with right bar graph split by individual granuloma. (C) Number of interactions strengthened in
high burden granulomas, organized by sender cell clusters (i.e., cell cluster producing the ligand). (D) Representation of each cell type
group as sender cell population among the 10% of ligands most strengthened in high burden granulomas. (E) Number of interactions
strengthened in low burden granulomas, organized by sender cell clusters. (F) Representation of each cell type group as sender cell
population among the 10% of ligands most strengthened in low burden granulomas. (G) Network of interactions across cell type
groups, subsetted to only highlight interactions strengthened in high burden granulomas. Widths of arcs are proportional to number of
interactions between cell type groups, and widths are on same scale as for subfigure F. n = 2,586 statistically significant interactions,
1,715 of which were strengthened in high burden granulomas. (H) Network of interactions across cell type groups, subsetted to only
highlight interactions strengthened in low burden granulomas. Widths of arcs are proportional to number of interactions between cell
type groups, and widths are on same scale as for subfigure E. n = 2,586 statistically significant interactions, 871 of which were
strengthened in high burden granulomas. (I) Overall high-vs-low granuloma burden fold-change of interactions strengths of key ligands,
averaged across all statistically significant interactions. (J) Cell cluster-specific interaction strength fold changes of each ligand, averaged
across all statistically significant interactions where each cell cluster was the sender population.
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Fig S1
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Figure S1. Granuloma architecture and CFU per granuloma decreases over time

(A) Architecture of macaque TB lung granuloma, where lymphocytes and macrophages are present in distinct
regions. Immunohistochemistry and confocal microscopy were performed on a granuloma from an animal at 11
weeks post-Mtb infection to visualize localization of CD11c+ macrophages (cyan), CD3+ T cells (yellow), and CD20+ B
cells (magenta). (B) Each column depicts the CFU for all granulomas of an individual macaque (N=88 macaques),
ranging from 4 weeks to 17 weeks post-infection. Each dot represents a granuloma. Lines are at means (per animal)
and different colors represent weeks post-infection. (C) CFU per granuloma decreases significantly starting at 10-11
weeks post-infection. Each dot represents the mean CFU per granuloma of an individual animal, with the x-axis
indicating weeks post-infection at which necropsy was performed. Lines are at medians. Differences between time
points were tested using Kruskal-Wallis test with Dunn’s multiple comparison adjustment. (* p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001.) (D) Total lung FDG activity (in log scale) measured by PET scans of each animal at 4, 8
and 10-weeks post-Mtb infection showing trajectories of lung inflammation. (E) Size of each granuloma measured by
CT scans at 4, 8 and 10 weeks post-mtb infection. Early granulomas are those identified at 4 weeks post infection (in
maroon) and late granulomas are those identified at 10 weeks post infection (in dark blue). (F) CFU per granuloma is
shown for early detection (blue) and late detection (red) within each animal. Box plots lines represent the median,
IQR and range Each dot represents a granuloma. (G) CFU is significantly lower in new granulomas within animals.
Each dot (and line) represents the median CFU per granuloma of each animal. Statistics: paired t-test
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Figure S2: Sequencing, alignment and QC pipeline (see methods)

(A, D, I) Array-specific processing pipeline. (B) Array specific Louvain clustering (Resolution = 1.25). (C) Cluster-defining gene
expression was determined within each array. (E) Overview of Cluster-Specific Summary Score. (F) Estimation of soup-
thresholds for correction of ambient RNA contamination. Left: Relationship between soup-thresholds (x-axis) the number of
soup defining genes detected for each array (y-axis). Right: Relationship between soup-thresholds (x-axis) and the
cumulative proportion of soup-defining gene expression (y-axis). (G) Hierarchical clustering results used to identify and
remove clusters defined by ambient contamination from each array. (H) t-SNE plot showing removal of clusters
characterized as ambient RNA. (J) Estimation of array-specific contamination rates using SoupX. (K) Identification and
removal of array-specific doublets.
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Fig S3
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Figure S3: Identification of Canonical Cell Types.

(A) Waterfall plot showing stability of cell-type clustersat multiple clustering resolutions. Boxed row (resolution=1.00)

selected for downstream analysis.

(B, C) Distribution of lung cell-type signatures obtained from the Tabula muris (B) and Mouse cell (C) atlas. (D) UMAP

plot of 109,584 cells colored by Louvain clusters (resolution = 1.00). (E) Waterfall plot showing the stability of sub-

clustering analysis of 3,123 cells with a proliferating gene signature. (F) Distribution of canonical cell type signatures

across subclusters of proliferating cells. (G) Expression levels of cluster-defining genes overlaid on UMAP plot in panel

2A. (H) Left: CFU per granuloma based on the timing of detection by PET CT scan in one animal : 4017. Right:

Difference in granuloma proportional composition of cell type clusters between early (maroon box plot) and late

granulomas (green) within an animal (4017). Each granuloma is coloured. Statistics: Mann Whitney U. p values are

presented in boxes. Box plot showing median, IQR and range; each dot represents a granuloma.
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Figure S4. Cell type confirmation and Expression of selected functional transcripts. (A) Proportion of cell types in granulomas from bulk 

sequencing of 6 early and 6 late granulomas to confirm the trend seen in scRNAseq. (B) UMAP plot of 109,584 cells from 26 granulomas colored 

by identities of 13 generic cell types. (C) Expression levels of select functional genes overlaid on UMAP plot of 109,584 cells. (D) Detection of 

mast cells in a 10-week NHP granuloma using immunohistochemistry, staining for tryptase (green) and c-kit (CD117)(red). (E) Detection of mast 

cells in a human lung granuloma. Hematoxylin and eosin stain and immunohistochemistry with multinucleated giant cells (stars, (top left) and 

c-kit (CD117) staining (indicated by arrows, top and bottom right).

Fig S4
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Figure S5. Sub-clustering and phenotypic identification of T/NK cell populations.

(A) Waterfall plot showing the stability of T/NK cell sub-clustering. Boxed row (resolution=0.55) selected for downstream

analysis. (B) UMAP plot of 44,766 T/NK cells with a sub-cluster of 3,544 T/NK cells defined by residual contamination

highlighted (blue). (C) Waterfall plot showing the stability of T/NK cell sub-clustering following removal of contaminated

T cell sub-cluster. Boxed row (resolution=0.75) selected for downstream analysis. (D) T/NK subclustering UMAP overlaid

with normalized gene expression for CD4, CD8A, and CD8B (top). Expression of these genes across 13 sub-clusters

(bottom) where color intensity corresponds to level of gene expression and size of dots represents the percent of cells

with non-zero expression in each cluster. (E) Frequency of expression of CD4 (blue), CD8A and/ CD8B (green), CD4 and

CD8A/B (orange) or no expression of CD4/CD8A/B (yellow) across 13 T/NK cell subclusters. (F) UMAP plots overlaid with

normalized expression levels for selected T/NK cell subcluster-defining genes.

Fig S5
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Figure S6: Flow cytometry confirmation of cytotoxic molecules in TB granulomas

(A) Gating Tree showing identification CD8ab T cells in lung granuloma samples and population of

Granzyme A, Granzyme B and Granzyme K + CD8abT cells. (B) Frequency of CD8ab T cells in lung

granulomas making one or more (two , three) types of Granzymes (A, B or K). Each symbol is a granuloma

and each colour identifies an animal. This data supports different types of granzyme producing cytotoxic

cells identified in scRNAseq.
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Figure S7 Macrophage heterogeneity in Mtb granulomas

(A)Waterfall plot showing the stability of macrophage sub-clusters. Boxed row (resolution=0.55) selected for

downstream analysis. (B) UMAP plot of 27,670 macrophage cluster colored by phenotypes. (C) Cluster-defining

genes across macrophage subclusters. (D) Macrophage subcluster-defining genes overlaid on macrophage plot

in panel B. (E) Significant correlations between proportion of Macrophage subclusters with bacterial burden of

individual granulomas (Log10 CFU per granuloma) using non-parametric Spearman’s rho correlation test. Color

indicated binned granuloma bacterial burden: low (green) and high (orange).
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Figure S8 Transcriptomic pathways associated with granuloma burden.

(A) Pathways enriched in signaling molecules associated with high vs. low granuloma burden. Signaling molecules were

ranked according to their log(fold-change in high vs. low burden granulomas) as input to GSEA. (B) Drugs with targets

enriched in signaling molecules associated with each cell type group.

Fig S8
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