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Abstract  

Immersive virtual reality (VR) enables naturalistic neuroscientific studies while maintaining 

experimental control, but dynamic and interactive stimuli pose methodological challenges. We 

here probed the link between emotional arousal, a fundamental property of affective 

experience, and parieto-occipital alpha power under naturalistic stimulation:  

37 young healthy adults completed an immersive VR experience, which included rollercoaster 

rides, while their EEG was recorded. They then continuously rated their subjective emotional 

arousal while viewing a replay of their experience. The association between emotional arousal 

and parieto-occipital alpha power was tested and confirmed by (1) decomposing the 

continuous EEG signal while maximizing the comodulation between alpha power and arousal 

ratings and by (2) decoding periods of high and low arousal with discriminative common 

spatial patterns and a Long Short-Term Memory recurrent neural network.  

We successfully combine EEG and a naturalistic immersive VR experience to extend previous 

findings on the neurophysiology of emotional arousal towards real-world neuroscience.  
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Introduction 

While humans almost constantly interact with complex, dynamic environments, lab-based 

studies typically use simplified stimuli in passive experimental situations. Trading realism for 

experimental control happens at the expense of the representativity of the experimental design 

(Brunswik, 1955), that is, the degree to which effects found in the lab generalize to practical 

everyday-life conditions. This may be particularly true for affective phenomena like emotions.  

Emotional arousal as a fundamental property of affective 

experience  

Emotions are subjective, physiological, and behavioural responses to personally meaningful 

external stimuli (Mauss & Robinson, 2009) or self-generated mental states (e.g., memories; 

Damasio et al., 2000) and underlie our experience of the world (James, 1884, 1890; Seth, 2013). 

Emotions are crucial for physical and mental health (Gross & Muñoz, 1995) and their 

investigation has long been at the core of experimental psychology (Wundt, 1897).  

Dimensional accounts conceptualize emotions along the two axes of valence and arousal 

(Duffy, 1957; Kuppens et al., 2013; Russell, 1980; Russell & Feldman Barrett, 1999; Wundt, 

1897): Valence differentiates states of pleasure and displeasure, while emotional arousal 

describes the degree of activation or intensity that accompanies an emotional state. 

[Footnote: Different types of arousal have been proposed and investigated, such as sexual, 

autonomic, emotional (Russell, 1980); also in the context of altered states of consciousness, 

for example through anaesthesia or sleep. They may share psychological (e.g., increase in 

sensorimotor and emotional reactivity; Pfaff et al., 2012) and physiological aspects (e.g., 

sympathetic activation) but are not synonymous. We here explicitly refer to arousal in the 

context of the subjective experience of emotions.] 
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Emotions have been linked to activity in the autonomic (ANS) and the central nervous system 

(CNS; Dalgleish, 2004). It has thereby been difficult to consistently associate individual, 

discrete emotion categories with specific response patterns in the ANS (cf. Kragel & LaBar, 

2013; Kreibig, 2010; Siegel et al., 2018) or in distinct brain regions (Lindquist et al., 2012; but 

cf. Saarimäki et al., 2016). Rather, emotions seem to be dynamically implemented by sets of 

brain regions and bodily activations that are involved in basic, also non-emotional 

psychological operations (i.e., “psychological primitives”; Lindquist et al., 2012). In this view, 

humans are typically in fluctuating states of pleasant or unpleasant arousal (“core affect”; 

Russell & Feldman Barrett, 1999; Lindquist, 2013), which can be influenced by external stimuli. 

Emotional arousal could thereby be a “common currency” to compare different stimuli or 

events (Lindquist, 2013) and represent fundamental neural processes that underlie a variety 

of emotions (Wilson-Mendenhall et al., 2013). It can fluctuate quickly – on the order of minutes 

(Kuppens et al., 2010) or seconds (Mikutta et al., 2012) – and has been connected to ANS 

activity, as measured by pupil diameter (Bradley et al., 2008) or skin conductance (Bach et al., 

2010). At the brain level, emotional arousal was linked to lower alpha power, particularly over 

parietal electrodes (Luft & Bhattacharya, 2015; Koelstra et al., 2012). The parieto-occipital 

alpha rhythm, typically oscillating in the frequency range of 8 to 13 Hz, is the dominant EEG 

rhythm in awake adults with eyes closed (Berger, 1929), where it varies with vigilance (Olbrich 

et al., 2009). However, in tasks of visual processing (i.e., with eyes open), parieto-occipital 

alpha power was linked to active attentional processes (e.g., distractor suppression; Kelly et 

al., 2006; Klimesch, 2012) or, more generally, to functional inhibition for information gating 

(Jensen & Mazaheri, 2010). Physiologically, alpha oscillations were associated with large-

scale synchronization of neuronal activity (Buzsáki, 2006) and metabolic deactivation 

(Moosmann et al., 2003). 

In sum, bodily responses interact in complex ways across situations, and activity in the brain 

is central for emotions and their subjective component (Barrett, 2017; Seth, 2013). As arousal 

is a fundamental property not only of emotions but of subjective experience in general 
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(Adolphs et al., 2019), an investigation of its neurophysiology, reflected in neural oscillations, 

is essential to understanding the biology of the mind.  

Studying emotional arousal and its neurophysiology in the lab 

Studies that investigated emotions or emotional arousal in laboratory environments typically 

used static images. For example, more emotionally arousing relative to less emotionally 

arousing (e.g., neutral) pictures were associated with an event-related desynchronization, that 

is, a decrease in the power of alpha oscillations in posterior channels (Cesarei & Codispoti, 

2011; Schubring & Schupp, 2019; but cf. Uusberg et al., 2013). In a study, in which emotional 

arousal was induced through pictures and music, blocks of higher emotional arousal were 

associated with decreased alpha power compared to blocks of lower emotional arousal (Luft 

& Bhattacharya, 2015). However, emotion-eliciting content that is repeatedly presented in trials 

creates an artificial experience for participants (Bridwell et al., 2018); it hardly resembles 

natural human behaviour and its (neuro-)physiology, which unfolds over multiple continuous 

timescales (Huk et al., 2018). Moreover, such presentations lack a sense of emotional 

continuity. External events often do not appear suddenly but are embedded in an enduring 

sequence, in which emotions build-up and dissipate. Real-life scenarios also include 

anticipatory aspects where emotional components can be amplified or even suppressed, thus 

rendering the relationship between the corresponding neuronal events and subjective 

experience more complex than the one typically studied with randomized or partitioned 

presentations of visual or auditory stimuli.  

Virtual Reality (VR) technology – particularly immersive VR, in which the user is completely 

surrounded by the virtual environment – affords the creation and presentation of computer-

generated scenarios that are contextually rich and engaging (Diemer et al., 2015). As more 

naturalistic (i.e., dynamic, interactive, and less decontextualized) experiments allow to study 

the brain under conditions it was optimized for (Gibson, 1979; Hasson et al., 2020), their 
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findings may more readily generalize to real-world circumstances and provide better models 

of the brain (Matusz et al., 2019; Shamay-Tsoory & Mendelsohn, 2019).  

In this study, we aimed to link subjective emotional arousal with alpha power in a naturalistic 

setting. Participants completed an immersive VR experience that included virtual rollercoaster 

rides while their EEG was recorded. They then continuously rated their emotional arousal while 

viewing a replay of their previous experience (McCall et al., 2015).  

Methodological challenges of naturalistic experiments 

To tackle the challenges of data acquired in naturalistic settings and with continuous stimuli, 

we make use of recent advances in signal processing and statistical modelling: Spatial filtering 

methods (originally developed for brain-computer interfaces, BCIs; Blankertz et al., 2008) have 

recently gained popularity in cognitive neuroscience (Cohen, 2018; Zuure & Cohen, 2020), 

where they have been used to analyze continuous data collected in naturalistic experiments, 

for example, to find inter-subject correlations in neuroimaging data of participants watching 

the same movie (Dmochowski et al., 2012; Gaebler et al., 2014). 

For the present experiment, two spatial filtering methods were applied to link alpha power and 

subjective emotional arousal: Source Power Comodulation (SPoC; Dähne et al., 2014) and 

Common Spatial Patterns (CSP; Blankertz et al., 2008; Ramoser et al., 2000). 

SPoC is a supervised regression approach, in which a target variable (here: subjective 

emotional arousal) guides the extraction of relevant M/EEG oscillatory components (here: 

alpha power). SPoC has been used to predict single-trial reaction times from alpha power in a 

hand motor task (Meinel et al., 2016), muscular contraction from beta power (Sabbagh et al., 

2020), and difficulty levels of a video game from theta and alpha power (Naumann et al., 2016). 

CSP is used to decompose a multivariate signal into components that maximize the difference 

in variance between distinct classes (here: periods of high and low emotional arousal). CSP 

thereby allows optimizing the extraction of power-based features from oscillatory signals, 

which can then be applied for training classifiers to solve binary or categorical prediction 
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problems. CSP is being used with EEG for BCI (Blankertz et al., 2007) or to decode workload 

(Schultze-Kraft, 2016).  

In addition to M/EEG-specific spatial filtering methods, non-linear machine learning methods 

are suited for the analysis of continuous, multidimensional recordings from naturalistic 

experiments. Deep neural networks transform high-dimensional data into target output 

variables (here: different states of emotional arousal) by finding statistical invariances and 

hidden representations in the input (Goodfellow et al., 2016; LeCun et al., 2015; Schmidhuber, 

2015). For time-sequential data, Long Short-Term Memory (LSTM) recurrent neural networks 

(RNNs) are particularly suited (Greff et al., 2017; Hochreiter & Schmidhuber, 1995, 1997). Via 

nonlinear gating units, the LSTM determines which information flows in and out of the memory 

cell in order to find long- and short-term dependencies over time. LSTMs have been 

successfully applied for speech recognition (Graves et al., 2013), language translation (Luong 

et al., 2015), or scene analysis in videos (Donahue et al., 2015), but also to detect emotions in 

speech and facial expressions (Wöllmer et al., 2010, 2008) or workload in EEG (Bashivan et al., 

2016; Hefron et al., 2017). In comparison to other deep learning methods, LSTMs are “quick 

learners” due to their efficient gradient flow and thus suitable for the continuous and sparse 

data recorded under naturalistic stimulation with VR.  

The present study tested the hypothesis of a negative association between parieto-occipital 

alpha power and subjective emotional arousal under dynamic and interactive stimulation. 

Combining immersive VR and EEG, this study aimed to (1) induce variance in emotional arousal 

in a naturalistic setting and (2) capture the temporally evolving and subjective nature of 

emotional arousal via continuous ratings in order to (3) assess their link to oscillations of brain 

activity in the alpha frequency range. The link between subjective emotional arousal and alpha 

power was then tested by decoding the former from the latter using the three complementary 

analysis techniques SPoC, CSP, and LSTM.  
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Methods and Materials 

Participants 

45 healthy young participants were recruited via the participant database at the Berlin School 

of Mind and Brain (an adaption of ORSEE; Greiner, 2015). Previous studies on the relationship 

between emotional arousal and neural oscillations reported samples of 19-32 subjects (e.g., 

Koelstra et al., 2011; Luft & Bhattacharya, 2015). We recruited more participants to 

compensate for anticipated dropouts due to the VR setup and to ensure a robust estimate of 

the model performances. Inclusion criteria were right-handedness, normal or corrected-to-

normal vision, proficiency in German, no (self-reported) psychiatric or neurological diagnoses 

in the past ten years, and less than 3 hours of experience with VR. Participants were requested 

to not drink coffee or other stimulants one hour before coming to the lab. The experiment took 

~2.5 hours, and participants were reimbursed with 9 € per hour. They signed informed consent 

before their participation, and the study was approved by the Ethics Committee of the 

Department of Psychology at the Humboldt-Universität zu Berlin. 

Setup, stimuli, and measures 

The experiment was conducted in a quiet room, in which the temperature was kept constant 

at 24°C.  

Neurophysiology / EEG 

30 channels of EEG activity were recorded in accordance with the international 10/20-system 

(Sharbrough et al., 1991) using a mobile amplifier (LiveAmp32) and active electrodes (actiCap; 

both by BrainProducts, Gilching, Germany). Two additional electrooculogram (EOG) electrodes 

were placed below and next to the right eye to track eye movements. Data were sampled at 

500 Hz with a hardware-based low-pass filter at 131 Hz and referenced to electrode FCz. The 
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amplifier was placed on a high table in the back of the participant to minimize the pull on 

electrode cables and provide maximal freedom for head movements. The VR headset was 

placed carefully on top of the EEG cap, and impedances were brought below 10 kΩ. With the 

same amplifier, electrocardiography and galvanic skin responses were additionally acquired. 

These peripheral physiological data and the inter-individual differences in interoceptive 

accuracy are beyond the scope of this paper, and their results will be reported elsewhere. 

Virtual Reality (VR) head-mounted display (HMD) 

An HTC Vive HMD (HTC, New Taipei, Taiwan) and headphones (AIAIAI Tracks, ApS, 

Copenhagen, Denmark) were placed on top of the EEG cap using small, custom-made 

cushions to avoid pressure artifacts and increase comfort. The HTC Vive provides stereoscopy 

with two 1080 x 1200-pixel OLED displays, a 110° field-of-view, and a frame rate of 90 Hz. The 

user’s head position is tracked using infrared light, accelerometry, and gyroscopy. Head 

movements were recorded by adapting scripts from https://github.com/Omnifinity/OpenVR-

Tracking-Example/.  

Immersive VR experience / stimulation 

Stimulation comprised two commercially available rollercoaster rides (“Russian VR Coasters” 

by Funny Twins Games, Ekaterinburg, Russia, on Steam) that were separated by a 30-s break 

(during which participants kept their eyes open and looked straight): the “Space” rollercoaster, 

a 153-s ride through planets, asteroids, and spaceships and the “Andes” rollercoaster, a 97-s 

ride through a mountain scenery (for more details, see Figure 5 and the Supplementary 

Material). The two rollercoaster rides were commercially available on Steam. The 

rollercoasters were selected for their length (to not cause physical discomfort by wearing the 

HMD for too long) and content (to induce variance in emotional arousal). The experience, 

comprising the sequence “Space”-break-“Andes”, was kept constant across participants.  
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Self-reports 

Questionnaires 

At the beginning of the experiment, participants completed two arousal-related questionnaires: 

(1) the “Trait” subscale of the “State-Trait Anxiety Inventory” (STAI-T; Spielberger, 1983, 1989) 

and (2) the “Sensation Seeking” subscale of the “UPPS Impulsive Behaviour Scale” (UPPS; 

Schmidt et al., 2008; Whiteside & Lynam, 2001). Before and after the experiment, participants 

completed a customized version of the “Simulator Sickness Questionnaire” (SSQ, Bouchard et 

al., 2017) comprising three items from the nausea (general discomfort, nausea, dizziness) and 

three items from the oculomotor subscale (headache, blurred vision, difficulty concentrating) 

to capture potential VR side effects (Sharples et al., 2008). After the experiment, participants 

also rated the presence and valence of their experience (the results will be reported 

elsewhere). 

Emotional arousal 

After each VR experience, participants watched a 2D recording (recorded using OBS Studio, 

https://obsproject.com/) of their experience on a virtual screen (SteamVR’s “view desktop” 

feature), that is, without removing the HMD. They recalled and continuously rated their 

emotional arousal by turning a dial (PowerMate USB, Griffin Technology, Corona, CA, USA; 

sampling frequency: 50 Hz), with which they manipulated a vertical rating bar, displayed next 

to the video, ranging from low (0) to high (100) in 50 discrete steps (McCall et al., 2015; see 

Figure 1B). The exact formulation was “When we show you the video, please state continuously 

how emotionally arousing or exciting the particular moment during the VR experience was” 

(German: “Wenn wir dir das Video zeigen, gebe bitte durchgehend an, wie emotional erregend, 

bzw. aufregend der jeweilige Moment während der VR Erfahrung war"). To present the 

playback video and the rating bar, a custom script written in Processing (v3.0) was used. 
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Procedure  

Participants came to the lab and filled in the pre-test questionnaires. After the torso and limb 

electrodes had been attached, participants completed a heartbeat guessing task (Schandry, 

1981) to assess inter-individual differences in interoceptive accuracy (the results of peripheral 

physiology and interoception will be reported elsewhere). Then, the EEG cap was attached, and 

the HMD was carefully placed on top of it. To prevent or minimize (e.g., movement-related) 

artefacts, customized cushions were placed below the straps of the VR headset to reduce the 

contact with the EEG sensors. In addition, the VR experience took place while seated and 

without full body movements (participants were asked to keep their feet and arms still during 

the recordings). A white grid was presented in the HMD to ensure that the participants’ vision 

was clear. They then completed a 10-min resting-state phase (5 min eyes open, 5 min eyes 

closed), before experiencing the first VR episode, which consisted of the two virtual 

rollercoaster rides and the intermediate break: First the “Space” and then, after the break, the 

“Andes” rollercoaster. In the subsequent rating phase, they recalled and continuously rated 

their emotional arousal while viewing a 2D recording of their experience. Importantly, each 

participant completed the VR episode (plus rating) twice: once while not moving the head 

(nomov condition) and once while freely moving the head (mov condition) during the VR 

experience. The sequence of the movement conditions was counterbalanced across 

participants (n = 19 with nomov condition first). At the end of the experiment, participants 

completed two additional questionnaires (the SUS and the questionnaire on subjective 

feelings of presence and valence during the virtual rollercoaster rides) before they were 

debriefed. 
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Figure 1: Schematic of experimental setup. (A) The participants underwent the experience 

(two rollercoasters separated by a break) in immersive VR, while EEG was recorded. (B) They 

then continuously rated the level of emotional arousal with a dial viewing a replay of their 

experience. The procedure was completed twice, without and with head movements. 

Data analysis 

To exclude effects related to the on- or offset of the rollercoasters, data recorded during the 

first and the last 2.5 s of each rollercoaster were removed and the inter-individually slightly 

variable break was cropped to 30 s. The immersive VR experience that was analysed thus 

consisted of two time series of 270 s length per participant (nomov and mov). 

Self-reports 

Questionnaires 

Inter-individual differences as assessed by the trait questionnaires were not the focus of this 

study, and their results (together with the peripheral physiological and interoception data) will 

be reported elsewhere. The sum of the simulator sickness ratings before and after the 

experiment was compared using a two-sided paired t-test.   
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Emotional arousal 

Emotional arousal ratings were resampled to 1 Hz by averaging non-overlapping sliding 

windows, yielding one arousal value per second. For the classification analyses, ratings were 

divided by a tertile split into three distinct classes of arousal ratings (low, medium, high) per 

participant. For the binary classification (high vs. low arousal), the medium arousal ratings 

were discarded. 

Neurophysiology  

Preprocessing   

EEG data were preprocessed and analyzed with custom MATLAB scripts built on the EEGLAB 

toolbox (v13.5.4b; Delorme & Makeig, 2004). The preprocessing steps were applied separately 

for data recorded during the nomov and mov conditions (i.e., without and with head 

movement). Continuous data were downsampled to 250 Hz (via the ‘pop_resample.m’ method 

in EEGLAB) and PREP pipeline (v0.55.2; Bigdely-Shamlo, Mullen, Kothe, Su, & Robbins, 2015) 

procedures were applied for detrending (1 Hz high-pass filter, Hamming windowed zero-phase 

sinc FIR filter, cutoff frequency (-6 dB): 0.5 Hz, filter order: 827, transition band width: 1 Hz), 

line-noise removal (line frequency: 50 Hz), robust referencing to average, and detection as well 

as spherical interpolation of noisy channels. Due to the relatively short lengths of the time 

series, the default fraction of bad correlation windows (parameter ‘badTimeThreshold’, used 

to mark bad channels) was increased to 0.05. For all other parameters, PREP’s default values 

were kept. On average, 2.08 and 2.47 channels per subject were interpolated in the nomov and 

mov condition, respectively. Data remained high-pass filtered for the further steps of the 

analysis. Retrospective arousal ratings were added to the data sets, labelling each second of 

data with an associated arousal rating used as target for the later classification and regression 

approaches. 

ICA decomposition was used to identify and remove EEG artifacts caused by eye movements, 

blinks, and muscular activity. To facilitate the decomposition, ICA projection matrices were 
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calculated on a subset of the data from which the noisiest parts had been removed. To this 

end, a copy of the continuous data was split into 270 epochs of 1 s length. Epochs containing 

absolute voltage values >100 µV in at least one channel (excluding channels that reflected eye 

movements, i.e., EOG channels, Fp1, Fp2, F7, F8) were deleted. Extended infomax (Lee et al., 

1999) ICA decomposition was calculated on the remaining parts of the data (after correcting 

for rank deficiency with a principal component analysis). Subjects with >90 to-be-deleted 

epochs (33% of the data) were discarded from further analyses (nomov: n = 5; mov: n = 10). 

Artifactual ICA components were semi-automatically selected using the SASICA extension 

(Chaumon et al., 2015) of EEGLAB and visual inspection. On average, 13.41 (nomov) and 10.31 

(mov) components per subject were discarded. The remaining ICA weights were back-

projected onto the continuous time series. 

Dimensionality reduction: SSD in the (individual) alpha frequency range 

Our main hypothesis was that EEG-derived power in the alpha frequency range allows the 

discrimination between different states of arousal. To calculate alpha power, we adopted 

spatio-spectral decomposition (SSD; Nikulin et al., 2011) which extracts oscillatory sources 

from a set of mixed signals. Based on Generalized Eigenvalue Decomposition, it finds the 

linear filters that maximize the signal in a specific frequency band and minimize noise in 

neighbouring frequency bands. Pre-processing with SSD has been previously shown to 

increase classification accuracy in BCI applications (Haufe, Dähne, et al., 2014). The alpha 

frequency range is typically fixed between 8 and 13 Hz. The individual alpha peak frequency, 

however, varies intra- and inter-individually, for example, with age or cognitive demand 

(Haegens et al., 2014; Mierau et al., 2017). To detect each participant’s individual peak of alpha 

oscillations for the SSD, (1) the power spectral density (PSD) of each channel was calculated 

using Welch’s method (𝑠𝑒𝑔𝑚𝑒𝑛𝑡	𝑙𝑒𝑛𝑔𝑡ℎ	 = 	5𝑠	 ∗ 	𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [i.e., 250 Hz] with 50% 

overlap) in MATLAB (pwelch function). (2) To disentangle the power contribution of the 1/f 

aperiodic signal from the periodic component of interest (i.e., alpha), the MATLAB wrapper of 

the FOOOF toolbox (v0.1.1; Haller et al., 2018; frequency range:  ]0-40] Hz, peak width range: 1-
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12 Hz, no minimum peak amplitude, threshold of 2 SD above the noise of the flattened 

spectrum) was used. The maximum power value in the 8-13 Hz range was considered the 

individual alpha peak frequency αi, on which the SSD bands of interest were defined (bandpass 

signal αi ± 2 Hz, bandstop noise αi ± 3 Hz, bandpass noise αi ± 4 Hz).  

The entire procedure was separately applied to the nomov and the mov condition to account 

for potential peak variability (Haegens et al., 2014; Mierau et al., 2017). SSD was then 

computed based on these peaks. A summary of the resulting individual alpha peak frequencies 

can be found in the supplementary material for Figure 2. Figure 2 shows the averaged power 

spectrum across all participants and electrodes. A clearly defined peak in the alpha frequency 

range is discernible for both conditions (nomov, mov) as well as for states of high and low 

emotional arousal. 

Figure 2. Group averaged power spectra for the two emotional arousal levels (low, high) and 
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head movement conditions (nomov, mov). Thick lines represent the mean log-transformed 

power spectral density of all participants and electrodes. Shaded areas indicate the standard 

deviation of the participants. High and low emotional arousal are moments that have been 

rated as most (top tertile) and least arousing (bottom tertile), respectively (the middle tertile 

was discarded; see main text). The power spectra were produced using MATLAB’s pwelch 

function with the same data (after ICA correction and before SSD filtering) and parameters as 

the individual alpha peak detection (see Methods section for details). A tabular overview of the 

alpha peak frequencies of the individual participants is shown in the figure supplement and 

available as Figure 2 – source data. 

SSD Components Selection 

The SSD components with sufficient alpha information (i.e., power in the alpha frequency 

range that exceeds the noise level) were selected with the following steps (see Figure 3):  

(1) The power spectral density of a component was calculated using Welch’s method  

(𝑠𝑒𝑔𝑚𝑒𝑛𝑡	𝑙𝑒𝑛𝑔𝑡ℎ	 = 	5𝑠	 ∗ 	𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [i.e., 250 Hz] with 50% overlap) 

implemented in SciPy (v. 1.4.1., Jones, Oliphant, & Peterson, 2001). 

(2) The 1/f curve was fitted in the signal range between ]0-40] Hz, excluding a ±4 Hz 

window around the individual alpha peak frequency αi of the subject i. The 1/f curve was 

defined (in log scale) as 𝑓!" = 𝑙𝑜𝑔( "
#	⋅	&!

), where x is the given component in the 

frequency domain, 𝑎 serves as stretch parameter, and 𝑏 represents the slope of the 1/f 

curve.  

(3) After fitting these parameters, the signal was detrended with respect to the estimated 

1/f curve. 

(4) Those components were selected, whose alpha peak power in the detrended alpha 

window (as defined in (1)) was (A) greater than zero plus a decision threshold, which 

was set to .35 !"
!

#$
, and (B) higher than the mean amplitude of the adjacent frequency 
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flanks of 2-Hz width on both sides of the window, i.e. 𝑝𝑜𝑤𝑒𝑟(𝑎𝑙𝑝ℎ𝑎	𝑝𝑒𝑎𝑘) 	−

(𝑚𝑒𝑎𝑛	𝑝𝑜𝑤𝑒𝑟(𝑓𝑙𝑎𝑛𝑘)) 	≥ 	1.45	𝑆𝐷 (after z-scoring the detrended signal). The two 

criteria guaranteed the selection of components with a clearly defined alpha-amplitude 

peak over the noise-threshold defined by 𝑓%&(see Figure 3). 

 

Figure 3: Schematic of the selection of individual alpha components using spatio-spectral 

decomposition (SSD). (Left) 1/f-estimation (dotted grey line) to detrend SSD components 

(solid turquoise line). (Right) After detrending the signal, components were selected, whose 

peak in the detrended alpha window (centred at the individual alpha peak, vertical dotted grey 

line) was (A) >0.35 V2/Hz (indicated by horizontal dotted red line) and (B) higher than the bigger 

of the two mean amplitudes of the adjacent frequency flanks (2-Hz width).  

 

Particularly the combination of SSD with narrow-band filtering in the alpha-frequency range 

lowers the probability of signal contamination elicited by artifact-related oscillations, which 

are typically strongest in frequency ranges above (e.g., muscular activity; 

Muthukumaraswamy, 2013) or below the alpha band (e.g., skin potentials, Kappenman & Luck, 

2010, or eye blinks, Manoilov, 2007; for a comprehensive overview, see also Chaumon et al., 

2015). Decoding models (SPoC, CSP, LSTM, ; described below) were trained on those subjects 

with at least 4 selected SSD components (26 in the nomov and 19 in the mov). On average, 
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7.63 of 18.81 (40.53 %) in the nomov and 5.63 of 15.22 (36.98 %) SSD components were 

selected in the mov condition. Importantly, SSD components had spatial topographies 

corresponding to occipito-parietal and fronto-central source locations, thus covering brain 

areas previously implicated in emotional arousal and its regulation.    

Source-Power Comodulation (SPoC) 

To test the hypothesis that alpha power in the EEG covaries with the continuous level of 

subjective emotional arousal, SPoC (v1.1.0; Dähne et al., 2014 [Footnote: Throughout the 

paper, “SPoC” refers to SPoCλ; for details, see Dähne et al., 2014.]) was applied to EEG data 

composed of the selected SSD components and filtered around the central individual alpha 

peak. Formally, SPoC is an extension of CSP (see below) for regression-like decoding of a 

continuous target variable. The information contained in the target variable is used to guide 

the decomposition of neural components that maximally covary with it. SPoC has been shown 

to outperform more conventional approaches to relate neural time series to continuous 

behavioural variables (e.g., correlating power extracted in sensor space and/or after blind 

source separation methods), which also suffer from additional drawbacks (e.g., lack of 

interpretability and lack of adherence to the M/EEG generative model; for details, see Dähne et 

al., 2014). The supervised decomposition procedure takes the variable z as target, which 

comprises the continuous arousal ratings (normalized and mean-centered; 270 s per 

participant). To reach the same temporal resolution as z (i.e., 1 Hz), EEG data were epoched 

into 270 consecutive segments of 1 s length. The power of a SPoC component (	𝑠̂ = 𝑊'𝑋, 

where 𝑊' corresponds the transpose of the unmixing matrix 𝑊 and 𝑋 to the data matrix in 

SSD space) in a specific epoch (𝑒) can be approximated by the variance of its signal within 

that time interval (𝑉𝑎𝑟[𝑠̂](𝑒); Dähne et al., 2014). SPoC was separately applied to each 

participant, producing a number of components equal to the number of previously selected 

SSD components. The stability and significance of the extracted components was tested with 

a permutation approach (1000 iterations): z values were shuffled to create a surrogate target 

variable with randomized phase but same auto-correlation (Theiler et al., 1992; adapted from 
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the original SPoC function: 

https://github.com/svendaehne/matlab_SPoC/blob/master/SPoC/spoc.m). In accordance 

with the primary objective of SPoC to reconstruct the target variable z, lambda values (λ, i.e., 

optimization criterion of SPoC: component-wise covariance between z and alpha power) and 

corresponding Pearson correlation values (r) between z and the estimated zest   (obtained 

via	𝑧()* = 	𝑉𝑎𝑟[𝑊(,)'𝑋](𝑒)) were then calculated for each iteration to generate a naive 

probability density function (i.e., null-hypothesis distribution) and to estimate the probability 

that the correlation value that was calculated with the original target variable z was obtained 

by chance. Given our main hypothesis of an inverse relationship between alpha power and self-

reported emotional arousal, we only retained, for each participant, the component with the 

most negative (precisely: “smallest”) lambda value λ (disregarding the p-value to avoid 

circularity; Kriegeskorte et al., 2009), corresponding to the last column of the unmixing matrix 

𝑊.  

In line with our hypothesis, single participants’ p-values were then obtained by computing the 

number of permuted r values that were smaller than the one estimated with SPoC. 

Crucially, since the extracted linear spatial filters 𝑊 cannot be directly interpreted (Haufe, 

Meinecke, et al., 2014), topographical scalp projection of the components are represented by 

the columns of the spatial patterns matrix 𝐴 obtained by inverting the full matrix 𝑊 (Figure 6).  

Common Spatial Patterns (CSP)  

To further test the hypothesis of a link between alpha power and subjective emotional arousal, 

we aimed to distinguish between the most and the least arousing phases of the experience by 

using features of the alpha band-power of the concurrently acquired EEG signal. We followed 

an approach which has successfully been used in BCI research to discriminate between event- 

or state-related changes in the bandpower of specific frequency ranges in the EEG signal: The 

Common Spatial Patterns algorithm specifies, by means of a Generalized Eigenvalue 

Decomposition, a set of spatial filters to project the EEG data onto components whose band-
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power maximally relates to the prevalence of one of two dichotomous states (Blankertz et al., 

2008; Ramoser et al., 2000). In our case, we were interested in distinguishing moments that 

had been rated to be most (top tertile) and least arousing (bottom tertile). 

Using the EEGLAB extension BCILAB (v1.4-devel; Kothe & Makeig, 2013), data of the selected 

SSD components, bandpass filtered around the individual alpha peak ± 2 Hz, were epoched in 

1-s segments. This sample length was chosen to enable the extraction of neural features and 

corresponding changes in the subjective experience, while maximising the number of samples 

from the sparse datasets. Epochs with mid-level arousal ratings (middle tertile) were 

discarded, yielding 180 epochs (90 per class) for each subject (per movement condition). To 

assess the classification performance, a randomized 10-fold cross-validation procedure, a 

common solution for sparse training data (Bishop, 2006), was used. Per fold, a CSP-based 

feature model was calculated on the training data by decomposing the signal of the selected 

SSD components according to the CSP algorithm. A feature vector comprising the 

logarithmized variance of the four most discriminative CSP components (using two columns 

from each side of the eigenvalue decomposition matrix as spatial filters) was extracted per 

epoch. Data from the training splits were used to train a linear discriminant analysis (LDA) on 

these feature vectors (Fisher, 1936). Covariance matrices used for calculating the LDA were 

regularized by applying the analytic solution implemented in BCILAB (Ledoit & Wolf, 2004). The 

LDA model was then used to classify the feature vectors extracted from the epochs in the test 

split to predict the according arousal label. Average classification accuracy (defined as 1	 −

	𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒) over the ten folds was taken as the outcome measure to assess the 

predictive quality of the approach. To allow a spatial interpretation of the projections, like with 

the SPoC components, the spatial patterns of the two most extreme CSP components 

(associated with the largest and smallest eigenvalue) that were used to calculate the feature 

vectors for the linear classification were plotted in Figure 6 (normalized and averaged across 

subjects per condition) and Figure 6 - figure supplement 1 (per single subject and condition). 

Source localized patterns are shown in Figure 9. 
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Source Localization 

Exact Low Resolution Tomography Analysis (eLORETA; Pascual-Marqui, 2007) was used to 

localize the sources corresponding to the component extracted via SPoC and CSP. Our 

pipeline was based on the work of Idaji et al. (2020), who customized the eLORETA 

implementation of the MEG/EEG Toolbox of Hamburg 

(https://www.nitrc.org/projects/meth/). 

Our forward model was constructed via the New York Head model (Haufe, Meinecke, et al., 

2014; Haufe & Ewald, 2019; Huang et al., 2016) with approximately 2000 voxels and by using 

28 out 30 scalp electrodes (TP9 and TP10 were removed because they are not contained in 

the model). Crucially, we focused on dipoles perpendicular to the cortex. eLORETA was then 

used to construct a spatial filter for each voxel from the leadfield matrix, and respective 

sources were computed by multiplying the resultant demixing matrix with the spatial patterns 

𝐴 of the selected SPoC and CSP components. Inverse modelling was computed separately per 

participant and condition before it was averaged for each condition across all subjects (Figure 

9). 

Long Short-Term Memory (LSTM) Recurrent Neural Network  

Deep learning models have become a useful tool to decode neural information (e.g., Agrawal 

et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014). Applying a deep learning approach to the 

time series of EEG recordings (e.g., Bashivan et al., 2016) can be achieved using Long Short-

Term Memory (LSTM) recurrent neural networks (Hochreiter & Schmidhuber, 1995, 1997). With 

their property to store and control relevant information over time, they can find adjacent as 

well as distant patterns in (time) sequential data. The LSTM analysis was implemented in the 
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Python-based deep learning library TensorFlow (v.1.14.0; Google Inc., USA; Abadi et al., 2015; 

Zaremba et al., 2015). 

Figure 4: Schematic of the Long Short-Term Memory (LSTM) recurrent neural network 

(RNN). At each training step, the LSTM cells successively slide over 250 data-arrays of neural 

components (xt=0, xt=1, ... , xT=249) corresponding to 1 s of the EEG recording. At each step t, the 

LSTM cell computes its hidden state ht. Only the final LSTM output (hT) at time-step T=249 is 

then fed into the following fully connected (FC) layer. The outputs of all (LSTMs, FCs) but the 

final layer are normalised by Rectified linear units (ReLU) or exponential linear units (ELU). 

Finally, the model prediction is extracted from the last FC layer via a tangens hyperbolicus 

(tanh). Note: depending on model architecture, there were 1-2 LSTM layers, and 1-2 FC layers. 
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The hyperparameter constellations that yielded the highest accuracy for the individual 

participants per movement condition are shown in the figure supplement. 

Model Architecture and Hyperparameter Search 

Deep learning models usually have a high variance due to random weight initialization, 

architectural choices, and hyperparameters (HPs; Geman et al., 1992; but see Neal et al., 2019). 

We here used a two-step random search (Bergstra & Bengio, 2012) strategy in order to find 

optimal HPs, to reduce the model variance and make the search computationally feasible. 

First, a broad random search was applied on a random subset of ten subjects (20 random 

combinations) in each condition. Then, the two best HPs per subject were taken and applied 

to the datasets of all subjects. Due to time constraints and computational complexity, the HP 

search was limited to a predefined range of settings and the model architecture was 

constrained to maximal two LSTM layers followed by maximal two fully connected layers (FC; 

Hefron et al., 2017; see Figure 4). Each layer size lsl varied between 10 and 100 nodes (lsl ∈ 10, 

15, 20, 25, 30, 40, 50, 65, 80, 100), and a successive layer needed to be equal or smaller in size 

(bottleneck architecture). The output of each layer was squashed through either rectified linear 

units or exponential linear units, which both allow for steeper learning curves in contrast to 

conventional activation functions such as sigmoid nonlinearity (Clevert et al., 2016). The 

output of the last network layer (FCL) was fed into a tangens hyperbolicus (tanh) to match the 

binned ratings, which were labelled with -1 or 1, respectively. We applied a mean-squared error 

loss to calculate the difference between the model output (i.e., the prediction) and the labels, 

leading to a stronger weighting of losses at the upper- or lower-class border, respectively. To 

control and tax too large model weights, different regularization methods (L1, L2) with different 

regularization strengths (𝜆 ∈ 0.00, 0.18, 0.36, 0.72, 1.44) were tested. Weights were optimized 

using Adam (learning rate: lr ∈ 1e-2, 1e-3, 5e-4) due to its fast convergence (Kingma & Ba, 2015; 

see also Ruder, 2017). The number of input components (SSD, Ncomp: N ∈ [1, 10]) was treated 

as HP. The specific Ncomp neural components were successively drawn according to the order 

of the SSD selection.  
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Training procedure  

The final dataset per subject was a three-dimensional tensor of size 270×250×10 (epochs x 

samples x components). If less than 10 components were extracted for a given subject, the 

tensor was filled with zero-vectors. After some test runs and visual observation of the 

convergence behaviour of the learning progress, training iterations were set to 20 (i.e., the 

model ran 20 times through the whole training dataset). The 1-sec samples were fed into the 

LSTM in random mini-batches of size 9 (bs = 9), since training on batches allows for faster and 

more robust feature learning (Ruder, 2017), leading to the following input tensor at training 

step ts: 𝑥*./,0,*)2)34563&6. 

Statistical Evaluation 

To test whether the results of the binary modelling approaches (CSP, LSTM) were statistically 

significant, exact binomial tests were conducted per subject and experimental condition 

(nomov, mov) over all 180 epochs of the respective time series (nomov, mov). To do so, for 

each of the binary modelling approaches (CSP, LSTM), the predictions for the single epochs in 

the ten test splits of the cross-validation were concatenated to a single vector. The proportion 

of correct and false predictions was then compared to a null model with prediction accuracy 

0.5 (chance level). To test the average (across subjects) classification accuracies of the binary 

models, we calculated one-sided one-sample t-tests, comparing the mean accuracy of the 

respective model for both experimental conditions against the theoretical prediction accuracy 

of a random classifier (0.5). To test whether classification accuracies differed between the 

two models (CSP, LSTM) or between the experimental conditions (nomov, mov), a repeated-

measures two-way ANOVA was conducted on the accuracy scores of all subjects with 

preprocessed data from both conditions (n = 18). 

For SPoC, in addition to the aforementioned within-participants permutation approach yielding 

a single p-value for each component, group-level statistics were assessed: The hypothesis of 

a negative correlation between alpha power and emotional arousal was tested with a one-
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sample, one-tailed t-test on the correlation values between z and zest, which assessed whether 

the mean correlation value per condition was significantly lower than the average of the 

permuted ones.  

The code for preprocessing of the data, the three prediction models, and the statistical 

evaluation is available on GitHub (https://github.com/SHEscher/NeVRo). 

Supplementary analyses: methods 

We conducted supplementary analyses to test for confounds or analytic artefacts, for example 

due to auto correlations in the data. (NB: the LSTM approach was skipped in the 

supplementary analyses due to its computational processing cost and duration, and the 

comparable performance with CSP in the main analysis.) 

Sub-blocked cross-validation and block permutation 

For non-stationary, auto-correlated time-series data, randomized cross-validation can inflate 

the decoding performance (Roberts et al., 2017). To assess and minimize this possibility, we 

tested whether a blocked cross-validation, which preserves temporal neighbourhood 

structures among samples, changes the classification results of the CSP analysis. To ensure 

balanced classes in the training set, the "synthetic minority oversampling technique" (SMOTE), 

which oversamples the less frequently represented class, was applied (Chawla et al., 2002; as 

implemented in Larsen, 2021). The test set was left unbalanced as oversampling of test data 

can invalidate the assessment of model performance (Altini, 2015), and the area under the 

curve of the receiver operating characteristic (ROC-AUC) was used as a performance measure. 

To avoid homogeneous test sets (i.e., with samples from only one target class), which (1) 

would occur in many subjects after “conventional” chronological cross-validation and (2) 

would preclude ROC-AUC calculation, a "sub-blocked" cross-validation was used: For each 

subject, the data set was split into 3 sub-blocks of equal length, which were then used to 

stratify the data assignment for a (sub-blocked) chronological 10-fold cross-validation. In this 
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design, each fold consists of a concatenation of equally sized stretches of consecutive data 

samples taken from each of the sub-blocks: e.g., to build the validation set in the first fold [x1, 

x2, x3], with xi being the n first samples from the i-th sub-block where n is the total number of 

samples in the data set divided by 10 * 3 (number of folds * number of sub-blocks). Thereby 

the temporal neighborhood structure among data samples is largely preserved when splitting 

them into training and testing sets. The (smaller) test set is still sampled from different parts 

of the experience, which decreases the risk of obtaining homogeneous test sets (e.g., only "low 

arousing" sections). 

To account for potential biases due to auto correlations in the time series also during the 

statistical evaluation of the classification model, block permutation was applied: to maintain 

a local auto-correlative structure similar to the original data in the permuted target vectors, the 

time series were split into 10 equally sized blocks, which were then shuffled while the internal 

temporal structure of each block remained intact (Winkler et al., 2014). To test whether the 

actual decoding scores (from non-permuted data) were significantly above chance level, we 

assessed their percentile rank in relation to the null distributions (1000 permutations) on the 

single-subject level. On the group level, one-sided paired t-tests were used to compare the 

distribution of the actual decoding results against the distribution of the means of the null 

distributions per subject. 

Excluding the break for model training  

The 30-s break differed from the rollercoaster rides in visual features (e.g., static vs dynamic 

input) and in arousal ratings, which were constantly relatively low during the break (see Figure 

5). Thus, the break contributed mainly to the "low arousing" class. To test whether the decoding 

approaches also succeed if the break section is excluded from the analysis, SPoC and CSP 

decoding were repeated for the data without the break, that is, the rollercoasters only (240 s in 

total). To facilitate comparison, we used the same cross-validation and permutation approach 

as for the other supplementary analyses. For the classification (CSP), the tertile split on the 
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subjective arousal ratings was recalculated such that the class of "low arousal" segments now 

comprises the least arousing sections of the rollercoasters. We then trained and tested the 

SPoC and CSP models with the procedures that were used for the original data set (incl. the 

break). To test whether excluding the break changed the model performance, we compared 

the distributions of the decoding performance parameters (SPoC: Pearson correlation with 

target; CSP: ROC-AUC) from the data with and without the break using two-sided paired t-tests. 

We did this per model and movement condition.  
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Results 

Participants 

45 healthy young participants (22 men, M±SD: 24.6±3.1, range: 20-32 years) completed the 

experiment. Data from 8 participants needed to be discarded due to technical problems (n = 

5) or electrode malfunctioning (n = 1); one participant discontinued the experiment and 

another participant reported having taken psychoactive medication. The data from 37 

participants entered the analysis (17 men, age: M±SD: 25.1±3.1, range: 20-31 years). After 

quality assurance during the EEG preprocessing, data from 26 participants in the condition 

with no head movement (nomov) and 19 in condition with free head movement (mov) entered 

the statistical analyses that included EEG data.  

Self-reports 

Questionnaires 

From before (M±SD: 8.68±2.82, range: 6-17) to after the experiment (M±SD: 11.82±5.24, range: 

6-29), the overall simulator sickness (e.g., nausea, headache) increased significantly (t(36) = 

3.72, p = .0007). As the trait questionnaires are not the focus of this study, their results will be 

reported elsewhere.  

Emotional arousal ratings 

The retrospective emotional arousal ratings for the VR experience, averaged across all 

subjects and timepoints, were 46.94±12.50 (M±SD, range: 16.17-66.29) in the nomov and 

50.06±12.55 (M±SD, range: 18.00-69.94) in the mov condition. Qualitatively, the emotional 

arousal was highest for the Andes Coaster, lower for the Space Coaster, and lowest for the 

break (see Figure 5).  
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Figure 5: Subjective emotional arousal ratings (movement condition). Emotional arousal 

ratings of the experience (with head movement; see Figure 5 - figure supplement 1 for the 

ratings from the no-movement condition). Colored lines: individual participants; black line: 

mean across participants; vertical lines (light grey): beginning of the three phases (Space 

Coaster, Break, Andes Coaster); vertical lines (dark grey): manually labelled salient events (for 

illustration). Bottom row: Exemplary screenshots of the VR experience. The ratings for the 

condition without head movement are shown in the figure supplement. 
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Neurophysiology 

 

Figure 6: Spatial patterns resulting from SSD, SPoC, and CSP decomposition. Colors 

represent absolute normalized pattern weights (inverse filter matrices) averaged across all 

subjects per condition (nomov: without head movement, mov: with head movement). Before 

averaging, the pattern weight vectors of each individual subject were normalized by their 

respective L2-norm. To avoid cancellation due to the non-polarity-aligned nature of the dipolar 

sources across subjects, the average was calculated from the absolute pattern weights. SSD 

allows the extraction of components with a clearly defined spectral peak in the alpha frequency 

band. Shown are the patterns associated with the four SSD components that yielded the best 

signal-to-noise ratio (left column). The SSD filtered signal was the input for the decoding 

approaches SPoC, CSP, and LSTM: SPoC adds a spatial filter, optimizing the covariance 

between the continuous emotional arousal ratings and alpha power. Shown here is the pattern 

of the component which - in line with our hypothesis - maximized the inverse relationship 

between emotional arousal and alpha power. CSP decomposition yielded components with 

maximal alpha power for low-arousing epochs and minimal for high-arousing epochs (bottom 
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row in the CSP panel) or vice versa (upper row in the CSP panel). The high correspondence 

between the patterns resulting from SPoC and CSP seem to reflect that both algorithms 

converge to similar solutions, capturing alpha power modulations in parieto-occipital regions 

as a function of emotional arousal. The spatial patterns for the individual subjects are 

displayed in the figure supplement. (NB: As the LSTM results cannot be topographically 

interpreted, they are not depicted here.)  

SPoC 

SPoC results showed that for 24/26 (92.30 %) participants in the nomov and 16/19 (84.21 %) 

participants in the mov condition (see Figure 10 – figure supplement 1 and 2 for single-

participant results), the component with the highest absolute lambda value corresponded to 

the one that maximized the negative correlation between z (normalized and mean-centered 

subjective ratings) and alpha power. Based on permutation-based testing (1000 iterations; 

exact p values are reported in Figure 10 – figure supplement 1 and 2), the negative correlation 

was statistically significant (p < .05) in 8/26 (30.76 %) participants for the nomov and 7/19 

(36.84 %) participants for the mov condition. The global mean lambda value of these 

components was -0.46 for the nomov (range: -1.49 – +.08) and -0.42 for the mov condition 

(range: -1.49 – +.02). The mean Pearson correlation value between the target variable z and 

zest (estimated target variable) was significantly lower than the average of single participants’ 

permuted ones for both the nomov (M±SD: -.25±.12 ; range: -.53 – +.09; tnomov(25) = -3.62; p < 

.01) and the mov condition (M±SD: -.25±.12; range: -.52 – +.04; tmov(18) = -3.13; p < .01). 

CSP 

The classifier based on CSP was able to decode significantly above chance level whether a 

subject experienced high or low emotional arousal during a given second of the experience. 

On average, the classification accuracy was 60.83±7.40 % (M±SD; range: 47.22 – 77.78 %) for 

the nomov, and 60.76±6.58 % (M±SD; range: 48.33 – 71.67 %) for the mov condition. Both were 

significantly above chance level (tnomov(25) = 7.47, pnomov < .001; tmov(18) = 7.12, pmov < .001). At 
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the single-subject level, the classification accuracy was significantly above chance level (p < 

.05) for 17/26 (65.38 %) participants in the nomov, and for 12/19 (63.16 %) participants in the 

mov condition (see Figure 10 – figure supplement 1 and 2 for single-participant results). The 

spatial patterns yielded by the CSP decomposition are shown in Figure 6 (across participants) 

and in Figure 6 – figure supplement 1 (individual participants). Corresponding alpha power 

sources (located via eLORETA) are shown In Figure 9. 

LSTM 

After a random search over a constrained range of hyperparameters (HPs), we extracted the 

best individual HP set per subject (see Supplementary Material for the list of best HPs per 

condition). The mean classification accuracy was 59.42±4.57 % (M±SD; range: 52.22 % - 68.33 

%) for the nomov, and 61.29±4.5 % (M±SD; range: 53.89 % - 71.11 %) for the mov condition. 

Both were significantly above chance level (tnomov(25) = 10.82, pnomov < .001; tmov(16) = 10.51, 

pmov < .001). At the single-subject level, the classification accuracy was significantly above 

chance level for 16/26 (61.54 %) participants in the nomov condition, and for 16/19 (84.21 %) 

participants in the mov condition (same test as for CSP results; see Figure 10 – figure 

supplement 1 and 2 for single-participant results).  

Comparison of model performances 

As an illustration of the prediction behaviour across all three models in one participant (with 

high performance for all three decoding approaches), see Figure 7. Correlations of 

performances across models and experimental conditions are shown in Figure 10. The 

(positive) correlation between the two binary classification approaches (CSP, LSTM) was 

significant (after Bonferroni multiple-comparison correction), irrespective of the experimental 

condition (nomov, mov), meaning that subjects who could be better classified with CSP also 

yielded better results in the LSTM-based classification. In a repeated-measures ANOVA testing 

for differences in the accuracies of the two binary classification models (CSP, LSTM) and the 
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two conditions (nomov, mov), none of the effects was significant: neither the main effect 

model (F(1,17) = 0.02, p = .904) nor the main effect condition (F(1,17) = 0.72, p = .408) or their 

interaction (F(1,17) = 1.59, p = .225). For a further comparison of the performances of the 

classification approaches, the respective confusion matrices are depicted in Figure 8 (average 

across the subjects per condition and model).  

Figure 7: Exemplary model predictions. Predictions (turquoise line, dots) across models 
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trained on the data of one participant in the movement condition (SPoC normalized negative 

zest , here comodulation; CSP: posterior probability; LSTM: tanh output). Top row: Most 

negatively correlating SPoC component (for visualization we depict the normalized and mean-

centered value of the rating and of the negative square root of zest). Middle and lower row: 

Model predictions on validation sets (across the cross-validation splits) for CSP and LSTM, 

respectively. The gray curvy line in each panel indicates the continuous subjective rating of the 

participant. Horizontal dotted lines indicate the class borders. The area between these lines is 

the mid-tercile which was discarded for CSP and LSTM analyses. Class membership of each 

rating sample (1-s) is indicated by the circles at the top and bottom of the rating. A model 

output falling under or above the decision boundary (db) indicates the model prediction for 

one over the other class, respectively. The correct or incorrect prediction is indicated by the 

color of the circle (green and red, respectively), and additionally colour-coded as area between 

model-output (turquoise) and rating.  
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Figure 8: Comparison of the binary decoding approaches. Confusion matrices of the 

classification accuracies for higher and lower self-reported emotional arousal using LSTM 

(lower row) and CSP (upper row) in the condition without (left column) and with (right column) 

head movement. The data underlying this figure can be downloaded as Figure 8–source data. 
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Figure 9: Source reconstructions (eLoreta). The projection of SPoC and CSP components in 

source space confirms the link between emotional arousal and alpha oscillations in parieto-

occipital regions. Colors represent the inversely modelled contribution of the cortical voxels to 

the respective spatial pattern yielded by SPoC or CSP (max: component maximizing power for 

epochs of high arousal; min: component minimizing power for epochs of high arousal). We 

applied the same normalization and averaging procedures as for the topoplots in Figure 6. 

Upper row: averaged across all subjects per condition (nomov, mov). Lower row: patterns of 

one individual (the same as in Figure 7).  
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Figure 10: Correlation of performance across methods (SPoC, CSP, LSTM) and conditions 

(nomov: without head movement, mov: with head movement). The model performance 

metrics are classification accuracy (CSP and LSTM) and correlation coefficients (SPoC; NB: 

based on our hypothesis of an inverse relationship between emotional arousal and alpha 

power, more negative values indicate better predictive performance). Plots above and below 

the diagonal show data from the nomov (yellow axis shading, upper right) and the mov (blue 

axis shading, lower left) condition, respectively. Plots on the diagonal compare the two 

conditions (nomov, mov) for each method. In the top left corner of each panel, the result of a 

(Pearson) correlation test is shown. Lines depict a linear fit with the .95 confidence interval 
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plotted in grey. The data underlying this figure are also presented in tabular form in the figure 

supplement and can be downloaded as Figure 10 – source data. 

Supplementary analyses: results 

Sub-blocked cross-validation and block permutation 

To test for potential biases from the model or the data, specifically its auto-correlative 

properties, we ran the same analysis for CSP as above using sub-blocked chronological cross-

validation and block permutation for statistical evaluation on the single-subject level.  

Also under these — more strict — evaluation criteria, the average decoding performance (ROC-

AUC) for CSP was significantly above chance level, both in the nomov (ROC-AUC: 0.61±0.09 

M±SD, range: 0.42 - 0.79; t(25) = 4.59, p < .001) and in the mov condition (ROC-AUC: 0.60±0.09 

M±SD, range: 0.44 - 0.74; t(18) = 3.27, p < .01). On the single-subject level (as assessed by 

permutation tests), decoding performance was significantly (p < .05) higher when decoding 

the actual, unpermuted labels compared to the block-permuted labels for 9/26 (34.62 %) 

participants in the nomov and 5/19 (26.32 %) participants in the mov condition.  

Excluding the break for model training 

SPoC and CSP performed significantly above chance level also when trained and tested on 

data without the break section.  

For CSP on data without the break, the average classification performance (ROC-AUC) was 

0.57±0.10 (M±.SD; range: 0.28 - 0.78) in the nomov and 0.59±0.09 (M±.SD; range: 0.45 - 0.77) 

in the mov condition (see previous paragraph for the decoding performance with the break 

included). Average model performances were still significantly above chance level (means of 

the block permutation distributions on the single-subject level) in both movement conditions 

(nomov: t(25) = 2.89, p < .01; mov: t(18) = 3.50, p < .01). On the single-subject level, the 

classification performance was significantly above chance level for 3/26 (11.54 %) 

participants in the nomov and 5/19 (26.32 %) participants in the mov condition. 
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For SPoC on data without the break, the average Pearson correlation between z and zest 

(estimated target variable) was significantly smaller (more negative) than the average of single 

participants’ permuted correlation values for both the nomov (M±.SD: -.22±.08; range: -.36 – -

.07; tnomov(25) = -3.17; p < .01) and the mov condition (M±SD: -.21±.07; range: -.37– -.061; 

tmov(18) = -2.53; p < .05). On the single-subject level, 2/26 (7.69 %) participants for the nomov 

and 7/19 (36.84 %) participants for the mov condition remained statistically significant (p < 

.05) after permutation-based tests. 

Removing the break from the training data overall numerically decreased the decoding 

performances of both models. For CSP, the decrease was significant in the nomov (t(25) = 

2.23, p = .034) and not significant in the mov condition (t(18) = 0.57, p = .58). For SPoC, the 

decrease (Pearson correlation) was not significant in both conditions (nomov: t(25) = -1.66, p 

= .108; mov: t(18) = -1.13, p = .269).  
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Discussion 

The general aim of this study was to capture the dynamic relationship between subjective 

experience and neurophysiology under naturalistic stimulation using immersive VR. The 

hypothesized link between EEG alpha power and self-reported emotional arousal could be 

confirmed by relating alpha power components to continuous retrospective ratings of 

emotional arousal (using SPoC) as well as by decoding states of higher and lower emotional 

arousal from them (using CSP and LSTMs), particularly in parieto-occipital regions. In addition 

to extending our knowledge about the functional anatomy of emotional arousal, these findings 

support previous results from classical studies and confirm them under more naturalistic 

conditions. They thereby pave the way for real-world scenarios and applications.  

Physiological and psychological concomitants of emotional 

arousal 

In studies with event-related stimulation or block designs, more emotionally arousing 

compared to less emotionally arousing images, videos, and sounds were associated with 

event-related decreases in alpha power, predominantly over parieto-occipital electrodes 

(Cesarei & Codispoti, 2011; Luft & Bhattacharya, 2015; Schubring & Schupp, 2019; Uusberg et 

al., 2013; Koelstra et al., 2012). While such stimuli provide a high degree of experimental 

control in terms of low-level properties and presentation timings, the emotional experience and 

its neurophysiology under event-related stimulation may differ from the emotional experience 

in real-life settings, which is perceptually complex, multisensory, and continuously developing 

over time.  

Our results provide evidence that the neural mechanisms reflected in modulations of alpha 

power – particularly in parieto-occipital regions – also bear information about the subjective 

emotional state of a person undergoing an immersive and emotionally arousing experience. 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2020.10.24.353722doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.24.353722
http://creativecommons.org/licenses/by-nc/4.0/


41 

 41 

Also fMRI studies have related brain activity in parietal cortices and emotional processing (e.g., 

Lettieri et al., 2019). Our study thus suggests that findings from event-related, simplified 

stimulation generalize to more naturalistic (i.e., dynamic and interactive) settings.  

Paralleling the idea of emotional arousal being a dimension of “core affect” (Russell & Feldman 

Barrett, 1999) and a psychological primitive that underlies many mental phenomena, also 

alpha oscillations have been connected to various psychological “core processes”: For 

instance, modulations of alpha power were linked to attention (Van Diepen et al., 2019) and 

memory (Klimesch, 2012). More generally, neural oscillations in the alpha frequency range 

were suggested to serve functional inhibition of irrelevant sensory input (Jensen & Mazaheri, 

2010; cf. Foster & Awh, 2019) and to code for the location and the timing of task-relevant 

stimuli (Foster et al., 2017). Such processes can be functionally linked to emotional arousal: 

During emotionally arousing experiences, preferred and enhanced processing of relevant 

sensory stimuli (e.g., indicating potential threats) is an adaptive behavior. In line with this, 

modulations of alpha oscillations over parietal sensors have been linked to threat processing 

(Grimshaw et al., 2014). Variations in emotional arousal and alpha power may, thus, have 

guided attention and memory formation also in our experiment: During particularly arousing 

parts of the rollercoaster, participants may have directed their attention to specific parts of the 

visual scene, for example, to foresee the end of the looping. Moreover, our inverse modelling 

(Figure 9) has also localized arousal-related alpha sources in sensorimotor cortices, which 

could correspond to somatic experiences typically associated with rollercoasters. Some of the 

averaged spatial patterns (see Figures 6 and 9) we observed for the CSP- and SPoC-based 

decoding, show stronger absolute weights for electrodes above right — as compared to left — 

cortices. Since we did not hypothesize a lateralization of the alpha effects, we refrained from 

statistically testing differences between the hemispheres. Similar patterns of right-lateralized 

alpha oscillations have also been related to arousal in major depression (Metzger, 2004; 

Stewart et al., 2011). However, it is unclear to which extent these effects are specific to arousal, 

as lateralization of alpha power has also been observed in working-memory (Pavlov & 
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Kotchoubey, 2020) and resting-state studies (Ocklenburg et al., 2019). Our results motivate 

experimental work that will model the link between emotional arousal and alpha oscillations 

by systematically varying additional variables (e.g., attention, sensorimotor processing). We 

argue that studying such relationships in naturalistic settings allows embracing and learning 

statistical interdependencies that are characteristic of the real world. 

VR as a step towards a real-world neuroscience  

More naturalistic experimental stimulation, for example using immersive VR, allows to test the 

brain under conditions it was optimized for and thereby improve the discovery of neural 

features and dynamics (Gibson, 1979; Hasson et al., 2020). Findings from naturalistic studies 

can test the real-world relevance of results obtained in highly controlled, abstract laboratory 

settings (Matusz et al., 2019; Shamay-Tsoory & Mendelsohn, 2019). Challenges of using VR 

for more naturalistic research designs are the creation of high-quality VR content, more 

complex technical setups, and discomfort caused by the immersion into the virtual 

environment (Pan & Hamilton, 2018; Vasser & Aru, 2020). Despite the incongruence between 

VR rollercoaster-induced visual stimulation and vestibular signals, which may lead to motion 

sickness (Reason & Brand, 1975), only one of our participants stopped the experiment because 

of cybersickness. This low number may result from the relatively short length of the VR 

experience (net length: <20 min) and the professionally produced VR stimulation. Shorter 

exposure times (Rebenitsch & Owen, 2016) and experiences that elicit stronger feelings of 

presence have been associated with lower levels of cybersickness (Weech et al., 2019).  

Combining EEG with VR provides additional challenges: the signal-to-noise ratio (SNR) can 

decrease due to mechanical interference of the VR headset with the EEG cap and due to 

movement artifacts when the participant interacts with the virtual environment (e.g., head 

rotations). To ensure high data quality, we applied multiple measures to prevent, identify, 

reject, or correct artifacts in the EEG signal (see Methods section for details). Ultimately, the 

performance of all three decoding models did not differ significantly for both conditions 
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(nomov, mov). We suggest that, with appropriate quality assurance during data acquisition and 

analysis (leading to more data rejection/correction for mov than for nomov), EEG can be 

combined with immersive VR and free head movements. Other studies of mobile brain 

imaging, even recording outdoors and with full-body movements, came to similar conclusions 

(Debener et al., 2012; Ehinger et al., 2014; Gramann et al., 2011; Symeonidou et al., 2018). 

Evaluating EEG data from naturalistic experiments using 

complementary methods  

Each of the applied decoding approaches allows for different insights and interpretations, but 

overall, they yield converging results.  

SPoC and CSP 

SPoC and CSP share advantages that are common to most spatial filtering methods based on 

Generalized Eigenvalue Decomposition, namely precise optimization policies, high speed and 

interpretability. As dimensionality reduction techniques, they combine data from multiple 

M/EEG channels to obtain a new signal (component) with a higher SNR (Lotte et al., 2018; 

Parra et al., 2005). This aids maximizing the difference in the signal of interest between 

experimental conditions (de Cheveigné & Parra, 2014; Rivet et al., 2009) or against signals in 

the neighbouring frequency ranges (Nikulin et al., 2011). The similarity between the two 

approaches (SPoC, CSP) and their interpretability becomes apparent in the resulting spatial 

patterns: the normalized and averaged SPoC topoplots and source localizations in both 

conditions (nomov, mov) resemble the ones extracted via CSP to maximize power for the low-

arousal epochs of the experience (Figures 6 and 9). SPoC and CSP solve a similar problem 

here: extracting components whose power is minimal during states of high emotional arousal 

and maximal during states of low arousal.  

This indicates that SPoC and CSP exploited similar spatial informational patterns in the input 

data. However, the datasets handed to the SPoC and CSP models were not identical. For the 
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CSP analysis, only the upper and lower extreme of the arousal ratings were included (i.e. ⅔ of 

the data), while epochs with medium arousal ratings (i.e., ⅓ of the data) were excluded, 

whereas SPoC was trained on the full continuous datastream. There are two potential 

explanations for the observation that SPoC and CSP nevertheless yield similar spatial patterns: 

either the most relevant information was encoded in the most extreme parts of the experience, 

or there is a truly linear relationship between alpha power and emotional arousal that can be 

queried on all parts of this spectrum ranging from low to high emotional arousal.  

The spatial patterns for the components gained from SSD, SPoC and CSP exhibit discernible 

variance between the single subjects (see Figure 6 – supplement 1). This can be, for example, 

caused by physiological differences (e.g., different shapes of the skull, different cortical 

folding) or slightly different positioning of the EEG electrodes. The same cortical source might 

thereby lead to different patterns of scalp EEG in different participants. Spatial filtering 

procedures inverse this projection and the extracted patterns therefore also vary across 

subjects. Such inter-individual differences are well-known for brain-computer interfaces, and 

extensions for CSP have been suggested, which allow for a transfer of features across 

subjects (e.g., Cheng, Lu & Wang, 2017). To emphasize the communalities across individual 

patterns and indicate the cortical areas that contributed most to decoding results, we report 

the averaged patterns (Figure 6) and the averaged results of the reconstructed cortical sources 

(Figure 9).  

To test for confounds or analytic artefacts, for example due to autocorrelations in the data, we 

additionally applied “sub-blocked” cross-validation for model training and block permutation 

for statistical evaluation. Also under these more strict evaluation conditions, the average 

decoding performance was significantly above chance level. It is therefore unlikely that the 

results can be explained solely by dependencies in the data (e.g., autocorrelation) which are 

not explicitly modelled in the main analysis.  

Moreover, to test the impact of the differences between the rollercoasters and the break, for 

example regarding visual dynamics and elicited emotional arousal, on the decoding 
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performance, SPoC and CSP analyses were repeated on the data without the break. Again, the 

average decoding performances decreased compared to the data with the break, but remained 

significantly above chance level for both head movement conditions. The decrease in 

decoding performance with the break removed may result from (a) less training data being 

available and (b) a narrower range of emotional arousal values, more similar classes ("high 

arousal" and "low arousal"), and therefore a more difficult distinction. 

We observed a high degree of variability across participants (see Figure 10 – figure 

supplement 1 and 2) with less than 70 % of participants for CSP (and less than 35 % for SPoC) 

yielding significant results on the single-subject level. This variability reflects the difficulty of 

some features and classifiers to perform equally well across subjects, which has been 

reported in the BCI literature (Krusienski et al., 2011; Nurse et al., 2015). LSTM, as a non-linear 

model class that is less constrained in the choice of its features, can complement SPoC and 

CSP. 

LSTM 

Despite having recently gained more attention with the fast progress of deep learning (e.g., 

more efficient hardware and software implementations), LSTMs still need to stand up to well-

established models such as CSP for EEG analysis. We found that the LSTM can extract 

features from neural input components that reflect changes in subjective emotional arousal 

and that the accuracy of its predictions in both conditions (nomov, mov) matched closely the 

ones of CSP (see Figures 8 and 10). It is noteworthy that for the CSP model, the (LDA-based) 

classification rested on narrowly defined spectral features of the signal while for the LSTM 

model, the input was the signal in the time-domain and the feature selection process was part 

of the model fitting. The strong correlation between the predictions of the two models 

suggests that the LSTM extracts similar information as the CSP to make its prediction, namely 

power. Higher accuracies may be achievable with LSTM models due to their non-convex 

optimization landscape. However, in our two-step hyperparameter search, we found that for 
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each subject a range of different hyperparameter settings led to similar prediction accuracies 

(see Supplementary Material). Model ensembles, although computationally demanding, could 

further increase the robustness of the estimates (Opitz & Maclin, 1999; Rokach, 2010; 

Dietterich, 2000). Although it is often stated that deep learning models require large datasets 

(for an empirical perspective, see Hestness et al., 2017), our model, with its architecture of 1-

2 LSTM layers followed by 1-2 fully connected layers, converged in less than 200 training 

iterations on a relatively small dataset. This quick convergence is partly due to the fast 

gradient-flow through the memory cell of the LSTM during the weight update, which is an 

additional advantage of the LSTM over other RNNs (Doetsch et al., 2014; Hochreiter & 

Schmidhuber, 1997). Additionally, the spatial-spectral filtering in our study (i.e., SSD-based 

extraction of narrow-band alpha components) may have eased the training of the LSTM. With 

more data, an LSTM could be trained on raw data or longer segments of the EEG to preserve 

more of the continuous structure and ultimately exploit its central property, as a dynamic 

model, of detecting long-term dependencies in the input.   

In contrast to SPoC and CSP, we did not compute explanatory topoplots or sources from the 

LSTM, since the analysis of predictions on input level in non-linear deep learning models 

constitutes a challenge in itself (i.e., “black box” problem of deep learning). However, 

“explainable artificial intelligence” (XAI) is an active area of research in machine learning, 

aiming to open this “black box”. For EEG, there are attempts to create topologically informative 

maps in the signal space that explain the decision of simple shallow neural networks (Sturm 

et al., 2016). Also for the more complex LSTM model, XAI methods were applied, for example, 

on text data (Arras et al., 2017; see also Lapuschkin, 2019). However, exploring and validating 

these approaches on our data was beyond the scope of this study. 

 

In summary, we find that SPoC, CSP, and LSTM can be used to decode subjective emotional 

arousal from EEG acquired during a naturalistic immersive VR experience. The source of the 

alpha oscillations could be localized in parieto-occipital regions.  
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Compared to other EEG decoding paradigms (e.g., lateralized motor imagery; Herman et al., 

2008), the accuracy of our models was relatively low. This may be a consequence of (1) the 

fast-changing events in the VR experience (particularly the rollercoasters), (2) the 

asynchronicity of the two data streams as participants retrieved their emotional states from 

memory in retrospective ratings, (3) the generally high inter-individual variability in the 

interpretability of subjective self-reports (Blascovich, 1990), and (4) the “single-trial” study 

design and its relatively short time series. With respect to (1)-(3), people’s memory for feelings 

and events is susceptible to distortions and biases (Kaplan et al., 2016; Levine & Safer, 2002). 

Following McCall et al. (2015), we elicited the memory recall by showing participants an 

audiovisual replay of their experience from their own perspective in the VR headset while 

recording continuous ratings. This aimed to minimize biases related to the point of view 

(Berntsen & Rubin, 2006; Marcotti & Jacques, 2018) or time scale (e.g., Fredrickson & 

Kahneman, 1993) during recall (as discussed in McCall et al., 2015). Lastly, while our research 

aimed to explore the role of the alpha frequency band in the appraisal of emotional arousal 

(see Introduction), higher frequencies could carry additional information about the 

phenomenon leading to better model predictions. However, higher frequency bands also 

include non-neural (e.g., muscle activity-related) signals, limiting the interpretability of those 

results.  

Limitations 

Our study has limitations that need to be considered when interpreting the results: 

While being engaging, emotionally arousing and tolerable for the subjects, the commercial 

content used for stimulation did not provide access to the source code in order to control and 

extract stimulus features (e.g., height or speed of the rollercoasters). In general, creating high-

quality VR content is a challenge for research labs, but there are recent efforts to provide 

toolboxes that facilitate customized VR development (e.g., Underwood Project; Schofield & 

McCall, 2020) and scientific experimentation in VR (e.g., Grübel et al., 2017; Brooks et al, 2019).  
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The length of the experience was chosen to minimize habituation to the stimulus and 

inconvenience caused by the recording setup (EEG electrodes and VR headset). This led to 

relatively short recording times per subject and condition. Data sparsity, however, is 

challenging for decoding models, which need a sufficient amount of data points for model 

training and evaluation, where especially larger training sets lead to more robust predictions 

(Hestness et al., 2017). We used cross-validation, which is commonly applied in scenarios of 

limited data, to achieve a trade-off between training and validation data (Bishop et al., 2006). 

Nevertheless, the models and results can be expected to perform more robustly with more 

training data.  

We here confirm findings from static stimulation under more naturalistic conditions. To 

systematically investigate differences between approaches, a study with a within-subject 

design would be required. We hope that our study provides a stepping stone and motivation in 

this direction.  

Finally, emotional arousal is a multi-faceted mind-brain-body phenomenon that involves the 

situated organism and its interaction with the environment. The training data for multivariate 

models such as the LSTM can include other modalities, such as peripheral physiological (e.g., 

HR, GSR) or environmental (e.g., optical flow) features. Naturalism can be further increased by 

sensorimotor interaction (beyond head movements) in immersive VR (McCall et al., 2015) or 

by mobile EEG studies in real-world environments (Debener et al., 2012), which, however, poses 

further challenges to EEG signal quality (Gwin et al., 2010). 

Conclusion 

We conclude that different levels of subjectively experienced emotional arousal can be 

decoded from neural information in naturalistic research designs. We hope that combining 

immersive VR and neuroimaging not only augments neuroscientific experiments but also 

increases the generalizability and real-world relevance of neuroscientific findings.   
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