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Abstract 1 

The global evolutionary dynamics of influenza viruses ultimately derive from processes that take 2 

place within and between infected individuals. Recent work suggests that within-host 3 

populations are dynamic, but an in vivo estimate of mutation rate and population size in 4 

naturally infected individuals remains elusive. Here we model the within-host dynamics of 5 

influenza A viruses using high depth of coverage sequence data from 200 acute infections in an 6 

outpatient, community setting. Using a Wright-Fisher model, we estimate a within-host effective 7 

population size of 32-72 and an in vivo mutation rate of 3.4x10-6 per nucleotide per generation.  8 

 9 

Introduction  10 

The rapid evolution of influenza viruses places demographic processes such as population 11 

growth, transmission, and epidemiological spread on a similar time scale as the accumulation of 12 

genetic substitutions. This similarity of scale makes it possible to infer demographic processes 13 

from genetic sequence data using phylodynamic methods (Lemey et al. 2009; Bedford et al. 14 

2014; Bedford et al. 2015). Investigations of the global dynamics of influenza have been 15 

successful, in part, because the complexities of within- and between-host processes can be 16 

collapsed into a limited number of parameters in the coalescent or birth-death process when 17 

averaged over large spatial and temporal scales. However, it becomes increasingly important to 18 

disentangle these processes to address more granular questions; for example, the transmission 19 

of viruses at local scales or selective pressures imposed by vaccines, antivirals, or novel hosts.  20 

 21 

Phylogenetic approaches that separate within-host processes from those acting at 22 

epidemiological scales rely on simple population genetic models to capture the complex 23 

dynamics that occur within infected individuals (Didelot et al. 2014; Hall et al. 2015; Didelot et al. 24 

2017; De Maio et al. 2018). However, the accuracy of these models depends on reliable 25 

estimates of the within-host effective population size (Ne), which in the case of influenza virus, 26 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.24.353748doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.24.353748
http://creativecommons.org/licenses/by-nc/4.0/


 

2 

has proven difficult due to inherent challenges in collecting longitudinal samples from 27 

representative infections. Here, we take advantage of a large, well-studied, community cohort 28 

with robust deep sequencing data, from which two important results have emerged (McCrone et 29 

al. 2018). First, within-host selection for novel antigenic variants is weak, and second, 30 

transmission between hosts imposes a significant bottleneck on the viral population. We 31 

leverage these findings to fit a Wright-Fisher model to capture the dynamics of within-host 32 

populations. This model provides consistent and robust estimates of the within-host Ne and 33 

mutation rate of influenza A virus (IAV) when applied to cross-sectional and longitudinal 34 

samples. These findings provide an important baseline for defining processes related to the 35 

local dynamics of IAV, and of RNA viruses in general. 36 

 37 

Results 38 

We recently performed high depth of coverage sequencing of 249 IAV populations recovered 39 

from 200 individuals enrolled in the Household Influenza Vaccine Effectiveness (HIVE) study 40 

(McCrone et al. 2018). This large number of samples collected within a prospective community-41 

based cohort is a rich dataset for exploring influenza virus evolution over the course of a natural 42 

infection. In this and other works, we have documented our sensitivity and specificity for 43 

detection of intrahost single nucleotide variants (iSNV) and our error in allele frequency 44 

measurement (McCrone and Lauring 2016; Debbink et al. 2017; McCrone et al. 2018). Our 45 

dataset also includes 49 serially sampled individuals, who provided a self-collected specimen at 46 

the time of symptom onset and a clinic-collected specimen 0–7 days later. This affords an 47 

opportunity to explore changes in viral populations in naturally infected individuals over a short 48 

time scale. 49 

  50 

We applied a continuous diffusion approximation of the Wright-Fisher model to define the within-51 

host accumulation of mutations using 196 cross-sectional samples, collected 1-7 days following 52 
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the onset of symptoms (Rouzine et al. 2001). Because we have previously estimated an 53 

effective transmission bottleneck of 1-2 genetically distinct variants, we made the simplifying 54 

assumption that each infection was clonal and modeled the accumulation of diversity until the 55 

time of sampling as a neutral process. Maximum likelihood optimization of this model estimated 56 

an in vivo mutation rate of 3.4x10-6 (95% CI 3.1-3.7x10-6) mutations per nucleotide per 57 

generation (6 hours) and a within-host Ne of 36 ( 95% CI 31-41, Figure 1). We have recently 58 

estimated that the majority of mutations in IAV are detrimental and therefore unlikely to be 59 

observed at detectable frequencies (Visher et al. 2016). As only ~10% of mutations in influenza 60 

A virus are neutral, we propose that the true in vivo mutation rate is approximately ten-fold 61 

higher than our estimated rate, which does not account for purifying selection. This results in an 62 

in vivo mutation rate of approximately 3.4 x 10-5 substitutions per nucleotide replicated per 63 

generation, which is within the range of estimates for IAV’s biochemical mutation rate in 64 

epithelial cells (Sanjuán et al. 2010).  65 

 66 

To determine the robustness of our Ne estimate, we fit this same model to changes in allele 67 

frequencies observed in a subset of paired longitudinal samples. We restricted this analysis to 68 

alleles observed at the first time point in samples taken at least 1 day apart (63 iSNV in 29 69 

sample pairs). There was very little change in iSNV frequency in populations sampled twice on 70 

the same day (R2 = 0.986, Figure 2, Supplement 1A of (McCrone et al. 2018)). The 71 

concordance of same-day samples suggests that our sampling procedure and frequency 72 

measurements are reproducible. Maximum likelihood optimization of this model revealed a 73 

within-host Ne of 34 (95% CI 25-46, Table 1), very similar to that observed in the cross-sectional 74 

data above. Comparable estimates were obtained when synonymous and nonsynomous 75 

mutations were fit separately (Table 1). As there is some uncertainty in the within-host 76 

generation time (Geoghegan et al. 2016), we also estimated the Ne based on a 12 hour 77 

generation. As expected, increasing the generation time results in a smaller Ne.  78 
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 79 

The Wright-Fisher model assumes that each allele in a population is independent. This 80 

assumption would be violated if there were multiple iSNV per genomic segment or varying 81 

linkage of iSNV across segments due to reassortment. However, heterotypic reassortment is 82 

quite rare within hosts (Sobel Leonard et al. 2017), and the per-sample diversity in our dataset 83 

was sufficiently low that nearly all segments had either 0 or 1 iSNV. To ensure that our results 84 

were robust to the assumption of independent allele frequencies, we fit the above model 500 85 

times, each time randomly subsetting our data such that only one iSNV per individual was 86 

included. In practice, this approach also tested the sensitivity of our estimates to individual allele 87 

trajectories. Under these conditions, we found a median Ne of 42 (IQR 37-52, Figure 1B). Thus, 88 

in the initial analysis, non-independence among iSNV within the same host may have caused a 89 

slight bias due to a few hosts with extreme frequency changes. 90 

 91 

The estimates above include the probability that undetected variants are present but missed 92 

due to imperfect sensitivity (see Methods and (McCrone and Lauring 2016)); however, they do 93 

not account for uncertainty in the frequency measurements, which if large, would bias the Ne 94 

estimate toward lower values. To accommodate this uncertainty we relied on the fact that 141 of 95 

the 249 samples in were amplified and sequenced in duplicate (McCrone et al. 2018). We 96 

modeled the frequency-dependent variance present in the data as a beta distribution with 𝛼 =97 

𝑝 ∗ 𝑛, 𝛽 = 𝑝(1 − 𝑝) ∗ 𝑛, where p represents the true frequency (the mean in the duplicate 98 

measurements) and n roughly represents the number of samples in a binomial distribution with 99 

probability p, and was determined with maximum likelihood optimization. We then adapted a 100 

Bayesian approach and estimated the posterior distribution of Ne integrated over all 101 

unobserved, true frequency trajectories. The analysis resulted in a marginally increased Ne 102 

estimate of 50 (32-72 95% HPD, Figure 1C). The agreement between this model and our 103 
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previous estimates suggests that the relatively small Ne is driven by the allele trajectories 104 

themselves and is not the result of uncertainty in our frequency measurements.   105 

 106 

Discussion 107 

We have investigated the within-host dynamics of influenza in a large, well-defined cohort of 108 

representative infections and found that, under a Wright-Fisher model, the population is 109 

characterized by a small effective population size. Our findings differ from those reported in 110 

studies of immunosuppressed, chronically infected individuals, which have shown that within-111 

host populations of influenza virus are characterized by large effective population sizes, clonal 112 

interference, and selective pressures that mimic those seen at larger biological scales (Xue et 113 

al. 2017; Lumby et al. 2020).  The difference in these Ne estimates likely lies in the fundamental 114 

difference between the population dynamics of acute and chronic infections. Chronic infections, 115 

which manifest in rare immunologically atypical hosts, establish large, stable populations and 116 

may be “insulated” from the drastic fluctuation in population size that define acute cases. In the 117 

absence of any evidence for antigenic selection, it seems that evolution during the early period 118 

of influenza infections, the time frame during which transmission is most likely to occur, is best 119 

modelled as a stochastic process. 120 

 121 

The Wright-Fisher model provides a simple framework for exploring the evolutionary dynamics 122 

of “real-world” populations. The model’s tractability comes at the cost of many simplifying 123 

assumptions (e.g. constant population size, discrete generations, homogenous mixing, neutral 124 

evolution), which are rarely, if ever, met by biological populations. Influenza viruses clearly exist 125 

as complex populations whose evolutionary dynamics are influenced by a mixture of processes 126 

not captured explicitly in the Wright-Fisher model (e.g. deleterious mutation load, migration 127 

between sites of infection, rapid population growth and decline (Lakdawala et al. 2015; Visher et 128 

al. 2016; Zhao et al. 2019)). However, the detailed, longitudinal sampling needed to fit models 129 
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that explicitly capture this complexity is not available for most influenza infections, which are 130 

typically short-lived and not medically attended. In the absence of such data, we have chosen a 131 

more tractable model that can yield reliable estimates of the general tendencies, rather than 132 

more complex models that may lack identifiability and generalizability.  133 

 134 

These estimates of the effective population size and mutation rate, combined with previous 135 

estimates of the transmission bottleneck, provide a useful expectation for the shared diversity 136 

between direct transmission pairs, and can be used in conjunction with standard 137 

epidemiological models to study the forces that drive influenza evolution at a granular level.  138 

 139 

Methods 140 

 141 

Fitting mutation rate and Ne 142 

The diffusion approximation to the Wright-Fisher model makes predictions regarding the allele 143 

frequency spectrum of a population given a mutation rate and Ne. Starting from a monomorphic 144 

state, while t<<Ne, the probability of observing a mutation at frequency 𝑝𝑡 be approximated as in 145 

equation 85 of (Rouzine et al. 2001) 146 

 147 

𝑃(𝑝!, ∣ 𝑡, 𝜇,𝑁") =
#$%!
&"

𝑒'
#$!%"

"  (1) 148 

Where 𝜇 is the mutation rate in substitutions/site/generation, Ne is the effective population size 149 

and t is the number of generations. Consistent with previous models of within-host influenza, we 150 

set the generation time to 6 hours (Geoghegan et al. 2016). We further assumed that infection 151 

began 1 day prior to symptom onset (Carrat et al. 2008).  152 

 153 
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To account for limitations in iSNV detection, we integrated over regions of the probability density 154 

where we have observed less than perfect sensitivity. The probability of not observing an iSNV 155 

at a locus is given by summing over the possibilities that (i) a mutation is present but below our 156 

level of detection 𝑃(𝑝! ≈ 0 ∣ 𝑝! < 0.02, 𝑡, 𝜇, 𝑁"), and (ii)  a mutation is present but missed 157 

due to low sensitivity at low frequencies 𝑃(𝑝! ≈ 0 ∣ 0.02 < 𝑝! < 0.1, 𝑡, 𝜇, 𝑁"). In this model, 158 

we assumed there were 13,133 polymorphic loci in each sample (the number of coding sites 159 

present in the reference strain from 2014-2015). Under these assumptions, 160 

 161 

𝑃(𝑝! ≈ 0 ∣∣ 𝑡, 𝜇, 𝑁" ) = 162 
                                                                𝑃(𝑝! ≈ 0 ∣∣ 𝑝! < 0.02, 𝑡, 𝜇, 𝑁" ) + 163 
                                                               𝑃(𝑝! ≈ 0, 𝑡 ∣ 0.02 < 𝑝! < 0.1, 𝑡, 𝜇, 𝑁") 164 
 (2) 165 

Where 166 

𝑃(𝑝! ≈ 0 ∣ 𝑝! < 0.02, 𝑡, 𝜇, 𝑁") = ∫ 𝑃#.#%
# (𝑝!, ∣ 𝑡, 𝜇, 𝑁")𝑑𝑝! (3) 167 

and 168 

𝑃(𝑝! ≈ 0 ∣ 0.02 < 𝑝! < 0.1, 𝑡, 𝜇,𝑁") = ∑ ([$.$&,$.$(,$.)$)
+( 𝐹𝑁𝑅 ∣ 𝑇𝑖𝑡𝑒𝑟, , 𝑓-) ∫ 𝑃+()*

+(
(𝑝! ∣169 

𝜇, 𝑡, 𝑁")𝑑𝑝! (4) 170 

 171 

Where (𝐹𝑁𝑅 ∣ 𝑇𝑖𝑡𝑒𝑟& , 𝑓') is the false negative rate given the frequency and the sample titer 172 

(See Supplementary File 1 in (McCrone et al. 2018)). As before, we assumed the sensitivity in 173 

the intervals between 0.02, 0.05 and 0.1 was equal to the sensitivity at the lower bound, and 174 

that the sensitivity was perfect at frequencies above 0.1. The log-likelihood of a given 𝜇 and 𝑁𝑒 175 

pair is then the sum of the log of equations 1 and 2 for all possible sites in the data set. The 176 

maximum-likelihood values were estimated using the bbmle package in R (Ben Bolker and 177 

Team 2020; Team 2020).  178 
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 179 

Diffusion approximation 180 

We implemented the diffusion approximation as in (Kimura 1955), with minor modifications. As 181 

above, we included the limitations in our sensitivity to detect rare iSNV by integrating over all 182 

possible explanations for why an iSNV might not be observed at the second time point. 183 

 184 

Bayesian implementation of the diffusion approximation 185 

To account for measurement error in our estimates we adopted a similar approach to that 186 

developed in (Williamson and Slatkin 1999). The likelihood of observing frequencies 𝑝",,	𝑝#.  at 187 

time 0 and t given the true frequencies p0 and pt 188 

𝑃0𝑝",,𝑝#. |𝑁$ , 𝑝",𝑝#3 = 	𝑃(𝑝",|𝑝")𝑃(𝑝#|𝑝", 𝑁$)𝑃(𝑝#. |𝑝#)  189 

 (5) 190 

where 𝑃(𝑝&,|𝑝&) accounts for measurement error and is defined for 𝑝&, > 0 by the probability 191 

density at 𝑝&,of a beta distribution with 𝛼 = 𝑝 ∗ 𝑛	, 𝛽 = 𝑝(1 − 𝑝) ∗ 𝑛 where n=503 and was 192 

determined from the estimating the error in replicate sequencing samples.  193 

In cases where  𝑝&, = 0 and 𝑝& > 0,	 𝑃(𝑝&,|𝑝&) is the sum of the cumulative density function of the 194 

same beta distribution up to 0.02 (i.e. the variant is detected below the limit of detection) and the 195 

probability of not detecting the variant given the sample titer and false negative rate as above 196 

(the variant was not observed to imperfect sensitivity).  𝑃(𝑝#|𝑝", 𝑁$) is the transition probability of 197 

a variant at frequency 𝑝" to drifting to  𝑝# given t generations and an the effective population size 198 

of 𝑁$ as in equation 15’ in (Kimura 1955). The posterior is proportional to the product of this 199 

likelihood and priors on Ne, p0, and pt. We choose uniform priors for p0 and pt and a diffuse 200 

gamma prior with shape of 0.036 and scale of 1000 (mean 36 as informed by the cross-201 

sectional data analysis). As with the other analyses the generation time was set to 6 hours 202 

(Geoghegan et al. 2016).  This approach was implemented as a plugin for BEAST and the 203 

posterior was estimated using BEAST v1.10.4 (Suchard et al. 2018). Ten independent MCMC 204 
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chains were run for 10 million states. Each chain was sampled every 10,000 iterations with the 205 

first 1 million states discarded as burn in. All ten chains were combined and ESS for all 206 

parameters was >200.  Convergence was assessed in TRACER (Rambaut et al. 2018).  207 
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12 

Figure 1. (A) Joint estimate of within-host mutation rate and effective population size. Contour 290 

plot shows the log likelihood surface for estimates of the effective population size and neutral 291 

mutation rate. The point represents the peak (μ = 3.4x10-6, Ne = 36). Log likelihoods for each 292 

contour are indicated. (B) The distribution of Ne estimated in 500 subsamples of the data in 293 

which one iSNV was taken per individual. The bimodality of the distribution reflects a slight 294 

sensitivity to the inclusion of a few specific iSNV. (C) The posterior and prior probability 295 

densities for Ne over all values explored in the in the combined MCMC chains (22-93). The 95% 296 

HPD of the posterior (32-72) is shaded blue.  297 

 298 

Table 1. Within host effective population size of IAV 299 
 300 

iSNV Used Generation 
Time (h) 

Effective Population 
Size (95% CI) 

All 6 34 (25-46) 

All 12 17 (13-23) 

Nonsynonymous 6 27 (16-44) 

Synonymous 6 40 (27-59) 

All 12 17 (13-23) 

Nonsynonymous 12 14 (8-22) 

Synonymous 12 20 (14-29) 
 301 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.24.353748doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.24.353748
http://creativecommons.org/licenses/by-nc/4.0/


−3,350

−3,400

−3,450

−3,500

−3,550

Log
likelihood

10 20 30 40 50 60 70 80 90 100
Effective Population Size

2e-6

3e-6

4e-6

5e-6

6e-6

N
eu

tra
l M

ut
at

io
n 

R
at

e

10 20 30 40 50 60 70 80 90 100
Effective Populuation Size

0

5

10

15

20

25

30

35

C
ou

nt

10 20 30 40 50 60 70 80 90 100
Effective Population Size

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
en

si
ty Posterior

Prior

A

B

C

Figure 1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.24.353748doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.24.353748
http://creativecommons.org/licenses/by-nc/4.0/

