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Abstract 25 

Microbial communities that metabolise pentose and hexose sugars are useful in 26 

producing high-value chemicals, as this can result in the effective conversion of raw 27 

materials to the product, a reduction in the production cost, and increased yield. Here, we 28 

present a computational approach called CAMP (Co-culture/Community Analyses for 29 

Metabolite Production) that simulates and identifies appropriate communities to  30 

produce a metabolite of interest. To demonstrate this approach, we focus on optimal 31 

production of lactate from various Lactic Acid Bacteria. We used genome-scale metabolic 32 

models (GSMMs) belonging to Lactobacillus, Leuconostoc, and Pediococcus species from 33 

the Virtual Metabolic Human (VMH; https://vmh.life/) resource and well-curated GSMMs 34 

of L. plantarum WCSF1 and L. reuteri JCM 1112. We studied 1176 two-species 35 

communities using a constraint-based modelling method for steady-state flux-balance 36 

analysis of communities. Flux variability analysis was used to detect the maximum lactate 37 

flux in a community.  Using glucose or xylose as substrates separately or in combination 38 

resulted in either parasitism, amensalism, or mutualism being the dominant interaction 39 

behaviour in the communities. Interaction behaviour between members of the 40 

community was deduced based on variations in the predicted growth rates of 41 

monocultures and co-cultures. Acetaldehyde, ethanol, NH4+, among other metabolites, 42 

were found to be cross-fed between community members. L. plantarum WCSF1 was a 43 

member of communities with high lactate yields. In silico community optimisation 44 

strategies to predict reaction knock-outs for improving lactate flux were implemented. 45 

Reaction knock-outs of acetate kinase, phosphate acetyltransferase, and fumarate 46 

reductase in the communities were found to enhance lactate production.  47 

 48 
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Importance 49 

Understanding compatibility and interactions based on growth between the members of 50 

a microbial community is imperative to exploit these communities for biotechnological 51 

applications. Towards this goal, here, we introduce a computational analysis framework 52 

that evaluates all possible two-species communities generated from a given set of 53 

microbial species on single or multiple substrates to achieve optimal production of a 54 

target metabolite. As a case study, we analysed communities of Lactic Acid Bacteria to 55 

produce lactate. Lactate is a platform chemical produced experimentally from 56 

lignocellulosic biomass, which constitutes pentoses and hexoses, such as xylose and 57 

glucose. Metabolic engineering strategies, such as reaction knock-outs that can improve 58 

product flux while retaining the community’s viability are identified using in silico 59 

optimisation methods. Our approach can guide in the selection of most promising 60 

communities for experimental testing and validation to produce valuable bio-based 61 

chemicals.  62 

Keywords 63 

Genome-scale metabolic models, constraint-based modelling, metabolic engineering, 64 

cross-feeding, microbial consortia 65 

Introduction 66 

In recent years, novel methods for synthesising valuable chemicals include the use of co-67 

cultures or microbial communities, where two or more microbial populations are 68 

cultured together to derive optimum output of the product (1). In nature, microbes exist 69 

in communities, and the use of natural or engineered consortia have advantages over 70 

single strains. One of the critical features of a consortium is the division of labour or 71 
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sharing of metabolic burden between the species. The product of one engineered strain 72 

is transported to another microbe, where it can be further metabolised to the final 73 

desired metabolite. Co-cultures allow a symbiotic relationship between strains for the 74 

utilization of multiple substrates and removal of inhibitory by-products.  Some challenges 75 

in co-culture studies include compatibility between the strains concerning their growth 76 

conditions such as temperature, pH, and media (2).  77 

Computational modelling of co-cultures is feasible with the use of genome-scale 78 

metabolic models (GSMMs). GSMMs of micro-organisms computationally describe the 79 

metabolism of an organism through the gene-protein-reaction associations. Progress in 80 

the reconstructions of GSMMs has allowed a wide variety of metabolic studies by 81 

generating model-driven hypotheses and context-specific simulations by the integration 82 

of various omics and kinetic data. GSMMs have been used to predict targets for gene 83 

manipulation either through knock-out or up- and downregulation, which has resulted in 84 

improved production of industrially relevant chemicals from micro-organisms (3). In an 85 

E. coli strain (XB201T) producing 0.55 g/L of D-phenyl lactic acid, knock-outs of tyrB and 86 

aspC genes that were identified as potential knock-out candidates from in silico analysis 87 

enhanced the production to 1.62 g/L (3). 88 

The use of constraint-based modelling approaches with microbial community models is 89 

also underway to study metabolic interactions between the species (4–6). In the current 90 

study, we present a constraint-based modelling approach called CAMP (Co-91 

culture/Community Analyses for Metabolite Production) which evaluates a set of GSMMs 92 

to identify suitable two-species communities that can produce a given metabolite. We 93 

demonstrate this approach by analysing GSMMs of selected Lactic Acid Bacteria (LAB) to 94 
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construct two-species communities and examine their potential for optimal production 95 

of lactate. 96 

Lactate is an α-hydroxy carboxylic acid that is chemically reactive and is synthesised to 97 

various intermediates such as acrylic acid, 1,2-propanediol, and lactide. Lactide is the 98 

building block for producing polylactic acid (PLA) (7).  PLA is a biodegradable biopolymer 99 

that finds applications in the biomedical industry to manufacture stents, surgical sutures, 100 

soft-tissue implants, etc. (8). Lactic acid is also used in the food industry as an acidulant, 101 

a preservative, and an emulsifier (7). The D-isomer is considered harmful to humans in 102 

high doses. It can cause acidosis or de-calcification; hence, the L-isomer of lactate is 103 

preferred in the food and pharmaceutical industry (9).  104 

Microbial fermentation is an effective route to produce lactate, as optically pure D- or L-105 

lactate can be produced based on the selection of appropriate micro-organisms. LAB can 106 

be classified as either homofermentative or heterofermentative, depending on the 107 

metabolism of hexoses and pentoses, and the production of end products. In 108 

homofermentative cases, the sugars are metabolised via the Embden-Meyerhof-Parnas 109 

(EMP) pathway, whereas in the heterofermentative case, the phosphoketolase pathway 110 

is active (10).  111 

In Lactobacillus co-cultures of L. brevis and L. plantarum with glucose and xylose as 112 

substrates and NaOH treated corn stover, high lactate yields of 0.8 g/g were obtained, 113 

which is more significant than in monocultures of the same species (11). L. rhamnosus 114 

and L. brevis were also used in co-culture, and a lactate productivity of 0.7 gL-1h-1 was 115 

obtained (12). Co-culture of L. pentosus and genetically engineered Enterococcus faecalis 116 

produced 3.68 gL-1h-1 of lactate (1). A consortium of cellulolytic fungus Trichoderma 117 

reesei and L. pentosus fermented on whole-slurry pre-treated beech wood led to the 118 
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production of 19.8 g/L of lactic acid. L. pentosus consumed cellobiose, avoiding inhibition 119 

of T. reesei cellulase activity, and acetic acid produced from L. pentosus was utilised as a 120 

carbon source by the fungus (13). GSMMs of various LAB such as Lactobacillus reuteri, 121 

Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus casei, Lactococcus 122 

lactis, and Streptococcus thermophilus have been published (14).  123 

We used the CAMP approach to predict growth rates of LAB species in monoculture and 124 

co-culture. We categorised the interactions in LAB communities based on the changes in 125 

predicted growth rates, either unidirectional such as commensalism, amensalism, and 126 

neutralism, or bi-directional such as mutualism and competition. We analysed the effects 127 

of single and multiple nutrient substrates on interaction types between communities. We 128 

examined the metabolites that are exchanged between the species of a community. We 129 

predicted reaction knock-outs in LAB communities that would improve lactate flux. 130 

Overall, our strategy is generic, and it can be applied to identify communities to produce 131 

specific metabolites of interest. We postulate that this analysis strategy will benefit 132 

metabolic engineering applications that involve microbial communities.  133 

Results 134 

In this section, we present a brief overview of the CAMP approach, followed by its 135 

application to identify the most promising co-cultures to produce lactate.  136 

Overview of CAMP (Co-culture/Community Analyses for Metabolite Production) 137 

Fig. 1 gives an outline of the CAMP workflow. The steps include 1) Retrieval of microbial 138 

GSMMs from databases such as VMH. Each of these GSMMs is simulated in three different 139 

nutrient conditions (See Materials ad Methods). Predicted growth rates and product flux 140 

are obtained using flux balance analysis (FBA) and flux variability analysis (FVA). The 141 
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product yield is computed as the maximum product flux obtained per unit flux of 142 

substrate uptake. 2) Two-species communities are created using SteadyCom (6). 143 

Community models are also simulated in three nutrient conditions. FBA and FVA are used 144 

to predict community growth rates and product yield in the community. Monoculture and 145 

co-culture growth rates are compared to identify an increase or decrease in growth when 146 

an organism is simulated in the presence of another. 3) Expected product yield in a 147 

community is compared to the observed product yield. Details on calculation of product 148 

yield can be found in Materials and Methods. Communities which have a 10-fold increase 149 

in product yield are regarded as candidate communities for optimal production of the 150 

target metabolite. Communities are assessed for their relative abundances, type of 151 

interaction behaviour observed and the cross-fed metabolites. 4) In silico community 152 

optimisation is performed using FSEOF (15), which enables to shortlist potential reaction 153 

knock-outs that will increase product flux in the community. Reaction knock-outs can be 154 

from either species in the community.  155 
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 156 

Fig.1 Outline of CAMP (Co-culture/Community Analyses for Metabolite Production)  157 

Growth phenotypes of LAB in monoculture 158 

For all 49 GSMMs, their predicted growth rates in monoculture with glucose and xylose 159 

as major carbon sources were computed for the three different nutrient conditions — 160 

minimal nutrient, excess nutrient, and community-specific nutrient condition (see 161 

Materials and Methods). The maximal lactate fluxes of each model in all three conditions 162 

were also computed. Supplementary Table S1 details the growth rates of each LAB 163 

species in the different nutrient conditions. It was observed that for all models, the active 164 

reactions that had a non-zero flux belonged to the central carbon metabolism, such as 165 

Embden-Meyerhof-Parnas (EMP) pathway, pentose phosphate pathway (PPP), and the 166 

pentose phosphoketolase (PPK) pathway (16) as seen in Fig. 2. Histogram distribution of 167 

predicted monoculture growth rates (Supplementary Fig. S1) under the three nutrient 168 
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conditions shows that many species have similar growth rates in all conditions within the 169 

range of 0.01 to 0.1 (h-1). The highest growth rates (> 0.3 h-1) are observed in the 170 

community-specific and excess nutrient conditions. 171 

 172 

Fig. 2: Active pathway reactions with non-zero fluxes in the LAB models when 173 

grown in monoculture and co-culture. Glucose and xylose (shaded red) are the 174 

primary substrates that are metabolised to the end-products lactate, acetate, and ethanol 175 

(shaded green). Metabolite and reaction notations and reaction directionalities are 176 

denoted as seen in the LAB GSMMs. 177 

 178 

 179 
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Significant change in monoculture vs. co-culture growth rates helps segregate 180 

communities into six categories   181 

A difference of 10% in predicted growth rates of the microbes in monoculture versus co-182 

culture has been previously established to be significant (17). Based on these 183 

comparisons, viable LAB communities from each nutrient condition were binned into 184 

categories as follows: Amensal communities, i.e., one microbe grows slower in the paired 185 

simulation while the other microbe’s growth rate is unaffected. Competitive 186 

communities, i.e., both microbes’ growth, is slower than their monoculture rates. 187 

Parasitic communities, i.e., one microbe grows faster in the paired simulation while the 188 

other microbe grows slower. Neutral communities, i.e., neither microbes’ growth rate 189 

was affected upon being paired with the other. Commensal communities, i.e., one 190 

microbe, has an increase in growth rate while the other remains unaffected. Lastly, 191 

mutualistic communities where both microbes in the pair show an increase in the growth 192 

rates compared to their monoculture rates. Fig.3 depicts the interaction behaviour in 193 

communities when each microbe influences the growth of the other, either positively or 194 

negatively.  195 
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 196 

Fig. 3 Different interaction types possible between the two-species communities. A 197 

positive or negative effect on the growth of the species defines each interaction type.  198 

In community-specific nutrient conditions, 354 viable pairs out of 1176 were identified, 199 

as seen in Fig. 4. Parasitism was the ‘favoured’ interaction type, with 235 pairs out of 354 200 

displaying parasitic behaviour. In minimal nutrient conditions, there were 492 viable 201 

pairs. Again, parasitism was dominant in this group, with 224 out of 492 pairs exhibiting 202 

parasitism. In contrast, in the excess nutrient condition, from among 338 viable pairs, 215 203 

pairs had amensal behaviour. Parasitism, mutualism, and commensal pairs were not 204 

identified in this group. Heatmaps for the minimal and excess nutrient conditions are 205 

provided as supplementary Fig.S2 & Fig.S3. Supplementary Fig. S4, S5 and S6 contain 206 

heatmaps that depict the absolute values of the predicted growth rates of each species 207 

grown in the presence of 48 other species. 208 
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209 

 210 

Fig. 4: Monoculture vs. co-culture growth rates. The heatmap depicts the change in the 211 

growth rate of an organism’s predicted monoculture growth compared to when it is co-212 

cultured with another species under community-specific nutrient condition. A difference 213 

greater than 10% of monoculture growth is considered an increase, whereas lesser than 214 

10% of monoculture growth is regarded as a decrease. 822 non-viable pairs and the 215 

diagonal, which represents 49 monocultures, are depicted as white squares.  216 

Occurrences and relative abundance profiles of the LAB species 217 

The frequency of occurrence of each microbe among the viable communities in each 218 

nutrient condition was calculated. L. oris and L. animalis had the highest occurrences 219 

among all Lactobacillus species. Leuconostoc species were also found to rank higher in the 220 
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number of occurrences among the viable set, irrespective of the nutrient condition. Each 221 

of these microbes was found in at least 20 pairs or more. Pediococcus species formed the 222 

least number of pairs in the community-specific nutrient condition. L. pentosus KCA1 was 223 

found to constitute the least number of viable pairs (less than 10) in all nutrient 224 

conditions. 225 

The distribution of predicted relative abundances of each microbe when co-cultured 226 

under different nutrient conditions are shown in Fig 5. The abundances were found to 227 

vary depending upon the number of viable communities associated with each microbe. 228 

Differences were also seen among the nutrient conditions, with most LAB species having 229 

a mean abundance of lesser than 0.5 in the excess nutrient condition. L. oris, present in 230 

many viable communities, had an average abundance of less than 0.25 in the minimal and 231 

excess nutrient conditions. In contrast, it had an abundance higher than 0.5 in the 232 

community-specific condition. Relative abundances greater than 0.75 were seen among 233 

Leuconostoc species and some Lactobacilli species in the community-specific nutrient 234 

condition.  This variation in abundance profiles highlights the role of nutrient constraints 235 

in driving community behavior.  236 
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 237 

Fig. 5. Relative abundance profiles of LAB species in co-culture under different 238 

nutrient conditions (A) minimal nutrient condition (B) community-specific condition 239 

(C) excess nutrient condition. 240 

Dominant interaction behavior differs in communities grown with single and 241 

multiple substrates 242 

To examine if the type of interaction detected in a community is dependent on the 243 

number of carbon sources utilised, we simulated the community models for growth on 244 

glucose and xylose independently. We compared these findings to when both glucose and 245 

xylose are provided as substrates to the communities for growth. Fig. 6 highlights the 246 

interaction types observed when either glucose or xylose is used as a substrate under 247 

different nutrient conditions.  248 
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 249 

Fig. 6 Distribution of the various interaction types between viable pairs in nine 250 

different nutrient conditions. The plot shows the fraction of communities with a 251 

particular interaction type in each nutrient condition.  252 

Among the 49 LAB models, only 11 models can metabolise xylose as a sole nutrient 253 

source. Mutualistic pairs constituted an average of 40% of viable pairs in minimal and 254 

community-specific conditions with xylose as substrate. The number of mutualistic pairs 255 

in xylose-only conditions indicates the rise of an emergent property in the community. 256 

Viable pairs with amensalism behaviour are found to be higher in excess nutrient 257 

conditions. Parasitism prevailed in both minimal and community-specific nutrient 258 

conditions irrespective of the presence of a single or multi-substrate. As all 49 organisms 259 

are capable of metabolising glucose, some competitive behavior is observed primarily in 260 

glucose-only excess conditions. Whereas, in xylose-only conditions, competition is almost 261 

absent, with only a maximum of three viable pairs exhibiting competition.   262 

Communities possess positively and negatively correlated cross-fed metabolites 263 

A metabolite was considered cross-fed if it was secreted (i.e., the flux of the exchange 264 

reaction for the particular metabolite was positive) into the community compartment (u) 265 
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by one organism and taken up (i.e., the flux of the exchange reaction of the metabolite 266 

was negative) by the other organism in the community. A threshold of 0.01 mmol/gDW/h 267 

was used to determine all such cross-fed metabolites for the viable communities in each 268 

nutrient condition. Fifty-three unique metabolites that included many amino acids were 269 

cross-fed between the LAB communities. This is consistent with other experimental 270 

observations where the exchange of amino acids is considered to play a role in 271 

community interactions (18, 19). The most widely cross-fed metabolites across all viable 272 

communities were acetaldehyde, glycine, H+, ethanol, H2O, acetate, formate, and NH4+. 273 

Lactate was also found to be cross-fed between 35% of communities across different 274 

nutrient conditions. Each community model exchanged varied sets of metabolites 275 

depending on the nutrient condition it was simulated in. To check if certain metabolites 276 

are always cross-fed simultaneously in a community, the correlation between cross-fed 277 

metabolites across the LAB communities was estimated (Fig. 7). In the community-278 

specific nutrient condition, positively correlated metabolites with a p-value significance 279 

of less than 0.05 (adjusted by the Benjamini-Hochberg method to control the false 280 

discovery rate) were identified to be ethanol and H2O, stearic acid and hypoxanthine, and 281 

formate and serine. Negatively correlated metabolites were formate and H2O, glycerol 282 

and acetaldehyde. We checked whether the cross-fed metabolites are specific to any 283 

interaction type and found that 24 metabolites are common to all interaction types. They 284 

include succinate, malate, formate, ethanol, acetate and some amino acids. The fraction 285 

of metabolites cross-fed in cooperative communities with mutualistic, commensal, and 286 

neutral interactions are higher than in communities which exhibit parasitic and 287 

competitive behaviour. Supplementary Table S2 has the list of cross-fed metabolites in 288 

each interaction type.   289 
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 290 

Fig. 7 Correlation between the cross-fed metabolites in the community-specific 291 

nutrient condition. Positively correlated metabolites are denoted in blue, whereas 292 

negatively correlated metabolites are coloured brown. Correlation plots for cross-fed 293 

metabolites in the other two nutrient conditions are provided as Supplementary figures, 294 

Fig. S7 and Fig. S8 295 

Evaluating performance of communities based on growth and lactate yield  296 

We evaluated the performance (see Materials and Methods) of the community models in 297 

two scenarios. In the first set of simulations, lactate was not allowed to be cross-fed 298 

between the community members. In the second case, one organism in the pair is 299 
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designated as the primary consumer of the substrates glucose and xylose, thereby 300 

creating a dependence of the second organism on the first for growth and vice-versa. 301 

Community pairs that retained their viability in the two test scenarios were deemed fit 302 

for further community strain optimisation strategies. This performance test was carried 303 

out in all three nutrient conditions. Forty community pairs were common in two nutrient 304 

conditions, community-specific nutrient uptake and minimal nutrient uptake. Seven LAB 305 

communities were unique to the excess nutrient condition. Each of these pairs had an 306 

observed lactate yield 10-fold higher than the expected lactate yield of the community.  307 

Glucose fermenters have higher lactate yield than communities where both xylose 308 

and glucose is utilised  309 

For grading the community pairs based on both their growth rate and product yield, the 310 

biomass, and lactate flux values were normalised (min-max normalization). Upon 311 

normalisation, the best pairs were identified. A detailed list of all communities is found 312 

in Supplementary Table S3. Each of the top six pairs shared an organism, namely, L. 313 

plantarum WCFS1, which is coupled with two strains of L. casei, L. rhamnosus LMS2, L. 314 

animalis KCTC 3501,  Leuconostoc argentinum, and Leuconostoc lactis.  315 

Contrary to expectations, in the best-performing pairs, both the organisms are not 316 

capable of utilising glucose and xylose together. Only the Leuconostoc species can 317 

metabolise both glucose and xylose, while the remaining organisms are glucose 318 

fermenters. The metabolic distances (Jaccard distances) between the GSMMs in the best-319 

performing pairs were calculated (see Materials and Methods) using reaction lists from 320 

each model. The top-ranked pairs had a Jaccard distance of greater than 0.7, indicating 321 

that they had less than 30% of their reactions in common, and therefore, distinct 322 

metabolic capabilities. Besides, all the top-ranked communities displayed either 323 
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commensal, mutualistic, or neutral interaction behaviours in the three different nutrient 324 

conditions. This suggests that metabolic complementarity and compatibility between the 325 

organisms are necessary for the stability of a community.  326 

Elimination of reactions from competing pathways provide an enhanced lactate 327 

flux in the LAB community 328 

Based on the FSEOF (Flux Scanning based on Enforced Objective Flux) approach (see 329 

Materials and Methods), we were able to predict suitable reaction knock-outs in six LAB 330 

community models that improved lactate flux in comparison to the flux obtained in the 331 

wild-type community. These communities each had one organism from the Leuconostoc 332 

genus, which are capable of fermenting both glucose and xylose. These community 333 

species are heterofermentative, i.e., they are capable of production of mixed organic acids 334 

such as ethanol, formate, acetate in addition to lactate. Among the predicted knock-out 335 

targets, the reactions with a maximum increase of lactate flux are tabulated in Table 1. 336 

Reaction ID Reaction Name Reaction Formula 

ACKr acetate kinase acetate + ATP <=> acetyl-phosphate + ADP 

PTAr phosphotransacetylase acetyl-CoA + phosphate <=> acetyl-phosphate +CoA 

PFL pyruvate formate lyase pyruvate +CoA <=> acetyl-CoA + formate 

FRD fumarate reductase fumarate + ubiquinol-8 <=> succinate + ubiquinone-8 

RPE ribulose 5-phosphate 3-

epimerase 

ribulose 5-phosphate <=> xylulose 5-phosphate 

XU5PG3PL D-xylulose 5-phosphate 

D-glyceraldehyde-3-

phosphate-lyase 

xylulose 5-phosphate + phosphate  -> acetyl-phosphate + 

glyceraldehyde 3-phosphate + H2O 

 337 
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Table 1. List of reaction knock-outs that lead to increased lactate flux in different LAB 338 

communities  339 

As evident from these reactions, routes towards the production of other acids, such as 340 

acetate, formate, and succinate, are impeded to allow higher flux towards reactions 341 

leading to the biosynthesis of lactate. Supplementary Table S4 provides the details of 342 

predicted reaction knock-outs in each community model, and the equivalent lactate flux 343 

observed in that community upon deletion. 344 

Our findings using this approach for microbial communities concur with experiments 345 

observed in literature where deletion of the genes counterpart to these reactions has 346 

increased the lactate yield from monocultures of various micro-organisms. An 347 

engineered strain of Enterobacter aerogenes ATCC 29007 with the phosphate 348 

acetyltransferase (pta) gene deletion was found to have a higher L-lactate yield by 349 

utilization of mannitol (20). Escherichia coli K12 strain MG1655 has been engineered by 350 

the inactivation of the pyruvate-formate lyase (pflB) and fumarate reductase (frdA) gene 351 

to increase the yield of D-lactate from glycerol (21). A single-gene knock-out of the pflA 352 

gene in the E. coli BW25113 strain has proven to improve D-lactate production from 353 

glucose (22). In Saccharomyces cerevisiae, the deletion of D-ribulose-5-phosphate 3-354 

epimerase (RPE1) induces the simultaneous utilization of xylose and glucose (23). Gene 355 

knock-outs are one of the essential metabolic engineering strategies employed for 356 

overcoming barriers of carbon catabolite repression for the co-utilization of carbon 357 

sources by microbes (24, 25). Therefore, we hypothesise that to design efficient microbial 358 

communities, appropriate gene knock-outs from either one or both the organisms in a co-359 

culture will enhance the co-utilization of mixed carbon substrates. In this regard, in silico 360 
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approaches as described above will aid in making informed decisions for knock-out 361 

experiments. 362 

Discussion 363 

Lactate synthesis through bacterial fermentation methods is of great importance for 364 

improving the compound’s availability and aiding the production of lactate derivatives 365 

with high industrial value. While several computational approaches to study microbial 366 

communities have emerged in the recent years (6, 26–28), there is still no rigorous 367 

methodology to systematically choose a co-culture for optimal production of industrially 368 

relevant metabolites, such as the production of lactate. In this study, we report CAMP (Co-369 

culture/Community Analyses for Metabolite Production), an approach to systematically 370 

screen multiple candidate communities on multiple substrates under different growth 371 

conditions and rank the best performing communities that are most likely to succeed in 372 

laboratory experiments. Our approach utilises emerging computational methods with 373 

GSMMs in the context of microbial communities of LAB. In pursuit of an ideal two-species 374 

community for lactate production, we established a framework where community 375 

growth is the objective, and the community model is tested for growth on two primary 376 

carbon sources, glucose, and xylose. Screening of viable communities based on predicted 377 

growth and lactate yield further enabled comparison between monoculture and co-378 

culture states. Communities were labelled with specific interaction behaviours because 379 

of the changes observed in growth rates. The results obtained elucidated the role of single 380 

or multi-substrates for the prevalence of a particular interaction type in the communities. 381 

Certain cross-fed metabolites among the viable communities were either positively 382 

correlated or negatively correlated. This correlation occurred regardless of the 383 

interaction type of the community. A change in nutrient condition revealed differences in 384 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.24.353805doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.24.353805
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

the interaction behaviours of the communities, but this did not influence the results of 385 

the top-ranked communities based on lactate flux. A community comprising of L. casei 386 

ATCC 334 and L. plantarum WCFS1 was selected as the best-performing pair. These 387 

species have been used independently in industrial applications as starter cultures. L. 388 

plantarum is found in many ecological niches and is one of the model organisms in LAB 389 

research (29). The GEM of L. plantarum was one of the first reported GSMMs from the 390 

LAB species (30). The presence of L. plantarum in the top-ranked pairs in our study 391 

reiterates the compatibility of this microbe with other LAB species and its utility for 392 

lactate production. Other L. plantarum and Leuconostoc species are used as co-cultures 393 

for fermentation of Chinese sauerkraut (31). L. rhamnosus strains have been co-cultured 394 

with Saccharomyces cerevisiae for enhanced exopolysaccharide production (32). 395 

Pediococcus acidilactici species have been co-cultured with L. delbrueckii species for 396 

pediocin production in milk (33). 397 

Highly efficient micro-organisms are required to meet the industrial standards for lactic 398 

acid production. This can be achieved through perturbation, i.e., addition or deletion of 399 

genes that enhance the capability of the community to produce lactate. To address this 400 

aspect, we undertook an in silico strain optimisation approach using FSEOF to predict 401 

reactions that can be deleted to improve product flux.  The results we observed were 402 

encouraging as they were in accordance with previously published experiments where 403 

gene deletion was utilised to enhance lactate yield in monocultures of different micro-404 

organisms. These results also allude that gene knock-outs identified in monoculture can 405 

be extended to microbial communities as well. The gene knock-outs can be from one or 406 

both organisms in a co-culture. Co-cultures and communities of LAB can provide a 407 

significant advantage over the engineering of monocultures. With our framework, we 408 

have predicted LAB communities, which are useful candidates to produce lactate. These 409 
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predictions form a ready shortlist for experimental validation. Our workflow can be 410 

extended to communities of larger sizes as well, although the increase in combinatorial 411 

complexity will also demand an increase in computational cost. The caveat of this study 412 

is the dependence on the quality of the GSMMs used. The biochemical pathways to 413 

produce the metabolite of interest should also be well defined in the GSMMs. 414 

Nevertheless, as newer, more accurate reconstructions emerge, they can be used in our 415 

approach to present more accurate insights into the compatibility and interactions 416 

between organisms to choose the best possible community for a given application. Our 417 

approach provides a ready framework for the integration of additional experimental data 418 

arising from transcriptomics studies or 13C metabolic flux analyses, to better constrain 419 

the models and improve the accuracy of the predictions.  420 

In sum, we have presented a systematic workflow for the careful screening and analysis 421 

of many microbial co-cultures to produce the desired metabolite. Our method examines 422 

these co-cultures across growth conditions and across multiple substrates to identify the 423 

most promising candidates for experimental validation. Computational approaches, as 424 

presented in this study, can provide additional flexibility and valuable insights towards 425 

informing the selection of microbial co-cultures for metabolic engineering.  426 

Materials and Methods 427 

GSMMs 428 

The Virtual Metabolic Human (www.vmh.life) repository was used for retrieving 47 429 

Lactic Acid Bacteria GSMMs. Models (AGORA version 1.03) of Lactobacillus, Leuconostoc, 430 

and Pediococcus species were obtained (34). Previously curated and published GSMMs of 431 

L. plantarum WCSF1 and L. reuteri JCM 1112 were also used to construct the synthetic 432 
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communities of LAB (14, 30). A list of all 49 GSMMs used in this study is tabulated in Table 433 

S1. Three models from VMH, namely, L. amylolyticus, L. crispatus, and L. delbrueckii subsp. 434 

bulgaricus ATCC BAA 365 did not have the necessary exchange and transport reactions 435 

for glucose. We added glucose exchange and transport reactions to these models, based 436 

on evidence from literature suggesting their capability to metabolise glucose (35).  437 

Creation and growth simulations of two-species communities  438 

We generated all possible pairwise combinations of the 49 species to yield 1176 synthetic 439 

LAB communities and simulated them using SteadyCom (6), a constraint-based 440 

modelling method for the creation and steady-state flux-balance analysis (FBA) of 441 

microbial communities. SteadyCom performs a community FBA by computing the 442 

relative abundance of each species with the objective function as maximisation of 443 

community growth. 444 

LAB are known to be cultured in laboratories with MRS (deMan, Rogosa, and Sharpe) 445 

nutrient media. Analogous growth conditions were simulated in silico using nutrient 446 

uptake components for LAB models obtained from the KOMODO (Known Media 447 

Database) at ModelSEED (36). All known 20 amino acids were included in this nutrient 448 

media. Lignocellulose hydrolysate contains glucose and xylose as significant components. 449 

Hence, to mimic this substrate composition, we constrained the lower bounds of glucose 450 

and xylose exchange reactions in the community compartment (u) of the models.  451 

Due to a lack of species-specific data for glucose and xylose uptakes, we considered three 452 

nutrient conditions: a) a minimal nutrient condition with -1 mmol/gDW/h of glucose and 453 

xylose each, b) an excess nutrient condition with constraints of -30 and -10 mmol/gDW/h 454 

for glucose and xylose, respectively, and c)  finally a community-specific nutrient 455 

condition, where we identified the glucose and xylose uptake fluxes at half-maximal 456 
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growth rates of each model. The lower bounds of the amino acid exchange reactions and 457 

other essential components required for model growth were considered as -1 or -1000 458 

mmol/gDW/h (37). ATP maintenance constraints for all the LAB models were fixed at 459 

0.36 mmol/gDW/h, as observed in the curated L. plantarum WCFS1 and L. reuteri JCM 460 

1112 GSMMs. The growth simulations were performed in an anoxic environment, as LAB 461 

are anaerobic micro-organisms. Steady-state community growth rates, as well as species 462 

abundances, were computed. All simulations were performed in MATLAB R2018a 463 

(MathWorks Inc., USA) using the COBRA Toolbox v3.0 (38) and IBM ILOG CPLEX 12.8 as 464 

the linear programming solver.  465 

Categorising communities based on interaction type 466 

Communities were categorised into six interaction types, namely, parasitism, 467 

amensalism, commensalism, mutualism, neutralism, and competitive, based on a 10% 468 

difference in growth rates of the microbe when grown in co-culture compared to when 469 

the bacterium is grown separately (17). Mutualism and commensalism have a positive 470 

effect on community partners, whereas parasitism, competition, and amensalism evoke 471 

a negative response on the growth of either partner.  472 

Studying variation in lactate fluxes in a community using FVA 473 

We calculated the maximum lactate produced by a community using FVA on viable 474 

communities. FVA computes the flux range of every reaction by minimising and 475 

maximising the flux through the reactions (39). We considered a community to be viable 476 

if each organism in the community had a minimum growth rate of 0.01 h-1 or higher (40). 477 

While performing FVA, the biomass reaction in each community was constrained to the 478 

maximum community growth rate obtained. SteadyComFVA was used to calculate the 479 
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maximum flux through the lactate exchange reaction in the community compartment 480 

(“EX_lac_D(u)”).  481 

Computing expected vs. observed lactate yield in each community  482 

The ConYE model proposed by Medlock et al. (41) for identifying metabolic mechanisms 483 

of interactions within gut microbiota was adapted to our study to calculate and compare 484 

the expected and observed lactate yield from each LAB community. The ConYE model 485 

identifies metabolites for which the consumption or production behaviour is altered in 486 

co-culture. Each strain is assumed to produce or consume a fixed quantity of each 487 

metabolite. This assumption is tested by comparing the expected behaviour to the 488 

observed co-culture data. The null hypothesis states that the metabolite in co-culture is 489 

equal to the predicted amount. Rejecting the null hypothesis implies that the co-culture 490 

has caused at least one species to significantly alter the metabolism of the metabolite 491 

(41).  492 

With the lactate fluxes identified in monoculture conditions, an estimate of the lactate 493 

flux produced in co-culture can be made, considering the substrate utilisation by each 494 

species in co-culture. This computed expected yield of lactate is compared with the 495 

maximum lactate fluxes observed in the community compartment (u) in co-culture.  496 

𝑴𝒐𝒊    observed metabolite yield = 497 

 
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 𝑓𝑙𝑢𝑥 𝑖𝑛 𝑐𝑜𝑐𝑢𝑙𝑡𝑢𝑟𝑒

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑢𝑝𝑡𝑎𝑘𝑒
 498 

𝑴𝑬𝒊   = (s𝟏×𝒚𝟏𝒊) + (s𝟐×𝒚𝟐𝒊) 499 

 𝑴𝑬𝒊   expected metabolite yield  500 

  𝒔𝟏 total substrate uptake of species 1 in co-culture 501 
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  𝒔𝟐  total substrate uptake of species 2 in co-culture 502 

 𝒚𝟏𝒊 the maximum yield of metabolite 𝒊 in species 1 in monoculture 503 

 =  
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 𝑓𝑙𝑢𝑥 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 1

𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑢𝑝𝑡𝑎𝑘𝑒 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 1
 504 

 𝒚𝟐𝒊 the maximum yield of metabolite 𝒊 in species 2 in monoculture 505 

=  
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 𝑓𝑙𝑢𝑥 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 2

𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑢𝑝𝑡𝑎𝑘𝑒 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 2
 506 

If the observed yield of a community is 10-fold higher than the expected yield, i.e.                507 

𝑀𝑂𝑖
≥ 10 ∗ 𝑀𝐸𝑖

, the community is considered as a candidate pair for lactate production.  508 

Selection of product and growth-efficient communities 509 

Product and growth-efficient communities are defined as communities where a 510 

perturbation to the availability of substrates does not affect the viability of the 511 

community and the capability to produce lactate. To identify such product and growth-512 

efficient communities, a set of simulations were performed. In the first simulation, the D-513 

Lactate exchange reaction of one organism in the pair was blocked, which prevented 514 

cross-feeding of D-Lactate between the community members. Secondly, one organism in 515 

the pair was considered as the primary consumer of the substrates, while substrate 516 

consumption was blocked in the other organism. Community pairs that retained viability 517 

in all simulations were ranked after normalisation (min-max normalisation using the 518 

‘rescale’ function in MATLAB R2018a) of lactate yields and growth rates. 519 

Metabolic Distances of LAB communities 520 

We computed metabolic distances of all LAB models in each community as described in 521 

Magnúsdóttir et. al (42). The distance is calculated using the Jaccard distance. Metabolic 522 
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Distance = 
1−|𝑅𝑖∩𝑅𝑗|

|𝑅𝑖𝑅𝑗|
 , where Ri is the reaction list from the model i and Rj is the reaction list 523 

of model j. Metabolic distance of 1 indicates that the two models do not share any 524 

reactions, whereas a metabolic distance of zero indicates that the models have identical 525 

reactions.  526 

Community optimisation and prediction of reaction knock-outs using FSEOF  527 

We performed strain optimisation methods such as the identification of knockout targets 528 

in each LAB community that would positively impact lactate production. To this end, we 529 

used the FSEOF (Flux Scanning based on Enforced Objective Flux) approach (15). Using 530 

FSEOF, potential reactions to be knocked out were selected based on metabolic flux 531 

scanning, which selects fluxes towards product formation. Other constraints used to 532 

predict reaction knock-outs included an increase in lactate flux of the mutant community 533 

model compared to wild-type and viability (i.e., a growth rate of 0.01 h-1 or higher) of 534 

both organisms in the community. When the number of reactions obtained from FSEOF 535 

was less than or equal to an arbitrary threshold of 30, double deletions were carried out 536 

to test all possible knock-out combinations (i.e., a maximum of 435 double deletions) of 537 

these reactions. The threshold of 30 reactions was chosen for ease of computation. A 538 

suitable strategy was selected depending upon the contribution of each deletion towards 539 

an increase in lactate flux compared to the wild-type lactate flux. On the other hand, if the 540 

reaction list had greater than 30 reactions, only single reaction deletions were performed 541 

to identify potential knock-outs that improved lactate flux. For this in silico strain 542 

optimisation task, the COBRA Toolbox v3.0 functions ‘removeRxns’ and ‘optimizeCbModel’ 543 

were used for reaction deletions and FBA with optimisation of community biomass, 544 

respectively.  545 

 546 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.24.353805doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.24.353805
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

Data availability 547 

All models used in this work and the codes used for our analysis are available at: 548 

https://github.com/RamanLab/CAMP 549 
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Supplemental Material 680 

 681 

Fig. S1: Histogram distribution of monoculture growth rates of all 49 species 682 

under three different nutrient conditions 683 

 684 
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 685 

Fig. S2: Monoculture vs. Co-culture growth rates with excess nutrient uptake The 686 

heatmap depicts the change in the growth rate of an organism’s monoculture growth 687 

compared to when it is co-cultured with another species under excess nutrient uptake 688 

condition. A difference lesser than 10% of monoculture growth is regarded as a decrease. 689 

838 non-viable pairs and the diagonal, which represents 49 monocultures, are depicted 690 

as white squares. 691 
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 692 

Fig. S3: Monoculture vs. Co-culture growth rates with minimal nutrient uptake. The 693 

heatmap depicts the change in the growth rate of an organism’s monoculture growth 694 

compared to when it is co-cultured with another species under minimal nutrient uptake 695 

condition. A difference greater than 10% of monoculture growth is considered an 696 

increase, lesser than 10% of monoculture growth is regarded as a decrease. 684 non-697 

viable pairs and the diagonal, which represents 49 monocultures, are depicted as white 698 

squares. 699 
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 700 

Fig. S4:  Monoculture and Coculture growth rates with minimal nutrient uptake. 701 

The heatmap depicts the absolute values of the predicted growth rates of each organism 702 

in the community. Diagonal elements represent the monoculture growth rates of all 49 703 

species. Non-viable communities are denoted in white squares.  704 
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 705 

Fig. S5: Monoculture and Coculture growth rates with community-specific nutrient 706 

uptake fluxes. The heatmap depicts the absolute values of the predicted growth rates of 707 

each organism in the community. Diagonal elements represent the monoculture growth 708 

rates of all 49 species. Non-viable communities are denoted in white squares. 709 
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 710 

Fig. S6: Monoculture and Coculture growth rates in excess-nutrient condition. The 711 

heatmap depicts the absolute values of the predicted growth rates of each organism in 712 

the community. Diagonal elements represent the monoculture growth rates of all 49 713 

species. Non-viable communities are denoted in white squares.  714 

 715 

 716 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2020. ; https://doi.org/10.1101/2020.10.24.353805doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.24.353805
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 
 

 717 

Fig. S7 Correlation between the cross-fed metabolites in the excess nutrient 718 

condition. Positively correlated metabolites are denoted in blue, whereas negatively 719 

correlated metabolites are denoted in brown. Alpha-ketoglutarate and malate, Proline 720 

and trehalose are among the positively correlated metabolites.  721 
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 722 

 723 

Fig. S8 Correlation between the cross-fed metabolites in the minimal nutrient 724 

condition. Positively correlated metabolites are denoted in blue, whereas negatively 725 

correlated metabolites are denoted in brown. Acetate and acetaldehyde, ethanol and 726 

acetaldehyde are among the positively correlated cross-fed metabolites.  727 
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