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ABSTRACT 
Summary: Post-GWAS studies using the results from large consortium meta-analysis often 

need to correctly take care of the overlapping sample issue. The gold standard approach for 

resolving this issue is to reperform the GWAS or meta-analysis excluding the overlapped 

participants. However, such approach is time-consuming and, sometimes, restricted by the 

available data. deMeta provides a user friendly and computationally efficient command-line 

implementation for removing the effect of a contributing sub-study to a consortium from the 

meta-analysis results. Only the summary statistics of the meta-analysis the sub-study to be 

removed are required. In addition, deMeta can generate contrasting Manhattan and quantile-

quantile plots for users to visualize the impact of the sub-study on the meta-analysis results. 

Availability and Implementation: The python source code, examples and documentations of 

deMeta are publicly available at https://github.com/Computational-NeuroGenetics/deMeta-

beta. 
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INTRODUCTION 
Genome wide association studies (GWAS) has been very successful in discovering genomic 

variants that associated with human complex diseases or traits (Visscher, et al., 2017). Due to 

the regulations on sharing of sensitive genetic data, meta-analysis is the most deployed 

approach for large GWAS consortium (Willer, et al., 2010). Typically, tens of contributing 

groups share with the analysts of the consortium their GWAS summary statistics (sub-studies), 

and, the meta-analysis is performed at private computers of the consortium. Most GWAS 

consortiums make their meta-analysis results publicly accessible on through internet. These 

summary statistics is becoming an extremely valuable resources for follow-up studies on 

human genetic research, for example, genetic pleiotropy between diseases or traits (Bulik-

Sullivan, 2015) and polygenic risk predictions (Lewis, 2020) for human complex diseases. 

However, these public GWAS results often include overlapping participants between one 

another. Not correctly accounting for the overlapping samples can generate spurious results.  

Few methods have been proposed to resolve the overlapping sample issue in GWAS or 

post-GWAS analysis. Although the gold-standard solutions to this problem is to reperform the 

GWAS or meta-analysis excluding the overlapped samples, these approaches are time-

consuming and sometimes not practicable due to restrictions on the data access. Lin and 

Sullivan proposed an approximate method (Lin and Sullivan, 2009) to correct for the 

overlapping samples effect in meta-analysis. And, LeBalanc et al developed a method to tackle 

the overlapping sample issue in genetic pleiotropic studies (LeBlanc, et al., 2018). However, no 

efficient program exists for removing the effect of contributing sub-studies to a consortium 

meta-analysis result. Under some conditions, exact solutions exist for resolving the overlapping 

issue. deMeta implemented the inverse of the two most popular meta-analysis frameworks 

(Willer, et al., 2010), i.e., sample size weighted and inverse-variance weighted, in a flexible and 

efficient manner to fit in such situations. 

 

IMPLEMENTATION 

We derived the inverse of sample-size weighted and inverse-variance weighted meta-analysis 

models in Table 1. The mathematical derivation is exact. We implemented the derived models 

into a command-line tool, deMeta, in Python. Our implementation has been tested 

successfully on three most popular operating systems, Windows 10, Linux (Ubuntu 16.04 and 

Red Hat Enterprise Linux 7.6), and MacOS 10.15. Other features of deMeta include checking 
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and flipping DNA strands in order to match the effective SNP alleles and generating contrasting 

Manhattan and quantile-quantile plots (QQ -plot). The later will help the users to visualized 

changes in associations before and after removing overlapping samples (Fig 1). 

Table 1. Estimator for subtracting sub-studies from a meta-analysis 

Method Statistic Equation 

Sample size weighted Z 𝑍 =  
√𝑁𝑚 × 𝑍𝑚 − √𝑁𝑠 × 𝑍𝑠

√𝑁𝑚 − 𝑁𝑠

 

Inverse variance weighted 

�̅� �̅� =  
𝑊𝑚 × 𝛽𝑚 − 𝑊𝑠 × 𝛽𝑠

𝑊𝑚 − 𝑊𝑠
 

𝑆𝐸(�̅�) 𝑆𝐸(�̅�) = √(𝑊𝑚 − 𝑊𝑠)−1  

Where N and Z donates sample size and Z-score, respectively. Weight 𝑊 = 1 𝜎⁄  = 1/SE()2 and  is the 

beta coefficient. Subscripts m and s represent statistic values for the original meta-analysis (m) and sub-

studies (s), respectively. 

 

EXAMPLE 

      A      B 

          
Fig. 1 Demonstration of using deMeta using the GIANT BMI GWAS studies (Locke, et al., 2015; Yengo, 
et al., 2018). A. QQ plot of the GWAS summary statistics from Yengo L, et al.(Yengo, et al., 2018) 
(Original-Meta) vs after removing that from Locke AE., et al.(Locke, et al., 2015). B. Contrasting 
Manhattan plot for the same data sets. 

 

As a demonstration we applied deMeta to the summary statistics of the GWAS for body mass 

index (BMI) (Locke, et al., 2015; Yengo, et al., 2018). The Yengo et al data is a meta-analysis 

results of the Locke et al study and the UK biobank data. Both the Yengo et al and the Locke 

et al data were ware downloaded from 

https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_fil
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es. The inverse of the inverse variance weighted function of deMeta was applied to obtain 

summary statistics for UK biobank data which is not available (Fig. 1). 

 CONLCUSIONS 

We have provided an efficient tool deMeta and demonstrated it in removing the effect of sub-

studies from a meta-analysis in genetics studies. Theoretically, deMeta can also be used to 

remove effects of any subset from a large-scale consortium. Moreover, deMeta can 

eliminate/minimize effects of overlapped samples between reference and target samples 

when constructing polygenic risk scores for disease prediction in clinical use. Last, deMeta can 

be applied in meta-analysis beyond GWAS. 
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