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ABSTRACT 35 

Genome rearrangements often result in copy number alterations of cancer-related genes and cause the 36 

formation of cancer-related fusion genes. Current structural variation (SV) callers, however, still 37 

produce massive numbers of false positives (FPs) and require high computational costs. Here, we 38 

introduce an ultra-fast and high-performing somatic SV detector, called ETCHING, that significantly 39 

reduces the mapping cost by filtering reads matched to pan-genome and normal k-mer sets. To reduce 40 

the number of FPs, ETCHING takes advantage of a Random Forest classifier that utilizes six 41 

breakend-related features. We systematically benchmarked ETCHING with other SV callers on 42 

reference SV materials, validated SV biomarkers, tumor and matched-normal whole genomes, and 43 

tumor-only targeted sequencing datasets. For all datasets, our SV caller was much faster (≥15X) than 44 

other tools without compromising performance or memory use. Our approach would provide not only 45 

the fastest method for largescale genome projects but also an accurate clinically practical means for 46 

real-time precision medicine. 47 

  48 
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Introduction 49 

Chromosomal rearrangements in coding regions and regulatory non-coding elements often cause 50 

malignancy of somatic cells. Although structural variations (SVs) occur much less frequently than 51 

single nucleotide variations (SNVs), the SVs often have a greater impact on cellular functions and 52 

gene expression 1. In particular, large SVs (>1Kbp), which include large insertions (INSs), deletions 53 

(DELs), inversions (INVs), duplications (DUPs), and translocations (TRAs), are more often 54 

associated with gain- and/or loss-of-function of cancer-related genes and druggable target genes for 55 

cancer treatments than are SNVs 2-7. For instance, ERBB2 amplification in breast cancers (BRCAs) 8, 9, 56 

EML4-ALK fusion in lung cancer 10, and BCR-ABL fusion in chronic myeloid leukemia 11 are well-57 

known SV-driven cancer drivers and actionable targets for cancer treatments. Hence, the rapid 58 

detection of cancer-related SVs is indispensable for companion diagnostics and targeted cancer 59 

therapy.  60 

So far, a handful of SV callers have been introduced to find germline and somatic SVs in 61 

normal and/or tumor samples by using a read-based approach –– read-depth 12, discordant read-pairs 62 

13, soft-clipped reads 14-16, and their combinations 17-21 –– or by using a k-mer-based approach 22. Some 63 

of them utilize local assembly of reads 13, 20-22 to precisely detect breakpoints (BPs) and SV types.  64 

Regardless of the approach, all current SV callers require genome mapping of all input reads. 65 

Although the mapping process is an indispensable step for the confident identification of SVs, it 66 

consumes most of the computing time in processing massive whole genome sequencing (WGS) data. 67 

For instance, the genome mapping of 30X WGS data from a cancer patient takes ~300 hours with a 68 

single thread on a high-performing computer, resulting in delayed diagnosis. Furthermore, SV studies 69 

for largescale WGS projects, such as those undertaken by the Pan-Cancer Analysis of Whole 70 

Genomes (PCAWG) 23 and the Genome Aggregation Database (gnomAD) 24 consortiums, would be 71 

only doable by institutes with access to a giant computing facility or expensive cloud computing 72 

services. 73 

The majority of sequenced reads are reference reads (perfectly matched to the reference 74 

genome), which could be dispensable for SV calling. Mapping the reference reads consumes 75 
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expensive computing time. It may also increase background noise resulting from imprecise and 76 

ambiguous alignments of the reads (mainly due to repeats or low-complexity regions) or from 77 

unresolved misassemblies of the reference 25, 26. Thus, only mapping informative (non-reference) 78 

reads to detect SVs would both reduce computing time and increase accuracy. 79 

In general, somatic SV callers use a case-control design that compares tumor (case) SVs with 80 

those of matched normals (control) to detect somatic (case-specific) SVs. The absence of matched 81 

normal samples may lead to either a failure of SV-calling or a high FP rate spawned by germline SVs. 82 

In particular, cancer panel sequencing is frequently carried out using only tumor samples. Using the 83 

pan-genome sequences containing all non-medical variations instead of a matched normal sample 84 

would help to enhance the accuracy of SV calling in this situation.  85 

In this study, we developed ETCHING, an ultra-fast SV detection method. Our approach 86 

significantly reduces the number of reads to be mapped by excluding those from the reference and/or 87 

pan-genome k-mer (PGK) set. This new strategy drastically reduces running time (it is at least ~15 88 

times faster than other methods) without compromising performance by taking advantage of machine-89 

learning-based classification to remove FP SVs further. ETCHING displays either comparable to or 90 

better accuracy than other state-of-the-art SV detection tools on benchmarking whole genome and 91 

panel sequencing datasets as well as reference materials. 92 

  93 
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Results 94 

Fast prediction of somatic SVs  95 

We report the development of ETCHING (Efficient deTection of CHromosomal rearrangements and 96 

fusIoN Genes) – a fast computational SV caller that comprises four stepwise modules: Filter, Caller, 97 

Sorter, and Fusion-identifier (Fig. 1a; Supplementary Fig. 1; see Methods for more details). The Filter 98 

module uses one of three different filters: a Pan-Genome k-mer (PGK) filter that excludes tumor reads 99 

in which all k-mers are present in PGK, a Normal filter that removes those reads in which all k-mers 100 

come from normal reads (not using reference genomes), or a combined (PGKN) filter (Fig. 1b). PGK 101 

is a unique set of 31-mers from 10 human genome assemblies and nonpathogenic single nucleotide 102 

polymorphisms (SNPs) from dbSNP (~3.9 � 109 k-mers; Supplementary Fig. 2; Supplementary Table 103 

1). This module allows us to collect tumor-specific (TS) reads by filtering reference reads, those with 104 

germline variations, and those matched to normal reads. We used The Cancer Genome Atlas (TCGA) 105 

BRCA WGS data used in a previous SV study 27 for checking the Filter module. Of the BRCA 106 

samples, 31 and 9 were selected for training and hold-out test, respectively, by random selection 107 

(Methods; Supplementary Table 2). For the hold-out test dataset, the Filter module excluded about 108 

96.2% of the reads by PGK, 99.2% by Normal, and 99.4% by PGKN (Fig. 1c). The remaining TS 109 

reads clearly present BPs with a sharp decay of read-depth in somatic DEL, DUP, INV, and TRA 110 

examples, reminiscent of the chemical etching process (Fig. 1d). This filtration method significantly 111 

shortened the mapping process. The mapping time for TS reads from the nine hold-out BRCA WGS 112 

datasets with varied coverages (33–68X and 27–56X in tumor and normal samples, respectively) was 113 

approximately 300 times faster than that for all reads (Unfiltered) using BWA-MEM 28 (Fig. 1e). 114 

After mapping TS reads to the reference genome (hg19), the Caller module collects simple-115 

clipped reads to find initial BPs (Supplementary Fig. 3a) and then defines breakends (BNDs) for BP 116 

pairs by considering the clipped direction (Supplementary Fig. 3b). The identified BNDs were then 117 

assigned to an SV type, such as DEL, DUP, INV, and TRA, according to their position and the 118 

clipped direction (Supplementary Fig. 3c; Methods). Next, the Sorter module predicts a confidence 119 

score for each SV call using machine learning models pre-trained over the 31 training datasets 120 
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(Methods). Because there is no ground truth for the TCGA dataset, we instead used a silver standard 121 

set of SVs, simultaneously detected by multiple SV callers, during training and evaluation (Methods). 122 

Random Forest 29 (RF)-based sorter was chosen as our default SV sorter module (Methods; 123 

Supplementary Fig. 4). In the last step, with the predicted SVs, the Fusion-identifier module predicts 124 

fusion-gene (FG) candidates (Methods). 125 

We compared the running time of ETCHING with those of other SV callers over the hold-out 126 

test dataset. The CPU time (running time converted in a single thread) for the entire SV prediction 127 

process of ETCHING was at least 15 times less than those of the other SV callers (Fig. 1f). In real 128 

(wall-clock) time, ETCHING took 2.2 hours on average, meaning that it was at least 6.6 times faster 129 

than the second-fastest caller (Manta), on 30 threads (Supplementary Fig. 5). The ETCHING process 130 

not only reduced the running time but also increased the precision of the SV prediction (Fig. 1g). The 131 

PGK, Normal, and PGKN filters gradually reduced the number of FP reads with little compromise of 132 

the true positive (TP) rates, resulting in better performances (F1-score) with the filters on BRCA 133 

WGS and HCC1395 cell line WGS datasets (Fig. 1g; Supplementary Fig. 6). Taken together, these 134 

results suggest that ETCHING provides high-performance SV prediction at a faster rate than other SV 135 

callers.  136 

 137 

ETCHING displays robust performance 138 

We next sought to systematically benchmark the performance of ETCHING against the performances 139 

of the read-based callers DELLY, LUMPY, Manta, and SvABA, as well as that of a k-mer-based 140 

caller, novoBreak, over WGS data from the HCC1395 cancer cell line (50X) and its matched normal 141 

cell line, HCC1395 BL (30X). Because the HCC1395 dataset also lacks ground-truth SVs, we again 142 

used the approach of employing silver standard SVs identified by multiple callers, mentioned above. 143 

The precision-recall (PR) curves over varying parameters showed that ETCHING performed more 144 

robustly than the other callers, particularly for precision (Fig. 2a). We obtained optimal cutoffs, which 145 

were used in the following benchmarking analyses for fair comparisons (Fig. 2a, red indicator; 146 

Methods).  147 
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Because the performances of SV callers tend to be affected by the read-depth 30, we then 148 

examined the robustness of the SV callers over varying read-depths. For this comparison, we 149 

randomly subsampled 40% (20X), 60% (30X), and 80% (40X) of the reads from the HCC1395 cancer 150 

line (50X) while keeping the depth of the normal reads fixed, and then performed benchmarking 151 

analyses with the optimal cutoffs (Fig. 2b). ETCHING displayed a robust performance, regardless of 152 

the read-depth, and showed a slightly increased precision as the read-depth became higher. In contrast, 153 

Manta and SvABA presented lower recall rates at low read-depths but performances that were 154 

comparable to that of ETCHING at 50X. 155 

To compare the performance of ETCHING on primary tumor samples with varying read-156 

depth and tumor purity with those of the other tools, the nine hold-out BRCA samples were again 157 

used as the benchmarking dataset (Supplementary Table 2). In this analysis, ETCHING showed 158 

results that were superior or comparable to those of other tools, regardless of the SV type (Fig. 2c). 159 

Notably, ETCHING robustly predicted all SV types while displaying high F1-scores across samples, 160 

compared to other tools. We also benchmarked the SV callers over 33 true SVs from four thyroid 161 

cancer (THCA) samples of TCGA as an independent evaluation dataset. The performance of 162 

ETCHING was comparable to those of SvABA and novoBreak in terms of the F1-scores (Fig. 2d; 163 

Supplementary Fig. 7; Supplementary Table 3).  164 

Because the silver standard set of SVs could still include FPs, we selected high-quality (HQ) 165 

SVs with depth-difference and connect-pair scores for DEL/DUP and INV/TRA, respectively 166 

(Supplementary Fig. 8; see Supplementary Note for details). With HQ SVs, ETCHING still displayed 167 

an accuracy that was comparable or superior to that of the other tools (Supplementary Fig. 9). 168 

 169 

SV prediction of experimentally validated targets 170 

For experimental validation of the SV callers, we newly sequenced the whole genomes of 26 multiple 171 

myeloma (MM) samples with matched normal samples (Supplementary Table 4). We first 172 

benchmarked the SV callers using the MM samples, and found that ETCHING outperformed the 173 

others over a silver standard set of all SV types (Fig. 2e; Supplementary Fig. 9 and 10). Notably, its 174 
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performance exceeded that of another k-mer-based caller, novoBreak, which showed a lower 175 

precision, particularly for INV and TRA types. 176 

We then evaluated all of the SV callers using known clinical SV biomarkers of MM, such as 177 

DELs (in 1q25, p16, RB1, and TP53) and IGH rearrangements (including DELs and TRAs)(Fig. 3a) 31. 178 

Fluorescence in situ hybridization (FISH) and karyotype were first examined on the SV biomarkers 179 

(Supplementary Table 5). However, because FISH probe sets (Supplementary Table 6) of the SV 180 

biomarkers cannot discern focal deletion/duplication from (partial) aneuploidy, the true set of 181 

biomarker SVs were selected through a manual curation by considering read-depth changes and 182 

unbalanced minor allele frequency (Supplementary Fig. 11a,b) as well as discordant paired-reads in 183 

tumor and normal samples for each patient (Supplementary Fig. 11c–e; Methods). The SV set 184 

supported by FISH and/or karyotype (excluding aneuploidy) were well overlapped with manually 185 

curated SV biomarkers (Fig. 3b). We accordingly benchmarked ETCHING and other SV callers with 186 

the manually curated SV biomarkers as a true set. The receiver operating characteristics (ROC) 187 

showed that ETCHING displays comparable or slightly better performances than other callers in the 188 

SV biomarker level (Fig. 3c). Of 23 curated biomarkers, ETCHING detected 19. When breaking 189 

down the IGH rearrangements into SV level, known MM target genes, FGFR3, IL6ST, CCND3, 190 

CCND1, and IGLL5 were detected as translocation partners by manual curation (Fig. 3b middle; 191 

Supplementary Table 7). Of the 38 SVs, ETCHING detected 17 SVs but missed seven including a 192 

p16 DEL (MM17), three IGH DELs (MM10, 12, and 18), and three IGH TRAs (MM1, 11, and 14) 193 

(Fig. 3b). 194 

We further searched for SVs related to actionable (cancer-druggable and clinically verified) 195 

targets from the OncoKB database 32. ETCHING detected five actionable SV targets – BRCA2 DEL 196 

(MM22), ALK DUP (SNUH19_MM04), PIK3CA DUP (MM15), AKT1 DUP (MM3), and NTRK1 197 

DUP (SNUH19_MM01) (Fig. 3b,d). Of the five predicted targets, three targets (excluding those from 198 

the MM3 and MM15 patients, which lack tumor DNA quantities) were verified by targeted PCR (Fig. 199 

3e). The PCR products expected after amplification of ALK DUP (SNUH19_MM04), BRCA2 DEL 200 
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(MM22), and NTRK1 DUPs (SNUH19_MM01) were observed in tumor but not in normal samples, 201 

indicating that the SV targets are true cases. 202 

 203 

SV and FG prediction in cancer panel sequencing 204 

Targeted gene panel sequencing is more relevant than WGS for clinical applications, and clinical 205 

laboratories daily produce panel sequencing data with the aim of finding actionable target variations, 206 

SNVs, SVs, and FGs. Targeted gene panel sequencing is often applied to detect low-frequency 207 

alterations such as somatic SNVs or FGs in cell-free DNA from cancer patients. To test the 208 

effectiveness of the SV callers in such clinical situations, we analyzed 56 targeted gene panel 209 

sequencing data derived from three types of cell-free DNA (cfDNA) reference material (Methods): 210 

Complete Reference (CR), Complete Mutation Mix (CMM), and Mutation Mix v2 (MMv2). Each 211 

type contains two or three synthetic FGs with low mutant allele ratios (0.5–5%) and wild-type (WT) 212 

alleles from a cell line, GM24385.  213 

Because cancer panel sequencing approaches generally lack matched normal data, ETCHING 214 

was first set to use a PGK filter to extract TS reads for SV prediction. Other benchmarking tools, with 215 

the exception of novoBreak, also predict SVs in the absence of normal data. novoBreak, given its 216 

requirement for normal data, used simulated data from the hg19 reference genome (Methods). Note 217 

that we ran all tools with default parameters that display a better recall rate for panel sequencing data. 218 

This analysis showed that, along with LUMPY and DELLY, ETCHING is one of the top 219 

callers in terms of recall over such low mutant allele frequencies (Fig. 4a,b), while showing a 220 

moderate level of additional calls in targeted regions (Fig. 4c). Additional calls could be either FP 221 

calls or germline SVs from the WT sample. Compared to other tools, ETCHING barely predicted 222 

additional calls in non-target regions, indicating a relatively low frequency of FP calls (Fig. 4c, gray). 223 

Because the reference materials include WT data that lack mutant alleles, the benchmarking analyses 224 

of SV prediction were also performed using the WT data as the normal sample. ETCHING was then 225 

set to use a PGKN filter. Unlike the other tools, ETCHING and LUMPY maintained high recall rates 226 

(Supplementary Fig. 12) compared to the results obtained without WT data (Fig. 4a,b). This result 227 
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indicates that ETCHING and LUMPY can effectively remove FPs without compromising the recall 228 

rate for targeted gene panel sequencing data, regardless of the presence of matched normal data. Since 229 

BreaKmer33 is specialized for targeted sequencing data, we also tested it on the same dataset. 230 

However, BreaKmer failed to report any result (Methods). 231 

Then, on the cancer panel sequencing data from formalin-fixed paraffin-embedded (FFPE) 232 

and frozen tissues from a previous study of BreaKmer 33, we evaluated the performances of 233 

ETCHING and other tools including BreaKmer. The data consists of 105 replicates from 37 samples 234 

of different types of cancers (Supplementary Table 8). Because the data included tumor samples 235 

without matched normal samples, ETCHING utilized the PGK, rather than the PGKN, filter for this 236 

prediction as above. All settings for the other tools were the same as were used for the reference 237 

materials. Since the data contains small variants in FLT3 and KIT, we included small variations in this 238 

analysis (Methods). We first ran BreaKmer and compared its results to those of the previous study 33. 239 

BreaKmer was still very specific, giving only 479 additional calls across all 105 cases. However, it 240 

showed a lower recall rate (78 out of 105) than that they reported. It is possibly due to the lack of bait 241 

information or using a different version of BreaKmer (Methods). Other tools showed comparable 242 

recall rates (94 to 103 out of 105). Although DELLY showed the most sensitive performance, it was 243 

at the cost of massive additional calls (about one million). ETCHING found 98 true variants, and its 244 

number of additional calls was the lowest level except BreaKmer.  245 

ETCHING was one of three tools that were able to detect all eight FLT3 indels, which 246 

appeared in diverse forms including seven cases of DUPs (32-73bp) and one case of small indel (30bp) 247 

(Supplementary Fig. 13). Taken together, these results indicate that ETCHING shows high 248 

performance for detecting SVs and FGs in both WGS and targeted sequencing data, indicating its 249 

general usability. 250 

  251 

Benchmarking computational efficiency  252 

ETCHING significantly reduced the running time through implementation of the Filter module, 253 

resulting in computational speeds that were at least 15 times faster than those of the other tools (Fig. 254 
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1f). Such fast predictions result from significantly reduced genome mapping of reads. Although 255 

novoBreak also takes advantage of the k-mer approach to assembly TS contigs with BPs, it requires 256 

prior genome mapping of all reads to find read clusters, which is a time-consuming step. To confirm 257 

this conclusion, we determined the running times of ETCHING and novoBreak for each step (read 258 

filtration, mapping, and SV calling) on the HCC1395 dataset (Fig. 5a). As shown in Fig. 1f, based on 259 

its CPU time, ETCHING was approximately 15 times faster than novoBreak, mostly due to a 260 

reduction in the mapping time. In fact, most of novoBreak’s running time was spent in the mapping 261 

step (87%, 283.5 CPU-hours), whereas ETCHING used about 13% of its running time for this step 262 

(2.6 CPU-hours; Fig. 5a). Unlike other tools, ETCHING significantly reduces computational costs 263 

through its filtration-and-mapping strategy (Fig. 5b). Using multiple processes (30 threads) for 264 

parallel computing, ETCHING completed the entire procedure for nine hold-out datasets in 2.2h on 265 

average and for HCC1395 in 1.5h (Supplementary Fig. 5 and 14). Application of different numbers of 266 

threads showed that the efficiency of ETCHING approached saturation (1.5h) over 25 threads 267 

(Supplementary Fig. 15). 268 

 Computational efficiency reflects both speed and memory usage, which have a trade-off 269 

relationship. However, benchmarking the memory usages of SV callers on 20X and 61X tumor 270 

samples showed no such relationship (Fig. 5c), which is probably because the memory usage is more 271 

dependent on the number of k-mers than the sequencing depth. In fact, ETCHING consistently used 272 

~12G RAM, regardless of the size of the input dataset, which is comparable or more efficient than 273 

other tools in terms of memory usage. This fixed memory usage is mostly attributable to the size of 274 

the PGKN set, which is the least variable. Taken together, these results show that ETCHING is 275 

computationally very efficient, yet does not exhibit compromised performance. 276 

 277 

Discussion 278 

Here, we introduced a high performing and very efficient SV caller, ETCHING, which takes 279 

advantage of a scalable PGK set (>3.9 � 109 31-mers). Matched normal samples can extend 280 

ETCHING to the PGKN k-mer set to enrich reads with somatic variations. k-mer counting, and 281 
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searching for an exact k-mer in the large k-mer set, impose critical challenges on k-mer-based SV 282 

callers. ETCHING utilized K-mer Counter (KMC)34 for efficient k-mer counting and employed a 283 

parallel roll-encoding method for searching for TS k-mers, allowing a highly efficient k-mer 284 

processing method. 285 

ETCHING has excellent potential for the prediction of somatic SVs, even without matched 286 

normal data. The PGK filter module can remove reads present in pan-genome or containing common 287 

variations from tumor sequencing data (Fig. 1b). Although ETCHING may produce FPs, it is still 288 

useful in the absence of matched normal data (Fig. 1g; Supplementary Fig. 6). This flexibility will be 289 

quite helpful, particularly for clinical sequencing, which often lacks such matched normal data (Fig. 290 

4). 291 

ETCHING found five additional druggable SV targets (in ALK, NTRK1, BRCA2, PIK3CA, 292 

and AKT1), three of which (ALK, NTRK1, and BRCA2) were validated by PCR analysis, in MM 293 

patients who did not carry SV biomarkers. ALK amplification is a potential molecular target in several 294 

cancers and ALK inhibitors could be beneficial to patients carrying such an ALK amplification 35. 295 

Because multiple SV events of DELs, DUPs, and INVs were detected around the NTRK1 gene in 296 

SNUH19_MM01, the two most likely paths for their creation were confirmed by PCR (Figure 3e). 297 

Although the NTRK1-LMNA fusion is known to be a druggable target, the amplification of 1q23.1, 298 

where the NTRK1 locus resides, has also been proposed as a candidate hotspot in the progression of 299 

MM 36. Because BRCA2 loss of function is a known cancer driver, we examined biallelic inactivation 300 

of the BRCA2 gene by searching for somatic or germline SNVs or indels at that locus but confirmed 301 

no clinically relevant variations in the other allele.  302 

ETCHING can also predict other types of variations, such as germline and de novo mutations. 303 

With a k-mer set from a reference genome (such as hg19), it can predict germline SVs. If we use k-304 

mers of parental genome sequences, ETCHING can find de novo mutations in offspring genomes. The 305 

current version of ETCHING predicts FG candidates from DNA sequencing data, but the detection of 306 

high-confidence FGs requires transcriptome data, such as RNA-seq. Such detection will be possible, 307 

without a need for other FG callers, by using a k-mer set of reference transcriptomes or RNA-seq data 308 
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from normal samples. Hence, by the selection of an appropriate k-mer set, ETCHING can be a multi-309 

purpose predictor for diverse types of genomic variations and FGs. 310 

Although both ETCHING and novoBreak take advantage of TS reads to predict somatic SVs, 311 

the main strategy of ETCHING is distinct from that of novoBreak, which collects TS reads by 312 

comparing tumor and normal reads after mapping (the mapping-and-filtration approach). Instead, 313 

ETCHING uses a filtration-and-mapping approach, which makes ETCHING much faster than 314 

novoBreak, by as much as an order of magnitude (Fig. 5; Supplementary Fig. 15). In addition, 315 

novoBreak performs a local de novo assembly using the resulting TS reads to assemble TS contigs, 316 

which is another source of the heavy computational burden. The resulting contigs are aligned to a 317 

reference genome to predict SVs and BPs based on the mapping patterns of the contigs. Thus, the risk 318 

of misassembly also cannot be neglected. In contrast, ETCHING predicts all possible SVs using split-319 

reads of TS reads and filters FPs by a RF module, achieving a low FP rate.  320 

In summary, ETCHING is the fastest method for SV and FG prediction, and this speed has 321 

been achieved without compromising its performance or memory usages. We believe that our new 322 

approach will not only provide an efficient strategy for predicting various variations in mega-genome 323 

projects but will also contribute to real-time clinical applications. 324 

 325 

Data availability 326 

WGS data from 26 MM samples can be downloaded from the Clinical & Omics Data Archive 327 

(CODA; registration number: R002594) of the Korean National Institute of Health. Targeted gene 328 

panel sequencing data from reference materials are available at our website 329 

(http://big.hanyang.ac.kr/ETCHING). 330 

 331 

Code availability 332 

ETCHING was designed for 64-bit Linux systems. At least 16 GB of RAM is required. We 333 

recommend at least 64 GB. All source and binary codes used in the study are available at 334 

http://big.hanyang.ac.kr/ETCHING and GitHub (https://github.com/ETCHING-team/ETCHING).  335 
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Figure legends 351 

Fig. 1. A schematic overview of ETCHING. a. A schematic showing the flow through the ETCHING 352 

process, which comprises four stepwise modules (Filter, Caller, Sorter, and Fusion-identifier). b. The 353 

Filter module collects TS reads containing at least one TS k-mer not present in the k-mer sets (PGK, 354 

Normal, or PGKN). c. The percentage of TS reads that pass through the PGK, Normal, and PGKN 355 

filters. d. The mapping patterns of the total tumor reads (unfiltered, gray) and TS reads (filtered, blue) 356 

are shown for representative DEL, DUP, INV, and TRA loci via Integrative Genome Viewer. e. The 357 

mapping times (CPU times) required for the total tumor reads (Unfiltered) and TS reads filtered by 358 

PGK, Normal, and PGKN using BWA-MEM.  f. The total running time (CPU time) of the SV callers. 359 

g. The precision, recall, and F1-scores of ETCHING with total tumor (Unfiltered) and TS reads 360 

collected by PGK, Normal, and PGKN. (c,e-g) The analyses were done with nine BRCA WGS 361 

datasets. The error bars indicate the first to third quartile range, and the height of the boxes indicate 362 

median values. 363 

 364 

Fig. 2. Performances of ETCHING and benchmarking SV callers. a. PR curves of ETCHING and 365 

benchmarking tools on the HCC1395 dataset. The red symbols indicate the points corresponding to 366 

optimal parameters . b. Precision, recall, and F1-scores of ETCHING and benchmarking tools over 367 

sub-sampled data with different sequencing depths from the HCC1395 tumor sample. c. Precision, 368 

recall, and F1-scores of ETCHING and benchmarking tools for all types of SVs over nine hold-out 369 

test datasets of TCGA BRCA samples. Each dot denotes the performance of each tool on a sample. 370 

The height of the bar plots indicates the median performance of each tool on nine samples, and the red 371 

error bars are the first and third quartiles. d. The performances of ETCHING and benchmarking tools 372 

on four TCGA THCA samples. Because there were only a few true SVs from each of the samples, we 373 

combined them as one value. e. The performances of ETCHING and benchmarking tools on MM 374 

samples. d,e. Otherwise, as in (c). 375 

 376 
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Fig. 3. Prediction of SVs and FGs by SV callers using MM samples containing known clinical 377 

biomarkers and actionable SV targets. a. Known clinical SV and FG biomarkers (also known as 378 

clinical targets) of MM. The type of SV of known clinical biomarkers are indicated on the appropriate 379 

chromosomes. b. Summary of manually curated, experiment-supported, and ETCHING-detected SV 380 

biomarkers, known MM targets, and actionable targets from OncoKB (tier1, 2, and 3). c. ROC curves 381 

of ETCHING and benchmarking tools are shown along with accuracies (acc) and F1 scores as an inset. 382 

The accuracies and F1 scores were calculated on optimal parameters. d. The read-depth landscapes 383 

for chromosomes in which clinical biomarkers and targets were found. e. Experimental validation of 384 

three predicted actionable SV targets by PCR. The blue arrows indicate the expected sizes of the PCR 385 

amplicons in the gel images. ‘N’ indicates the normal sample and ‘T’ indicates the tumor sample. 386 

(bottom) The dotted lines indicate the junctions formed from tandem DUPs and DELs. The red arrows 387 

are the forward and reverse PCR primers.  388 

  389 

Fig. 4. SV and FG predictions on targeted gene panel sequencing data. a. The TP calls (labeled as 390 

‘Found’ in orange) and false negatives (labeled as ‘Missed’ in gray) of SV callers for cfDNA 391 

reference materials – CR, CMM, and MMv2 – with different mutant allele ratios (0.5 to 5.0%; gray to 392 

black). CR and CMM include NCOA4-RET, EML4-ALK, and CD74-ROS1 FGs, and MMv2 includes 393 

NCOA4-RET and TPR-ALK FGs. b. The recall rates of benchmarking SV callers on the reference 394 

materials across different mutant allele ratios. c. The additional calls in target regions (colors) and 395 

non-target regions (gray). d. The heatmap summarizes the TPs (labeled as ‘Found’ in orange), false 396 

negatives (labeled as ‘Missed’ in gray), and additional calls for 105 cancer panel sequencing datasets. 397 

The panels on the right show the total number of TPs and additional calls. The white-to-black gradient 398 

indicates the number of additional calls on each SV caller. The color-coded charts (top) indicate 399 

cancer types, known alterations, and detection methods. Abbreviations: Diffuse large B-cell 400 

lymphoma (DLBCL), desmoplastic small round cell tumor (DSRC), gastrointestinal stromal tumor 401 

(GIST), acute lymphoblastic leukemia (ALL), primitive neuroectodermal tumor (PNET), follicular B-402 
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cell lymphoma (FL), acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), and 403 

lung adenocarcinoma (LA). 404 

 405 

Fig. 5. Computational costs of ETCHING and the benchmarking tools. a. Stepwise comparison of the 406 

CPU times for SV prediction using ETCHING, with reads filtered by PGKN or with unfiltered reads, 407 

and using novoBreak. b. Algorithmic differences between ETCHING, novoBreak, and others 408 

(DELLY, LUMPY, Manta, and SvABA). c. RAM usage by the SV callers on TCGA-A2-A04P (20X 409 

tumor, 37X normal) and TCGA-A1-A0SM (61X tumor, 31X normal) datasets with 60 threads. 410 

  411 
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METHODS 412 

k-mer counting  413 

An efficient k-mer counting tool, KMC, was applied to count all possible k-mers (31-mers) from 414 

tumor and normal reads. k-mer counting can be done with multi-process (MP) computation. The 415 

results of k-mer counting are summarized in a histogram (Supplementary Fig. 1b) showing the k-mer 416 

depth (count) on the x-axis and the number of k-mers on the y-axis; the k-mer frequency shows a 417 

bimodal distribution for WGS data. A histogram of error-free k-mers is known to be close to a normal 418 

(Poisson) distribution, whereas rare k-mers, considered to be those with sequencing errors, show an 419 

exponentially decreasing curve over low depths. Hence, the local minimum was generally determined 420 

to be between k-mer depth 3–10, varying with the sequencing depth, quality, and tumor heterogeneity. 421 

Therefore, tumor k-mers with depth below the local minimum (the cutoff for erroneous k-mers) were 422 

removed, and the remaining error-free k-mers were subjected to the following steps (Supplementary 423 

Fig. 1a). For normal k-mers, those below k-mer depth 2 were removed and the remainder were added 424 

to the k-mer set (PGKN). 425 

 For targeted gene panel sequencing data, the local minimum is usually not presented as in 426 

WGS data. As the local minimum k-mer depth in WGS data is generally observed at a point about 10% 427 

of the distribution value at k-mer depth 2, we used the point as the local minimum k-mer depth in 428 

panel sequencing data. 429 

 430 

Roll-encoding 431 

To efficiently process k-mers, we introduced a roll-encoding strategy, which encodes a k-mer to a 432 

series of 2-bit numbers by our encoding rules: A to 00, C to 01, G to 11, and T to 10. Because the k-1 433 

nucleotides of the i-th and (i+1)th k-mers overlap, we can obtain the (i+1)th encoded k-mer simply by 434 

sliding a 2-bit number. This approach means that a new 2-bit number is added to the last nucleotide of 435 

the (i+1)th k-mer while the first 2-bit number is removed from the i-th encoded k-mer (Supplementary 436 

Fig. 16a). This procedure is repeated until the end of a read. Our roll-encoding also simultaneously 437 

encodes k-mer reverse complements. The smaller of the forward- and reverse-encoded values was 438 
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stored as a canonical encoded k-mer. This roll-encoding method appeared to be faster than methods 439 

with conventionally encoded and ordinary (not encoded) k-mers (Supplementary Fig. 16b). 440 

 441 

The reference and normal k-mer sets 442 

The reference k-mer set, PGK, is a unique set of k-mers from references (10 human genome 443 

assemblies; Supplementary Table 1) and those embedding common non-medical (nonpathogenic) 444 

SNPs in hg19 (GRCh37.p13) from dbSNP (release number 150). The normal k-mer set is from 445 

matched normal input reads. PGKN is a unique set of the PGK and the normal k-mers. For the 446 

YH_1.0 genome assembly, which includes uncertain bases, all possible nucleotides were assigned to 447 

generate the k-mer set. The reference k-mer set (PGK) is stored as a binary database file for reuse. The 448 

PGK binary file can be downloaded from our website (http://big.hanyang.ac.kr/ETCHING). 449 

 450 

Filter module 451 

The saved reference k-mer set (PGK) is loaded to a hash table in the Filter module. If there is a 452 

matched normal sample as input, then normal k-mers are added to the k-mer set (PGK + Normal). 453 

When tumor sequencing data are used as the input, they are decomposed into tumor k-mers. The 454 

tumor k-mers are then searched in the reference k-mer sets (PGK or PGKN). The tumor k-mers 455 

present in the reference k-mer set are regarded as reference k-mers; otherwise, they are regarded as TS 456 

k-mers and subjected to the following read-collection step. The read-collection step collects TS reads 457 

embedding a TS k-mer. To speed up the read-collection step, a multi-processing procedure for 458 

simultaneously treating reading, collecting, and writing substeps was implemented (Supplementary 459 

Fig. 16c, d). 460 

 461 

Reduced read mapping 462 

From the total input tumor reads, only TS reads collected through the Filter were mapped to the 463 

reference genome (hg19) using BWA-MEM with default parameters. We also used default parameters 464 

in read mapping for benchmarking tools. 465 
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 466 

Caller module 467 

After the TS reads are mapped, the Caller module finds BND candidates (BP pairs) by analyzing split 468 

reads with supplementary alignment (SA) tags, as follows (Supplementary Fig. 3). We focused on 469 

simply clipped pairs only, not on complex or double clipped reads, to reduce FP calls (Supplementary 470 

Fig. 3a). First, we defined a BP by its vector or chromosome (or contig/scaffold) name, its clipped 471 

position on the chromosome, and its clipped direction (Supplementary Fig. 3b). If a read was clipped 472 

in a region that is downstream of the BP, its clipped direction s is denoted as “+”. If a read was 473 

clipped in a region that is upstream of the BP, its clipped direction s is denoted as “-”. Thus, reads 474 

clipped at a locus can define a BND with a BP pair. A lack of SA tags in a clipped read indicates that 475 

there is a single BP that we called as a single-breakend (SND). Once all of the BNDs and SNDs are 476 

defined, BNDs are then classified by SV type (such as DEL, DUP, INV, or TRA), with their 477 

chromosome, BP position, and clipped direction information (Supplementary Fig. 3c).  478 

 479 

Sorter module 480 

The Sorter module is a machine learning classifier that removes FP SVs from the Caller module 481 

outputs. Because ensemble machines usually show optimal performance in diverse problems, we 482 

applied RF (https://github.com/crflynn/skranger), and extreme gradient boosting (XGB, 483 

https://github.com/dmlc/xgboost) models to this study. To train the models, we randomly selected 31 484 

training and 9 hold-out test samples from 55 BRCA samples (Supplementary Table 2; Supplementary 485 

Fig. 4a) as follows. We first predicted all possible SVs using five benchmarking SV callers and 486 

summarized tumor purities and sequencing depths for all 55 samples. Based on this information, we 487 

excluded (1) nine samples that had a low number of predicted SVs (<100) for at least one caller, (2) 488 

four samples with too many predicted SVs (>50,000 on average), and (3) two additional samples, one 489 

with the highest tumor read depth (93X) and one with the lowest tumor purity (0.474), to avoid 490 

extreme cases. From the remaining 40 samples, we randomly selected 31 and 9 samples so that there 491 

would be about a 3:1 ratio of SV candidates in the training and hold-out test datasets, respectively 492 
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(Supplementary Fig. 4a). There were 894,333 and 278,627 SV candidates in 31 training and 9 hold-493 

out samples. For training data, we selected 315,949 SV candidates detected by the Caller module, 494 

which were subjected to the training step of the Sorter module.  495 

There is no ground truth exhaustively validated by experiments for the TCGA dataset. Thus, 496 

we used silver standard SVs detected by multiple SV callers. Of 315,949 SV candidates predicted by 497 

the Caller module in 31 training samples, 10,736 SVs were simultaneously predicted by at least three 498 

SV callers (Supplementary Fig. 4b). We regarded them as silver standard SVs and the remainder 499 

(314,507 SVs) as false (Supplementary Fig. 4b, c). With the true and false SVs, we trained the models 500 

with six different features – clipped-read count (CR), split-reads count (SR), supporting paired-end 501 

read count (PE), average mapping quality (MQ), depth difference (DD), and total length of clipped 502 

bases (TC) (see Supplementary Note for more details). Our training procedure consists of an outer 10-503 

fold cross-validation (CV) loop for training and an inner 10-fold CV loop for model selection 504 

(Supplementary Fig. 4d). The SVs in the training samples were split evenly into eleven sets, including 505 

ten outer-training sets (TR_out) and one validation set (VA). During the outer 10-fold CV, a test set is 506 

selected (TE) from TR_out, and the remaining nine sets were subjected to inner-training (TR_in). The 507 

model selection process was done by inner 10-fold CV using TR_in, which was evaluated on TE. The 508 

procedure was iteratively performed through an outer 10-fold CV loop. A final model was obtained 509 

by averaging ten trained models. We validated the final model on the VA.  510 

We then searched the optimal classification cutoffs of RF and XGB scores using the VA set 511 

(Supplementary Fig. 4f). F1-scores of RF (or XGB) showed robust performances in the range from 512 

0.2 to 0.8 (from 0.05 to 0.95 for XGB). We used RF as default ML module in this study. 513 

 514 

Parameter optimization for benchmarking SV callers 515 

ETCHING was benchmarked to the popular, high performing SV callers DELLY, LUMPY, Manta, 516 

SvABA, and novoBreak over WGS data, cfDNA reference materials, and targeted gene panel 517 

sequencing data from tumor samples. We also benchmarked BreaKmer for cfDNA reference 518 

materials and targeted gene panel sequencing data.  519 
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For a fair comparison on WGS datasets, we searched optimal parameters of benchmarking 520 

tools corresponding to the nearest points to the perfect performance (where precision and recall rates 521 

are 100%) over PR-curves on HCC1395 data (Fig. 2a). The point minimizes the distance, 522 

��1 � ��� � �1 � ��� , to (1,1) on given PR-curve, where P and R refer to precision and recall, 523 

respectively. DELLY’s optimal parameter was near its default parameter (-a 0.2), LUMPY was -m 12 524 

option, and Manta was minEdgeObservations = 12 and minCandidateSpanningCount = 12. For 525 

SvABA, log-odd ratios of real and artifact variants � 32 was the optimal one. novoBreak’s PR curve 526 

was closest to the corner for its statistical quality score �  40. The statistical quality score is defined 527 

as �10
����
���|�	
	�	��	 ���	�	� �� �	�����	 �����������

���|������� �����������
, where D is the number of read counts 528 

supporting each variation or reference allele.  529 

For cfDNA reference materials and targeted gene panel sequencing data, all tools were 530 

applied with default parameter sets. Manta was run with --tumorBam --exome options. 531 

 532 

Evaluation metrics 533 

� True positive (TP): Predicting true SVs (or biomarkers) as positive.   534 

� False negative (FN): Predicting true SVs (or biomarkers) as negative. 535 

� False positive (FP): Predicting false SVs (or biomarkers) as positive.  536 

� True negative (TN): Predicting false SVs (or biomarkers) as negative. 537 

Given the TP, FN, FP, and TN metrics, the recall, sensitivity, precision, specificity, F1-score, and 538 

accuracy are estimated as follows: 539 

• ���

 � ��� � ��

�����
 540 

• �������� � ��

�����
 541 

• ���������� � ��

�����
 542 

• �1 � � �	���� ��	�����

�	���� � ��	�����
 543 

• �������� � �����

�����������
 544 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.10.25.354456doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.25.354456
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
      

 

 545 

Public WGS datasets 546 

 55 BRCA WGS datasets and 4 THCA WGS datasets were downloaded from TCGA 547 

(https://cancergenome.nih.gov).  548 

 549 

MM WGS data 550 

Tumor cells were collected from bone marrow using CD138+ MACS sorting (Miltenyi Biotec, 551 

Auburn, CA) and DNA was extracted from the tumor cells for WGS library preparation. For matched 552 

normal samples, DNA was extracted from patients’ saliva with RNase treatment. Sequencing libraries 553 

were generated using a TruSeq nano DNA library prep kit (Illumina, San Diego, CA) following the 554 

manufacturer’s recommendations and sheared DNA fragments were end-repaired and size-selected to 555 

obtain DNA fragments around 350bp. Following PCR amplification, the DNA libraries were 556 

sequenced using the HiSeq™ X platform (Illumina). The 26 MM WGS datasets were produced and 557 

deposited in the CODA (registration number: R002594) of the Korean National Institute of Health. 558 

The study was approved by the Internal Review Board of Seoul National University Hospital (H-559 

1103-004-353).  560 

 561 

FISH and karyotyping 562 

Cytogenetic studies were performed at SNUH. Unstimulated bone marrow cells obtained at MM 563 

diagnosis were cultured for 24h; then, karyotypes were analyzed using the standard G‐banding 564 

technique. The karyotypes were constructed and chromosomal abnormalities were reported according 565 

to the International System for Human Cytogenetic Nomenclature37. Interphase FISH was performed 566 

on myeloma cells from the bone marrow samples obtained at diagnosis according to the probe 567 

manufacturer’s instructions. Seven commercially available FISH probe sets were used. These 568 

included IGH dual‐color, break‐apart rearrangement probe; TP53 SpectrumOrange probe; RB1 569 

D13S25 (13q14.3) SpectrumOrange probe; IGH-FGFR3 dual‐color, dual‐fusion translocation probe; 570 

1q21 SpectrumGreen probe; and p16 (9p21, CDKN2A), SpectrumOrange/CEP9 SpectrumGreen probe 571 
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(Abbott Diagnostics, Abbott Park, IL). The FISH experiments were performed on 26 MM specimens. 572 

The FISH probe sequences are summarized in Supplementary Table 6. 573 

 574 

PCR validation of actionable targets 575 

PCR amplification was performed using the primer sets listed in Supplementary Table 9. Targets were 576 

amplified using primers designed in the flanking region of the junction. GAPDH was used as a 577 

control for assessing the PCR efficiency and for subsequent analysis by agarose gel electrophoresis. 578 

 579 

Manual curation of biomarkers and actionable targets in MM samples 580 

The SV biomarkers and actionable targets were manually curated with all mapped reads. The 581 

candidate DELs and DUPs were checked by considering minor allele frequencies and read depth 582 

changes across chromosomes (Supplementary Fig. 11a,b), remaining focal DELs and DUPs. For IGH-583 

associated TRA, candidate TRAs with which >10 paired-reads (mapping quality �20) are connected 584 

between IGH locus (14q32) and other loci in tumor but not in normal were selected as true somatic 585 

TRAs (Supplementary Fig. 11c,e). The candidates with the connection both in tumor and normal were 586 

considered as germline TRAs (Supplementary Fig. 11d).  The read depth, minor allele frequency, 587 

discordant paired-read data to inspect true SVs during manual curation were summarized in 588 

Supplementary Material. 589 

 590 

Cell-free DNA reference materials 591 

Targeted sequencing data from cfDNA reference materials (SeraCare, Milford, MA) were generated. 592 

DNA libraries were prepared using a KAPA Hyper Prep kit (Kapa Biosystems, Woburn, MA) as 593 

described previously. Hybrid selection for target enrichment was performed using customized baits 594 

targeting 38 cancer-related genes. After hybrid selection, the libraries were pooled, amplified, purified, 595 

quantified, and then subjected to cluster amplification according to the manufacturer’s protocol 596 

(Illumina). Flow cells were sequenced in the 150bp paired-end mode using a NextSeq 500/550 High 597 

Output Kit v2.5 (Illumina). The mean target coverage was 2023X. Two kinds of DNA mixtures, with 598 
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the frequency of variant alleles ranging from 0.5–5.0% (CMM and MMv2), and a plasma-like DNA 599 

mixture, with the frequency of variant alleles ranging from 0.5–2.5% (CR), were generated along with 600 

WT DNA (Supplementary Table 10). The WT material was used as the matched normal. Note that 601 

DELLY displayed a low recall in normal-matched case, since it excessively removed SV calls using 602 

matched-normal data in the filtration step (Supplementary Fig. 12). The BreaKmer tool was excluded 603 

from this analysis because it failed to call variants from any sample, presumably because its approach 604 

is not feasible for such low allele frequencies. 605 

 606 

Cancer panel datasets 607 

For cancer panel data of BreaKmer, we downloaded hybrid capture targeted gene panel data (110 608 

replicates from 38 cancer samples). Because the normal samples that were provided are not matched 609 

to the cancer samples, they were excluded from the analysis. One sample with three replicates was 610 

also excluded from this analysis, since it was marked as non-cancer sample rather than diagnosed 611 

cancer type (SRR1304190-2). Two datasets (SRR1304204, SRR1304210) failed to run in at least one 612 

benchmarking tool, so the remaining 105 replicates from 37 sample (216X mean coverage of the 613 

targets) were analyzed. Because the sample labels in SRA are inconsistent with those in BreaKmer 614 

paper, we used ones described in the paper.  615 

To reproduce the results of previous BreaKmer study, we needed to install the same version 616 

of BreaKmer with detailed information of target bait. However, we failed to install the same version 617 

of BreaKmer in their publication, and the bait information was also unavailable. Hence, we tested two 618 

other releases, v0.0.4 and v0.0.6. The version v0.0.6 found 78 true SVs out of 105 and only 487 619 

additional calls, while v0.0.4 found 70 true SVs with 17,738 additional calls. Thus, we selected v0.0.6 620 

for comparison. To substitute the missing target bait information, we used the genomic coordinates of 621 

target gene regions. 622 

In case of novoBreak, it requires normal sequencing data. However, there is no matched 623 

normal samples in the panel data. For the reasons, we simulated WGS reads (30X coverage) from 624 

hg19 using an in-house script for novoBreak.  625 
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FLT3 indel (30–73bp) and KIT deletion (48bp) were included in the list of known target 626 

alterations. As SvABA separately reports indels as output, we used SvABA high-confidence indel 627 

report along with its SVs. However, although Manta also reports indels, we did not use them because 628 

they are unfiltered candidates. 629 

 630 

Supplementary information 631 

Supplementary Note: 632 

Graph theory presentation for SV analysis 633 

Six features for machine learning 634 

Commands for benchmarking tools 635 

High quality SVs 636 

 637 

Supplementary Fig. 1. a. Detailed workflow of the ETCHING pipeline. MP and SP indicate multiple 638 

and single processing, respectively. b. A representative k-mer distribution of WGS data. 639 

 640 

Supplementary Fig. 2. a. The size of the unique set containing the hg19 and PGK k-mers. b. The size 641 

of the unique set containing the k-mers not present in hg19.  642 

 643 

Supplementary Fig. 3. a. The Caller module uses simply clipped reads (left side) but excludes reads 644 

that make complex clipped pairs (right side). b. Each BND is a pair of BPs, i.e. (BP� , BP�). An SND is 645 

a single-BND consisting of one BP with a dangling point, i.e. (BP� , !). If a BP displays reads clipped 646 

in a direction at position x on chromosome c, we define that BP as a node (c, x, s), where s indicates 647 

its clipped direction (+1 or -1). c. Classification of SV types. For a BND (BP�, BP��, "�  and "� are the 648 

positions on chromosome c, and ��  and ��  are the clipped directions of each BP. The table on the right 649 

side shows the classification criteria for SVs. 650 

 651 
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Supplementary Fig. 4. a. A flowchart for selecting training data from BRCA samples. b. A Venn 652 

diagram of SVs predicted by ETCHING and other tools in the training set. c. The numbers of SVs 653 

predicted by multiple callers were tallied in a histogram. The number of SVs are indicated on the y-654 

axis and the number of tools that predicted the corresponding SVs are indicated on the x-axis. The 655 

vertical line denotes the cutoff for selecting silver standard SVs. d. A schematic workflow for training 656 

machine learning modules. e. Training and validation results of machine learning. f. Optimized 657 

cutoffs of machine learning methods. We set the optimized cutoff to 0.4 for RF and XGB.  658 

 659 

Supplementary Fig. 5. The wall-clock times used by ETCHING and other tools on nine hold-out 660 

BRCA samples, which were measured using 30 threads. 661 

 662 

Supplementary Fig. 6. The effectiveness of the Filter module on HCC1395 data. a. The percentage 663 

of TS reads that passed the PGK, Normal, and PGKN filters. b. The precision, recall, and F1-scores of 664 

the ETCHING results from total reads (unfiltered) and TS reads collected by the PGK, Normal, and 665 

PGKN filters. 666 

 667 

Supplementary Fig. 7. Benchmarking results on THCA samples by SV type. 668 

 669 

Supplementary Fig. 8. Strategies for HQ SV detection using tumor (HCC1395) and normal 670 

sequencing data (HCC1395 BL). a. The landscape of the depth change within the HQ DELs and HQ 671 

DUPs. b. The landscape of the discordant read-pairs connecting BPs within the HQ INVs and HQ 672 

TRAs. (c and d). The ROC curve (left) and the density distribution (right) for setting the cutoff using 673 

the depth difference score (DS) of DELs (c) and DUPs (d). e. The ROC curve for setting the cutoff 674 

using the connected-pair score (CS) of the HQ INVs and TRAs. f. Bar plot showing the count of HQ 675 

SVs and all SVs. DS and CS are defined in Supplementary Note. 676 

 677 

Supplementary Fig. 9. Benchmarking results on BRCA, MM, and THCA samples with HQ SVs. 678 
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 679 

Supplementary Fig. 10. Benchmarking results on MM samples by SV type. 680 

 681 

Supplementary Fig. 11. Rational for SV manual curation a. RB1 biomarker shown with unbalanced 682 

minor allele frequency (MAF) and read depth change on Chr13 in MM20. b. AKT1 DUP locus shown 683 

with unbalanced MAF and read depth change on Chr14 in MM22. c. Discordant paired-reads 684 

connected between IGH locus and Chr11 of MM6. The blue dot near 69M indicates a TRA, 685 

t(11;14)(q13;q32), including CCND1 gene in tumor. d. Germline TRA with discordant paired-reads 686 

both in tumor and normal. e. An instance of manually curated TRAs is shown in IGV. 687 

 688 

Supplementary Fig. 12. SV and FG prediction on targeted gene panel sequencing data paired with 689 

sequencing data from WT alleles (regarded as matched normal). Otherwise, as in Fig. 4a–c. 690 

 691 

Supplementary Fig. 13. Indels associated with FLT3 in eight different samples. The index numbers 692 

are the same ones in Fig. 4d.  693 

 694 

Supplementary Fig. 14. The wall-clock times used by ETCHING, ETCHING without filter 695 

(unfiltered), and novoBreak on HCC1395 data on 30 threads.  696 

 697 

Supplementary Fig. 15. The wall-clock times used by ETCHING with different thread numbers 698 

ranging from 5 to 50. 699 

 700 

Supplementary Fig. 16. a. Schematic of the roll-encoding algorithm for processing k-mers. As a k-701 

mer window slides, it updates an encoded value using our encoding rule. b. The computing costs of 702 

the Read-collector using the conventional encoding method, ordinary k-mers, and roll-encoding 703 

methods on tumor (46X) and normal (31X) WGS data with 30 threads. c. A schematic workflow of 704 
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parallel computing for read collection. d. Data from the read collection step are processed by parallel 705 

computing. 706 

 707 

Supplementary Tables 708 

Supplementary Table 1. Reference genomes and dbSNP used in PGK 709 

Supplementary Table 2. BRCA samples 710 

Supplementary Table 3. THCA samples 711 

Supplementary Table 4. MM samples 712 

Supplementary Table 5. FISH and karyotype in MM samples 713 

Supplementary Table 6. FISH probe sets 714 

Supplementary Table 7. Manually curated partner BPs of IGH TRAs. 715 

Supplementary Table 8. BreaKmer panel data 716 

Supplementary Table 9. PCR primer sets 717 

Supplementary Table 10. Reference material 718 
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