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SUMMARY : Our benchmark of multi-omic modules and validated translational systems medicine 

workflow for dissecting complex diseases resulted in multi-omic module of 220 genes highly 

enriched for risk factors associated with multiple sclerosis.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 6, 2021. ; https://doi.org/10.1101/2020.10.26.351783doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.351783


 
 

 2
 

ABSTRACT  

Background: There are few (if any) practical guidelines for predictive and falsifiable multi-omics data 

integration that systematically integrate existing knowledge. Disease modules are popular concepts 

for interpreting genome-wide studies in medicine but have so far not been systematically evaluated 

and may lead to corroborating multi-omic modules.  

Methods: We assessed eight module identification methods in 57 previously published expression 

and methylation studies of 19 diseases using GWAS enrichment analysis. Next, we applied the same 

strategy for multi-omics integration of 19 datasets of multiple sclerosis (MS), and further validated 

the resulting module using both GWAS and risk-factor associated genes from several independent 

cohorts. 

Results: Our benchmark of modules showed that in immune-associated diseases modules inferred 

from clique-based methods were the most enriched for GWAS-genes. The multi-omics case study 

using MS revealed the robust identification of a module of 220 genes. Strikingly, most genes of the 

module was differentially methylated upon the action of one or several environmental risk factors in 

MS   (n = 217, P = 10-47) and were also independently validated for association with five different risk 

factors of MS, which further stressed the high genetic and epigenetic relevance of the module for 

MS.  

Conclusion: We believe our analysis provides a workflow for selecting modules and our benchmark 

study may help further improvement of disease module methods. Moreover, we also stress that our 

methodology is generally applicable for combining and assessing the performance of multi-omics 

approaches for complex diseases. 
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INTRODUCTION  

Complex diseases are the result of disruptions of many interconnected multimolecular pathways, 

reflected in multiple omics layers of regulation of cellular function, rather than perturbations of a 

single gene or protein[1].  Systems and network medicine aim to translate observed omics 

differences in patients using networks, in order to personalize medicine[2]. Importantly, genes that 

are associated with diseases are more likely to interact with each other rather than with non-disease 

associated genes, forming multi-omics network disease modules[3,4]. Owing to the incompleteness 

of the underlying multi-omics interactions, the networks are often modeled as effective gene-gene 

interactions, using for example STRING database[5]. Thus, network modules might be ideal tools for 

multi-omics analysis.  However, the evaluation of performance of different module inference 

methods remains a poorly understood topic, which creates the need for transparent evaluation of 

these methods based on objective benchmarks across various diseases and omics. Genomic 

concordance has been suggested as a multi-omics validation principle[4,6], i.e., modules derived 

from one omic, such as gene expression or DNA methylation should be enriched for disease-

associated single nucleotide polymorphisms (SNPs).  

The variety of algorithms that have been proposed and applied for identification of disease modules 

can be categorized into two main groups. On the one hand, there are methods which rely purely on 

clustering of the genes in relevant disease networks[7]. On the other hand, there are algorithms 

which make use of disease-associated molecules or genetic loci to reveal disease modules that 

correlate with disease function, such as the disease module detection (DIAMOnD) algorithm[8], 

clique-based methods[9],[10]  and weighted gene co-expression network analysis (WGCNA)[11]. The 

data-derived information can either be differentially expressed genes or differentially correlated or 

co-expressed genes. Methods following the former approach were recently benchmarked by a 

metric utilizing genomic concordance within the DREAM consortia[12]. However, so far, algorithms 

from the latter group have not been benchmarked.  
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In this study we analyzed, assessed, and compared the performance of eight of the most popular 

methods for disease module analysis using the R package MODifieR[13] on 19 different diseases 

including 47 expression and ten methylation datasets.  We assessed the performance of the 

methods using genome-wide association (GWAS) enrichment analysis from the summary statistics of 

all assayed SNPs similarly as in DREAM[12]. The resulting workflow provided a systematic procedure 

for selecting the best method for each disease and set the stage for method development in the 

disease module area. Moreover, it allowed the predictive assessment of combining multiple datasets 

across several omics using GWAS, which we tested in multiple sclerosis (MS), a heterogeneous 

complex disease. Briefly, we derived multi-omic modules in a stepwise optimization of GWAS 

enrichment from transcriptomic and methylomic analyses of MS. We further evaluated the 

identified multi-omic MS module of 220 genes for its enrichment across DNA methylation studies of 

eight known lifestyle-associated risk factors of MS. Additionally, we validated the identified 

significant enrichment risk factors in an independent DNA methylation MS study which indeed 

showed a very strong and significant MS enrichment for both module genes and  risk factor 

associations. In summary, we provide a robust multi-omics strategy that can be used to disentangle 

networks of affected genes in complex diseases from both genetic and environmental levels. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 6, 2021. ; https://doi.org/10.1101/2020.10.26.351783doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.351783


 
 

 5
 

MATERIALS AND METHODS   

Benchmark data    

A total of 47 publicly available datasets for the transcriptomic benchmark and ten publicly available 

datasets for the methylomic benchmark were used. To avoid bias due to subtypes of diseases and 

drug treatments, we searched for datasets that have only patient and control samples, and that are 

available for download from the GEO database. We categorized the datasets into seven distinct 

disease types based on the disease-trait type associations used in Choobdar et al[12]., i.e. 

autoimmune, cardiovascular, glycemic, inflammatory, neurodegenerative, and psychiatric and social 

disorders. A total of 19 complex diseases were used in the transcriptomic benchmark analysis, while 

six complex diseases were used in the methylation benchmark analysis. The methylation benchmark 

diseases belong to inflammatory, autoimmune, and glycemic disease types.   

MS use case data   

A total of 14 publicly available and one non-publicly available transcriptomic and methylomic MS-

related datasets were used in the MS multi-omics integration use case. In general, every dataset in 

the MODifieR benchmark was also used in the MS use case, with exceptions according to certain 

criteria. The inclusion of transcriptomic MS datasets followed the criteria: 1) The largest dataset by 

sample number, per tissue, is shown in the MODifieR benchmark; 2) Replication cohorts are not 

included in the MS use case. Criteria for inclusion of methylomic MS datasets were the following: 1) 

The largest dataset by sample number, per tissue or cell type, is included in the MODifieR 

benchmark; 2) A single dataset for every cell-specific tissue was included in the benchmark; 3) 

Methylation studies that reported using whole blood as sample tissue were excluded from the MS 

use case, due to the high heterogeneity of this type of data. 

For the additional independent validation, we utilized the methylation microarray analysis of 279 

blood samples analyzing from Kular et al 25 . For each of these MS patients (nMS= 139) and healthy 

controls (nHC= 140), we also collected their lifestyle-associated risk factors from questionnaires that 
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were part of the Epidemiological Investigation of Multiple Sclerosis (EIMS) study. Those factors were 

smoking status, prior EBV infection, sunbathing, nightshift work, alcohol consumption, as well as 

phenotypic features (age, sex, BMI at age of 20).  

Pre-processing and quality control of risk factor methylation data  

DNA methylation datasets were downloaded from GEO as raw IDAT files, when available, or matrices 

of beta values. Pre-processing of the data was performed using the Chip Analysis Methylation 

Pipeline (ChAMP) R package[14] , version 2.16.2. Default parameters were used for probe and 

sample filtering. Probes with a detection P-value above 0.01, probes with a fraction of failed (bead 

count less than 3) samples over 0.05, non-CpG probes, SNP-related probes, multi-hit probes, and 

probes located on chromosomes X and Y, were removed. Samples with a proportion of failed (NA) 

probe P-values over 0.1 were also removed from the analysis. Post-filtering imputation of NA values 

was conducted on the beta matrices, with default parameters (“combine” method, k = 5, probe 

cutoff = 0.2, sample cutoff = 0.1). Filtered imputed matrices were normalized applying the Beta-

Mixture Quantile dilation (BMIQ) normalization method[15]�, including correction of Type-I and 

Type-II probe effects. Data quality was assessed by producing multi-dimensional scaling (MDS) plots 

of the top 1,000 most variable positions per sample, density plots for the distribution of beta values, 

and hierarchical clustering of samples, before and after normalization. Singular value decomposition 

(SVD) was used to detect the most significant components of variation in the data. Unwanted 

sources of variation in the normalized data were corrected using ComBat batch effect correction[16].  

Module Identification   

The MODifieR13 R package offers nine different methods for producing disease modules for which 

we included all but Clique SuM exact as it is highly similar to Clique SuM. The included methods will 

produce modules based on the provided omics input and background network and do not include 

prioritization of pathway association.  MODifieR methods used for module identification through this 

study are listed in the Supplementary Table 3. For the methods that require a network, we used the 
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human PPI network from STRING5 database version 11, consisting of 11,295,036 interactions among 

18,746 unique genes/proteins. We filtered the network to have high confidence interactions by 

using the cutoff > 900 to reduce the number of false positives, resulting in a subset of 631,782 

interactions between 12,123 unique genes/proteins. For co-expression methods, the network is 

computed within the method algorithm from the gene expression matrix. In case of the benchmark 

analysis, we used a stringent cutoff of score > 900, so that the runs were not computationally 

intensive. For the MS use case benchmark, we used the network combined score cutoff > 700. The 

processed matrix for each dataset and their respective phenotypic information were downloaded 

from GEO. The input object is prepared using the create_input_microarray  function from the 

MODifieR package which is then used for creating the modules. The input function applies linear 

model using limma for comparison of patient's vs controls to get the differentially methylated or 

expressed genes. A dynamic cutoff of 5% in the differentially methylated or expressed genes is 

applied for input seed genes for the methods that require seed genes. 

Differential methylation analysis of risk factor data 

Differentially methylated probes (DMPs) were found by fitting a linear model to the data using the 

limma R package[17]�, version 3.42.2 implemented in the ChAMP function champ.DMP. P-values 

were adjusted for multiple testing using Benjamini-Hochberg False Discovery Rate (FDR) correction. 

Differentially methylated genes (DMGs) were obtained and annotated using the org.Hs.eg.db R 

package�, version 3.10.0. DMG lists were cross-checked against the STRING database version 11 PPI 

network used for module identification in the MS multi-omics approach (high confidence 

interactions, combined score > 700). DMGs that were not present in the PPI network were removed. 

In case of the additional MS validation dataset, a linear mixed effect model with risk factors (age, 

sex, BMI at age of 20, smoking, alcohol consumption, sun exposure, night shift work, contact with 

organic solvents) as categorical covariates was implemented to find the differentially methylated 

genes after the preprocessing step, as described in the preprocessing section of the methods. Since 

all the patients were EBV positive, we did not include it for linear mixed effect model. 
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Validation of modules   

The final modules produced from each single algorithm and the consensus were evaluated using 

Pascal[18] (Pathway scoring algorithm). Pascal implements a fast and rigorous gene scoring and 

pathway enrichment pipeline that can be run on a local machine. The SNP values are converted to 

gene scores by computing pairwise SNP-by-SNP correlations and obtaining Z-scores from their 

distribution. These obtained gene scores are fused with the pathway enrichment analysis to 

recompute a chi-square P-value for the given set of module genes. Thus, the obtained chi-square P-

value serves as the significance of the module in its enrichment of the disease-associated pathway 

gene loci.  A combined P-value was computed for each of the methods using Fisher’s method[19], 

diseases, and datasets for ranking the performance of the modules in each criterion.  

Integration of MS single-omic modules  

Clique SuM was ranked as the best performing method on average for both transcriptomic and 

methylomic data, according to the MS GWAS enrichment of the modules calculated by Pascal. 

Therefore, significant Clique SuM modules (P < 0.05) were selected for further analysis (nine 

transcriptomic and four methylomic modules). Consensus modules were generated across each omic 

by applying a module count-based method, where the criteria for gene inclusion in the consensus is 

its presence in a certain number of single-method modules. To balance the weight of each omic in 

the multi-omics integration, the top four significant modules per omic were used to create each 

consensus (Fig. 4a, b). Single-omic Clique SuM consensus were ranked again by GWAS enrichment, 

and the best performing consensus per omic was selected for integration into the multi-omics 

module.  

Enrichment analyses of the MS multi-omics module  

Disease enrichment analysis of the multi-omics module was performed by Fisher’s exact test, with a 

significance threshold of P < 0.05. MS-associated genes were obtained from the gene-disease 

association summary provided by DisGeNET database 6.0[20]�. All genes with a known association 
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to the disease “multiple sclerosis” (Unified Medical Language System unique identifier C0026769) 

were considered MS-associated genes (n = 1,105). Pathway enrichment analysis was carried out 

using the function enrichKEGG from the clusterProfiler R package[21]�, version 3.14.3. P-values 

were adjusted for multiple testing using Benjamini-Hochberg FDR correction, with a significance 

threshold of adj. P < 0.05. Enrichment of the multi-omics module in MS risk-factor-associated genes 

was performed by Fisher’s exact test, with a significance threshold of P < 0.05. To provide a uniform 

comparison of MS risk factor-associated genes across datasets, the module was tested for 

enrichment in the top 1,000 DMGs (with at least P < 0.05) obtained from the differential methylation 

analysis with ChAMP for each risk factor dataset.  

Representation of the MS multi-omics module 

Experimentally validated interactions for the multi-omics module genes were obtained from STRING 

database version 11 (experimental score > 700) and imported into Cytoscape[22] version 3.7.2. To 

determine representative functional clusters of module genes, overrepresented Gene Ontology (GO) 

Biological Process (BP) terms in the module were found using BiNGO[23] version 3.0.4, with 

Benjamini-Hochberg FDR for multiple testing correction, and a significance threshold of adj. P < 0.05. 

Then, enriched GO terms with adj. P < 1x10-10 were summarized using REVIGO[24] server tool 

(medium allowed similarity = 0.7) and categories of interest were selected by uniqueness (>= 80 %), 

dispensability (>= 50 %), and frequency (<= 10 %) criteria. Further manual assessment was 

performed to group similar terms with an adequate number of genes in the network.  

RESULTS     

A benchmark comparing 337 transcriptionally derived disease modules from 19 different diseases. 

We compiled a benchmark source of disease modules and summary statistics of GWAS datasets 

from 19 well-powered case-control studies (Supplementary Table 1), some of which were previously 

used in the DREAM topological disease module challenge[12]. For these datasets we assessed 

modules using the same metric as in the recent DREAM study[12], based on the pathway scoring 
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algorithm (Pascal)[18]. For each disease we compiled one to five publicly available transcriptomic 

datasets considering both easily assessable tissues (e.g. blood) and target tissues, thereby covering 

47 transcriptomic datasets in total (Fig. 1a). Modules were created using eight different methods 

from MODifieR[13]. In addition, we also tested if genes detected by several methods, hereafter 

called consensus module genes, had higher enrichment scores than single-method module genes. 

Enrichment scores for the non-empty modules (n = 337) from this analysis were summarized for 

each method and dataset (Fig. 2a). In total, we found significantly GWAS-enriched modules in 17.8% 

(60/337) of the single-method modules and 25.5% (12/47) of the non-empty consensus modules 

that combined at least three methods as a criterion. These numbers seemed higher than expected, 

which might have been a consequence of the same GWAS being used to evaluate multiple 

transcriptomic datasets of the same disease. Hence, we aggregated scores of the same disease and 

method as meta P-values (see Methods). Out of the 152 possible disease-method combinations, 18% 

of the pairs showed a significant GWAS Pascal enrichment, which is more than expected by chance 

(n = 27, P = 1.0 x 10-8). The most enriched method was Clique SuM, which showed significant 

enrichment in seven out of 19 diseases (binomial test P = 2.3 x 10-5).  Many methods exhibited 

strong enrichments in coronary artery disease (CAD), type 2 diabetes, multiple sclerosis (MS), 

rheumatoid arthritis (RA), and the inflammatory bowel diseases(IBD), ulcerative colitis (UC) and 

Crohn’s disease (CD), while no significant enrichments were found for asthma, hepatitis C, type 1 

diabetes, narcolepsy, Parkinson’s disease, or for any psychiatric and social diseases. If we instead 

ranked methods based on their respective module GWAS enrichment, Clique SuM showed 

significant association in 34% (16/47) of the modules corresponding to seven different diseases 

followed by consensus modules identified by two out of three methods.  Lastly, DIAMOnD and co-

expression-based methods all achieved significant results, although worse than Clique SuM.  

Next, we tested the impact of network centrality and module size as potential confounding factors 

of the applied performance metric. We found a significant but very modest correlation for module 

size (Fig. 2c, Spearman rho = 0.165, P = 2.3 x 10-3), and a non-significant correlation for interactome 
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centrality (Fig. 2b, rho = 0.068, P = 0.21). Thus, it is meaningful to compare results with differences in 

those module properties. In summary, we found that the Clique SuM method resulted in the highest 

disease enrichment for most diseases, while not producing significant modules for others, such as 

type 2 diabetes, where co-expression-based methods and DIAMOnD scored best. In general, we 

observed stronger enrichments for inflammatory diseases and weaker results for psychiatric and 

social diseases. Considering that the transcriptomic modules showed that Clique SuM was the best 

performing method and that the cardiovascular and inflammatory diseases were the most enriched 

within the Clique SuM modules, we wanted to test whether this was true for methylomic data as 

well. 

A benchmark comparing 72 methylation-based disease modules from six different diseases using 

GWAS. Following the same logic of the transcriptomic benchmark, we performed a similar 

benchmark study for methylation modules. We collected ten datasets from three different disease 

categories, including six complex diseases, and ran the eight MODifieR methods on them (Fig. 1a). In 

addition, we constructed consensus modules for each of the datasets. Modules were then tested for 

GWAS enrichment using Pascal. Inspecting the overall performance, we found nine single-method 

modules with a significant GWAS enrichment (9/72, 11.8%). Though this might be due to disease and 

cell type heterogeneity, the enrichment is more than expected by chance (P=9.6x 10-3). Interestingly, 

the inflammatory diseases such as MS and UC showed a more significant GWAS enrichment 

Considering that the evaluation of module performance by GWAS enrichment may be biased due to 

differences in module sizes and interactome centrality, we again assessed the correlation between 

these values. We found a significant correlation between GWAS enrichment and module size (Fig. 3c, 

rho = 0.235, P = 0.046) and a non-significant correlation between GWAS enrichment and 

interactome centrality (Fig. 3b, rho = 0.190, P = 0.109). We found that 12.5% of the disease-method 

combinations yielded significant GWAS enrichment, which is more than expected from an 

independent random selection of modules (Fisher’s exact test P = 0.031, n = 6). The highly enriched 

disease modules belong to MS, UC and CD. Two out of the six diseases showed significant GWAS 
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enrichment by using the Clique SuM modules (P = 0.032). In summary, Clique SuM method resulted 

in a more significant GWAS enrichment for most diseases also for the methylomic benchmark.      

Multi-omics approach revealed a module enriched for MS-associated genes. Considering genomic 

concordance as the guidance principle for the modules that show enrichment for GWAS SNPs, 

differentially methylated genes and differentially expressed genes, we further wanted to evaluate 

multiple datasets of one specific disease, i.e., MS. We compiled 11 MS transcriptomic datasets and 

nine methylation (Supplementary Table 2) comparisons from GEO which satisfy the pre-defined 

dataset criteria (see Methods). For each dataset we implemented the pipeline for module 

identification and scoring shown in Fig. 1b. We evaluated each module using MS SNP enrichment 

analysis and selected the most enriched modules per omic from this metric. This analysis again 

showed that Clique SuM yielded the far highest average enrichment score (meta P = 3.2 x 10-12) and 

was significantly enriched (P < 0.05) in 9/11 transcriptomic datasets (Fig. 4a) and 4/9 of the 

methylation datasets (Fig. 4b). From the significant modules generated by Clique SuM, we choose 

the top four modules from each of the gene transcription and methylation sets, and prioritized 

genes detected in modules from multiple datasets in each omic. This analysis showed that the 

strongest MS SNP enrichment was found for genes in at least three out of four transcriptomic 

modules (n=1,552; P= 6.0 x 10-7) and two out of four methylomic modules (n=324, P= 1.5x10-6). Next, 

we used the same principle to combine these two and found that the intersection between the gene 

transcription and methylation consensus resulted in a module (n = 220 genes, Fig. 4) enriched for 

MS-associated genes (75/220, P < 2.2 x 10-16, OR = 7.8) and with the highest GWAS enrichment (P = 

8.8 x 10-9) which we hereafter referred to as the multi-omics MS module.  

The multi-omics MS module was enriched in genes associated with major MS pathways. As we 

used GWAS enrichment as a selection criterion, the high GWAS enrichment of the final module was 

partly expected, which led us to analyze its biological functions and their potential epigenetic 

associations to MS. First, pathway enrichment analysis showed that the multi-omics module genes 
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are significantly involved in several inter-linked immune-related pathways, most of which have been 

previously associated to MS, including the T cell receptor[25] (adjusted P = 3.6 x 10-47), PI3K/Akt[26] 

(P = 4.6 x 10-35), ErbB[27] (P = 7.7 x 10-32), Fc epsilon RI[28] (P = 8.3 x 10-30), chemokine[29,30] (P = 2.6 

x 10-28), MAPK[31,32] (P = 2.0 x 10-25), and B cell receptor[32] (P = 3.9 x 10-19) signaling pathways; 

Th17 (P = 9.6 x 10-29), and Th1 and Th2 (P = 6.9 x 10-19) cell differentiation[33]; natural killer cell 

mediated cytotoxicity (P = 1.6 x 10-27); and leukocyte transendothelial migration (P = 3.9 x 10-20), 

which indeed supports their relevance in MS. Interestingly, the module was also highly enriched in 

morphogenetic and neurogenetic signaling pathways, such as the neurotrophin (adjusted P = 1.3 x 

10-36), Ras (P = 1.4 x 10-36), Rap1 (P = 2.2 x 10-35), vascular endothelial growth factor (VEGF, P = 1.7 x 

10-27), FoxO (P = 3.6 x 10-27), and mTOR (P = 4.1 x 10-14) signaling pathways; and in growth hormone 

synthesis, secretion and action (P = 6.6 x 10-31).  

The multi-omics MS module was enriched in genes associated with five known environmental MS 

risk factors validated in an independent cohort. Second, from a literature study[34,35] we found 

nine environmental MS risk factors of varying evidence for which we could identify methylation 

studies in healthy controls. For each of these risk factors we derived the top 1000 differentially 

methylated genes (DMGs) and tested their enrichment with the module. Intriguingly, the module 

was significantly enriched for genes associated with five risk factors (Fig. 5b), which included the top 

associated risk factors, i.e., Epstein-Barr virus (EBV) infection (Fisher exact test P = 1.5 x 10-3, OR = 

2.1) and smoking (P = 1.2 x 10-4, OR = 2.3), as well as low sun exposure (P = 1.2 x 10-4, OR = 2.3), high 

BMI (P = 0.023, OR = 1.7) and alcohol consumption (P = 2.9 x 10-4, OR = 2.2). Then, we asked whether 

these putative gene-risk factor associations could be validated using an independent omics dataset 

with paired risk factor associations. For this purpose, we utilized methylation arrays of peripheral 

blood from 139 MS patients and 140 controls, which have been described previously[36]. In this 

analysis we also considered risk factor associations for each individual including age, sex, BMI at age 

of 20, smoking, alcohol consumption, sun exposure, night shift work, contact with organic solvents. 

This enabled analysis of DMGs for the MS and risk factor status as covariates in linear mixed effect 
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analysis. Indeed, the module genes were highly significantly enriched for MS (n = 217; permutation 

test P = 1.2 x 10-47), but also for all the tested risk factors (EBV was not included, Methods) and non-

significantly associated to age and sex having 104-135 of the genes in each factor (3.9x10-8 < P < 

0.013; Fig 5b). Combining all these results we found 90 of the 220 module genes to be associated 

with a risk factors from both the risk factor studies, 25 genes were associated with two risk factors, 

and seven genes were associated with three risk factors (CSK, PRKCA, PRKCZ, RUNX1, RUNX3, 

STAT5A, and SYNJ2) (Fig. 5c). These associations suggest that the multi-omics module is capturing a 

key disease network with both genetically and epigenetically driven alterations, thereby providing 

the possibility to use it to identify potential novel biomarkers or therapeutic targets for MS.� 
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DISCUSSION 

The analysis of case control data in the context of networks has gained increased interest to detect 

consistent robust gene signatures of individual diseases. The application of disease modules might 

vary for different researchers, but here we systematically aimed at the detection of disease genes 

supported by genetic association. For this purpose, our study of the transcriptome and methylome 

profiles of 19 diseases showed significant GWAS enrichments for several inflammatory and heart 

diseases, while psychiatric disorders showed no enrichments and might not be suitable for GWAS 

validation of modules, potentially due to differences in affected tissue types and sampling points. 

However, analysis of the significant results showed that methods based of differentially expressed 

cliques in the protein-protein interaction network demonstrated the strongest enrichments (highest 

scoring for Clique SuM), while those based primarily on correlations, like WGCNA, showed weak 

enrichments. A potential reason for this could be that GWAS has shown to be mostly associated to 

the central genes of the protein-protein interaction (PPI) network, but our analysis demonstrated 

that the correlation between GWAS enrichment and centrality was non-significant. We also tested 

whether there was an improvement using consensus approaches that counted the frequency of the 

result of multiple methods but found this not to increase performance. Moreover, we tested the 

same strategy on a set of inflammatory, glycemic, and autoimmune methylation datasets and found 

similar results.  We would like to emphasize that, rather than scoring a single best working method, 

our result is a pipeline for evaluating modules using independent high-throughput enrichments. 

The work on transcription and methylation datasets suggested that MS is a disease highly enriched 

for GWAS, and we therefore tested if increased enrichments could be derived by their integration. 

We found 20 publicly available datasets and run assessment for both omics independently, which 

again showed Clique SuM to score highest. We then tested if improved results could be obtained 

using modules from multiple datasets of these two omics using consensus modules from Clique 

SuM. This resulted in a module of 220 genes highly enriched for GWAS (P = 8.8 x 10-9).  The multi-

omic module was highly enriched in immune-associated pathways, such as T cell and B cell receptor 
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signaling, Th1/Th2 differentiation, or leukocyte transendothelial migration. These results conform 

with the current hypothesis that MS is mediated by an autoreactive response of CD4+ T cells against 

myelin surrounding neuronal axons, preceded by their migration across the blood-brain barrier 

(BBB)[37].  This autoproliferation of brain-targeting Th1 cells has been shown to be driven by 

memory B cells, in a process mediated by HLA-DR15[38]. In addition, another enriched pathway was 

VEGF signaling. MS patients present high serum VEGF levels, which is related to pro-inflammatory 

functions and can alter the permeability of the BBB[39]. As GWAS was used for method prioritization 

we asked if modules instead could be validated using epigenetics and lifestyle risk factor genes that 

we identified to associate with MS. With this aim, we compiled a set of publicly available data from 

omics studies of these risk factors in healthy individuals. This analysis demonstrated that five out of 

eight risk factors were enriched in our module. In order to validate the use of an environmental 

assessment using public domain risk factor association we found an independent methylome study 

of MS comprising environmental data for each MS and healthy individual. This analysis showed a 

remarkable enrichment of the 220 module genes by 217 to differentially methylated genes for MS (P 

= 1.2 x 10-47), and a majority to be associated with the tested risk factors. 

In contrast to previously known community challenges, in our study we not only used the topological 

property of the network, but we also combined the methods to use an omics-based input to uncover 

the disease modules that might be dysregulated at each omics level, contributing to the diverse 

causative mechanisms behind complex diseases. Although using the PPI network as background may 

lead to certain knowledge bias, this kind of benchmark allowed us to look at the relevant risk factors. 

In our assessment of the disease modules, methods such as Clique SuM and DIAMOnD did perform 

better than the community-based consensus predictions.  

In summary, our study provides a practical integrative workflow that enables system-level analysis of 

heterogeneous diseases, in terms of multi-omics disease modules, as well as the validation of these 

by using both disease-specific GWAS and risk factors enrichment. We believe that this analysis 
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validates our integrated use datasets and suggest a pipeline that readily could be tested in at least in 

other autoimmune and cardiovascular diseases.  Lastly, our study did not aim to optimize hyper-

parameters for individual disease modules, and instead used default values when possible, and to 

the methods from the MODifieR R package implementation of the methods[13]. However, this might 

be an important task for specific disease and our code and processed datasets are available at GitLab 

(https://gitlab.com/Gustafsson-lab/modifier-benchmark). In future work, this approach can be 

expanded to include diverse and context-specific networks to determine whether our multi-omics 

modules are able to capture various other levels of granularity.    
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Figures : 

 

Figure 1. Overview of the benchmark assessment of disease modules and the integration workflow 

for MS. (a) Transcriptomic and methylomic datasets from 19 different diseases were used as inputs 

for eight MODifieR module identification methods. The resulting single-omic disease modules (n = 
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456) were independently assessed by GWAS enrichment analysis of the same disease using Pascal 

module scoring. MODifieR methods were evaluated by the combined enrichment score of their 

respective disease modules. (b) Multi-omic integrative workflow for multiple sclerosis (MS)-

associated modules. Data from 20 case-control comparisons were used as input for module 

detection with MODifieR methods. Clique SuM modules presented the highest GWAS enrichment 

score and were therefore used to generate single-omic consensus modules. The intersection of the 

best transcriptomic and methylomic consensus modules resulted in an MS multi-omic module (n = 

220 genes) with the highest GWAS enrichment, which was independently found to be enriched for 

genes associated with five known lifestyle MS risk factors using public omics data from healthy 

individuals.  
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Figure 2. Genomic concordance of MODifieR modules on transcriptomic datasets. (a) Heatmap of 

PASCAL p-values for eight single-method and eight consensus MODifieR modules, identified for 47 

publicly available transcriptomic datasets. Module performance P-values are shown in a white to 

blue scale, where any shade of blue represents a significant module ( < 0.05; the darker, the more 

significant), white represents a non-significant module, and grey represents a module of size zero. 

Datasets are classified into six disease types: cardiovascular (red), glycemic (golden), inflammatory 

(green), neurodegenerative (fuchsia), psychiatric and social (pink), autoimmune (dark purple), and 

others (light purple); and two cell types: blood (maroon), and others (light yellow). Datasets are 

ranked by meta P-values using Fisher’s method of the single-method module P-values across and 

within their disease types (dataset score, bottom boxplot). MODifieR methods are organized by 

algorithm type: seed-based (green), co-expression-based (yellow), and clique-based (red), plus the 

consensus modules (blue). Single-methods and consensus were scored by meta P-values across 
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datasets (method score, right boxplot). Consensus x/8 indicates that the module genes are found in 

at least x methods out of eight.  (b) Scatter plot showing Spearman correlation between module 

score and betweenness centrality. Modules are represented with a different shape depending on 

their method and colored based on the disease type. (c) Scatter plot showing Spearman correlation 

between module score and module size. Modules are represented with a different shape depending 

on their method and colored based on the disease type.  
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Figure 3. Genomic concordance of MODifieR modules on methylomic datasets. (a) Heatmap of 

Pascal p-values for eight single-method and eight consensus MODifieR modules, identified for ten 

publicly available methylomic datasets. Module performance P-values are shown in a white to blue 

scale, where any shade of blue represents a significant module (P < 0.05; the darker, the more 

significant), white represents a non-significant module, and grey represents a module of size zero. 

Datasets are classified into two disease types: glycemic (golden), and inflammatory (green); and two 

cell types: blood (maroon), and others (light yellow). Datasets are ranked by Fisher’s combined P of 

the single-method module P-values across and within their disease types (dataset score, bottom 

boxplot). MODifieR methods are organized by algorithm type: seed-based (green), co-expression-

based (yellow), and clique-based (red), plus the consensus modules (blue). Single-methods and 

consensus are scored by meta P-values across datasets (method score, right boxplot). Consensus x/8 

indicates that the module genes are found in at least x methods out of eight. (b) Scatter plot 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 6, 2021. ; https://doi.org/10.1101/2020.10.26.351783doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.351783


 
 

 30
 

showing Spearman correlation between module score and betweenness centrality. Modules are 

represented with a different shape depending on their method and colored based on the disease 

type. (c) Scatter plot showing Spearman correlation between module score and module size. 

Modules are represented with a different shape depending on their method and colored based on 

the disease type.
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Figure 4. Genomic concordance of MODifieR modules on MS use case data. (a) Heatmap of PASCAL 

p-values for eight single-method MODifieR modules, identified for ten MS-related transcriptomic 

datasets. Module performance P-values are shown in a white to blue scale, where any shade of blue 

represents a significant module (P < 0.05), white represents a non-significant module, and grey 

represents a module of size zero. Datasets are classified into the reported MS type: MS (blue), RRMS 

(red), PPMS (green), SPMS (orange), and CIS (yellow); and four cell types: whole blood (maroon), 

PBMCs (light brown), white matter (light yellow), and CD4+ T cells (purple). Datasets are meta P-

values of the single-method enrichments (dataset score, bottom boxplot). MODifieR methods are 

organized by algorithm type: seed-based (green), co-expression-based (yellow), and clique-based 

(red). Single methods are scored by P of the significant modules across datasets (method score, right 

boxplot). (b) Heatmap of PASCAL p-values for four single-method MODifieR modules, identified for 

nine MS-related transcriptomic datasets. (c-d) Bar plots of Pascal p-values for the MS consensus 

modules generated with Clique SuM from transcriptomic (a) and methylomic (b) datasets. (e) Union 

and intersection of the top performing modules, shown as a Venn diagram.  
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 Figure 5. Risk factor enrichment and network visualization of the MS multi-omic module.             

(a) Evidence levels and effect on MS of the risk factor. � (b) Enrichment overlap of multi-omic MS 
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module genes in the top 1,000 DMGs in risk factor datasets and independent risk factor methylation 

dataset (see Methods) shown as Fisher exact test P-values (threshold α=0.05). (c) Visualization of the 

module. Nodes (module genes) are arranged in functional clusters according to their 

overrepresented GO terms. Genes with a known association to MS are marked with a blue circle. 

Node colors display the associations to an MS risk factor for which the module is significantly 

enriched (red, alcohol use; green, high BMI; yellow, smoking; purple, low sun exposure; light blue, 

EBV infection; grey, no association). Edges were extracted from the STRINGdb v11 human PPI 

network of experimentally validated interactions (confidence score > 700). 
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Supplementary Table 1: All case-control comparisons used in the Transcriptomic and Methylomic 
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