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Abstract 

Torsade de Pointes (TdP), a rare but lethal ventricular arrhythmia, is a potential cardiac side effect of drugs. 

To assess TdP risk, safety regulatory guidelines require to quantify the effects of new therapeutic com-

pounds on hERG channel block in vitro and QT interval prolongation in vivo. Unfortunately, these have 

proven to be poor predictors of torsadogenic risk, and are likely to have prevented safe compounds from 

reaching the clinical phase. While this has stimulated numerous efforts to define new paradigms for cardiac 

safety, none of the recently developed strategies accounts for patient conditions. In particular, despite being 

a well-established independent risk factor for TdP, female sex is vastly underrepresented in both basic re-

search and clinical studies, and thus current TdP metrics are likely biased toward the male sex. Here, we 

apply statistical learning to synthetic data, generated by simulating drug effects on cardiac myocyte models 

capturing male and female electrophysiology, to develop new sex-specific classification frameworks for 

TdP risk. We show that 1) TdP classifiers require different features in females vs. males; 2) male-based 

classifiers perform more poorly when applied to female data; 3) female-based classifier performances are 

largely unaffected by acute effects of hormones (i.e., during various phases of the menstrual cycle). Notably, 

when predicting TdP risk of intermediate drugs on female simulated data, male-biased predictive models 

consistently underestimate TdP risk in women. Therefore, we conclude that pipelines for preclinical cardi-

otoxicity risk assessment should consider sex as a key variable to avoid potentially life-threatening conse-

quences for the female population. 

 
1. Introduction 

During drug development, promising therapeutic 

compounds are tested to evaluate their potential 
risk of inducing Torsade de Pointes (TdP), a spe-

cific form of polymorphic ventricular tachycar-

dia that can precipitate ventricular fibrillation 

and cause sudden cardiac death1. While TdP is a 

very rare adverse event, amounting to less than 

one case out of 100,000 exposures for some non-

antiarrhythmic drugs,2 cardiac safety concerns 

have caused withdrawal from the market of sev-

eral drugs, including antihistamines, antidepres-

sants, chemotherapeutics, pain medications, that 

had been associated with TdP proclivity in pa-

tients (e.g., Cisapride and Astemizole)2,3. The 

most simple mechanistic explanation of torsado-

genicity involves a reduction of the rapid delayed 

rectifier potassium current (IKr), carried by the 

human Ether-à-go-go-Related Gene (hERG) 

channel, which importantly contributes to 
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cardiac action potential (AP) repolarization4,5. 

Pharmacological block of the hERG channel, 

which is a very promiscuous target interacting 

with cardiac and non-cardiac drugs, produces AP 

duration (APD) and QT interval prolongation, 

and leads to an increased susceptibility to pro-ar-

rhythmic events. Based on this evidence, current 

safety regulatory guidelines require the measure-

ment of hERG channel block in vitro and QT in-

terval prolongation in vivo to estimate TdP 

risk6,7. Since their adoption, these guidelines 

have successfully avoided that cardiotoxic drugs 

could endanger the welfare of people. However, 

it has also become apparent that these biomarkers 

are poor predictors of torsadogenic risk, and have 

in all probability prevented safe treatments from 

reaching the market8,9.  

In response to this problem, recent efforts 

have led to several proposed new paradigms for 

the prediction of TdP. One notable example is the 

Comprehensive In Vitro Proarrhythmia Assay 

(CiPA) initiative, an international multi-group 

initiative by regulatory, industry, and academic 

partners including the US Food and Drug Admin-

istration10. This paradigm relies upon the idea of 

combining in vitro studies to measure the drugs 

effects on each of the different types of ion chan-

nels and in silico models of cardiac myocyte elec-

trophysiology to understand how these effects 

combine to influence cardiac function, thus cre-

ating a novel tool for TdP risk assessment of new 

drugs11–13. Mathematical models of cardiac elec-

trophysiology, in fact, make it possible to simu-

late with precision extreme conditions, e.g., high 

drug concentrations, and to obtain insights pre-

cluded to animal experiments. Thus, computa-

tional approaches have become essential compo-

nents of numerous strategies to predict torsado-

genic risk14–19. In addition, simulated measure-

ments extracted from the biophysical model sim-

ulations can also be fed to machine learning (ML) 

pipelines, as demonstrated by the Sobie group15, 

with the potential to bring out mechanistic in-

sights buried in the data that could be otherwise 

ignored.       

To our knowledge, however, no simulation-

based approach has considered any risk factor for 

Torsade in their predictive pipelines. An em-

blematic example is represented by the female 

sex: it is well established that women are more 

susceptible to Torsade than men when treated 

with QT-prolonging drugs,20–22 suggesting that 

TdP risk classifiers could benefit from inclusion 

of this variable. However, female sex is highly 

underrepresented in both basic research23 and 

clinical studies24 involved in the drug develop-

ment process, with important consequences on 

the identification of accurate TdP predictors. In 

vitro studies tend to use mostly male animals23, 

raising concerns on the generalizability of find-

ings to the whole population. This sex bias prop-

agates onto the mathematical models of cardiac 

cells25,26, which are parameterized based on 

male-dominated datasets. The issue of underesti-

mating potential health risks for women is then 

aggravated by the fact that female sex is also un-

derrepresented in clinical cohorts,24 making 

training of classifiers harder due to the lack of re-

liable ground truth data.  

Yang and Clancy have recapitulated in silico 

male and female ventricular human cardiac elec-

trophysiology by incorporating experimentally 

determined sex- and hormone-specific differ-

ences in gene and protein expression into virtual 

male and female myocytes27,28. In this paper we 

combined simulations of these mathematical 

models with machine learning to generate sex-

specific TdP risk classifiers. We simulated the ef-

fects of 59 training drugs under different condi-

tions using in silico models of human ventricular 

myocytes with sex-specific parameterizations. 

We fed the resulting high-dimensional datasets 

of simulated biomarkers to machine learning al-

gorithms to generate male and female classifiers 

of torsadogenic risk. Finally, we evaluated the ef-

fects of using sex-specific models for risk predic-

tion on a separated set of 36 drugs, which are 

deemed at intermediate risk of TdP. Our results 

show that TdP classifiers trained on sex-specific 

datasets identify distinct and not interchangeable 

sets of optimal features, suggesting potential dif-

ferent drivers of drug-induced arrhythmias, and 

that the use of sex-biased predictive models un-

derestimates the torsadogenic risk of drugs with 

intermediate risk of TdP in females, which could 

potentially lead to life-threatening consequences 

for women. 
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2. Materials and Methods 

2.1 Models and simulations 

We used the male and female human epicardial 

ventricular cardiomyocyte models developed by 

the Clancy lab28, based on the O’Hara-Rudy 

model29. Some parameters of the baseline female 

model were modified to recapitulate observed 

functional sex differences in Ca2+-handling30–32. 

Namely, we increased the maximal transport rate 

of the sodium-calcium exchanger (NCX) by 15% 

in the female model, and removed the originally 

introduced female-to-male differences in 

SERCA and sodium/potassium-ATPase (NKA) 

formulations, in agreement with experimental 

measurements31,33.  

To build the complete set of biomarkers used 

to train the ML classifiers, the virtual myocytes 

(with and without drug administration) were 

paced at a basic cycle length (BCL) of 500, 

1,000, and 2,000 ms for 1,000 beats. Steady-state 

was confirmed as the intracellular sodium con-

centration had a beat-to-beat variation smaller 

than 0.001 mM. Each drug was simulated at mul-

tiple concentrations, ranging from 1 to 4 times 

their effective free therapeutic plasma concentra-

tion (EFTPC). The effects of each compound 

were simulated using a pore block model based 

on the available IC50 values and Hill coefficients 

for various ion channels (a full list is available in 

Table 1). A total of 27 biomarkers (Table 2) 

were measured on the last simulated beat for each 

of the 12 conditions (4 concentrations x 3 pacing 

frequencies). Additional biomarkers included 

“direct” rather than simulated measures, such as 

IC50 values for IKr, INa (fast sodium current) and 

ICaL (L-type calcium current). 

 

2.2 Drug dataset and labels 

The dataset used in this study was obtained by 

combining 83 compounds analyzed in the study 

by the Lancaster and Sobie15 with 12 CiPA com-

pounds12. Unfortunately, we are not aware of any 

clinical source of torsadogenic risk categoriza-

tion that takes in account the sex variable. In or-

der to assign a unique binary label to each drug, 

we took advantage of the TdP risk classification 

available at www.crediblemeds.org34, which re-

views and analyzes adverse event reports for 

placing drugs in three broad categories: known, 

possible, and conditional risk of inducing TdP. 

Compounds characterized by known risk of in-

ducing TdP in CredibleMeds were considered 

TdP+ in our analysis, while safe compounds (i.e., 

not included in any of the CredibleMeds catego-

ries) were considered TdP-. Being sex one of the 

factors causing the inclusion of drugs in the pos-

sible or conditional risk categories, it would have 

been inaccurate to assign these compounds to a 

specific class in our binary classification prob-

lem. Therefore, we did not use these drugs in the 

training phase of our classifiers. A similar selec-

tion was performed on the CiPA dataset, which 

separates the compounds in high, intermediate, 

and low torsadogenic risk. Drugs classified dif-

ferently by CredibleMeds and CiPA were ex-

cluded from the training dataset. Out of the 95 

drugs in our initial dataset, 59 drugs met all the 

requirements. The remaining 36 drugs, which are 

more likely to be associated with sex-specific ef-

fects, were then used to test our TdP classifiers 

and investigate the consequences of performing 

male-sex-biased vs. sex-specific predictions. 

 

2.3 Machine Learning 

A schematic diagram describing the complete 

workflow used in the generation of the ML clas-

sifiers for TdP risk is shown in Fig 1. First, the 

simulated recordings are visually inspected for 

the presence of early after depolarizations 

(EADs) or alternans in the last 3 beats. If 

proarrhythmic events are observed, e.g., EADs or 

repolarization failure that would alter the values 

of APD, the biomarkers for that specific drug-

Figure 1: Workflow for the creation and testing of the sex-specific classifiers for torsadogenic risk. 
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pacing frequency combination are imputed as 

following. The average value of each biomarker 

in the TdP+ and TdP- groups is measured. The 

drug will receive the (maximum) minimum value 

of its TdP outcome group if the average value of 

its group is (larger) smaller than the value for the 

other group. For example, TdP+ drugs have a 

larger average value for APD90 than TdP- drugs. 

As a consequence, the APD90 value of a TdP+ 

drug producing EADs in a specific condition 

(e.g., Ibutilide at 4x EFTPC and 500 ms of BCL) 

will be the maximum APD90 measured in that 

condition among all the TdP+ drugs that do not 

produce EADs. To offset the differences of the 

sex-specific baseline models, the measured bi-

omarkers in drug-free conditions are subtracted 

to those in response to drug administration. 

Lastly, since biomarkers have different scales, 

the data are standardized for better ML perfor-

mances and results interpretability. 

In order to select the biomarkers contributing 

to the most accurate prediction of torsadogenic 

outcome, we adopted a recursive feature elimina-

tion (RFE) algorithm. At each step of the algo-

rithm, a new classifier is trained with the availa-

ble features and its regularization parameter are 

tuned to achieve the best performances. The pre-

dictive power of the model is quantified in the 

RFE algorithm using the Matthew’s Correlation 

Coefficient (MCC) measured through Leave-

One-Out Cross-Validation (LOO-CV). The fea-

tures are then ranked based on their importance 

for the classification task, and the least important 

feature is discarded by the training dataset. The 

process is repeated until all the features are elim-

inated. The best candidate is the ML classifier 

characterized by the highest MCC using the 

smallest set of features. We calculated the area 

under the receiver operating characteristic Curve 

(AUC) and the F1 score as additional perfor-

mance metrics. For the sake of feature interpret-

ability, we limited the ML modeling algorithms 

to logistic regression and support vector machine 

(SVM) with linear kernel. All the results shown 

Figure 2: Sex-specific biophysical models of cardiac electrophysiology and Ca2+ handling. A: simulated AP 

(i) and Ca2+ transient (ii) traces pacing at a BCL of 1,000 ms the baseline models of male (magenta) and fe-

male (blue) ventricular epicardial cardiomyocyte. B: Rate dependency of simulated biomarkers: measure-

ments of voltage- (i,ii) and Ca2+-related (iii-vi) biomarkers as a function of the BCL tested. Insets show repre-

sentative and summary data for Ca2+ transient characteristics measured in myocytes from patients with car-

diac hypertrophy (reproduced with permission from Fischer et al. 2016)41.  
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here were obtained using SVM models, which 

outperformed logistic regression models on our 

datasets. 

 

2.4 Simulation and data analysis software, nu-
merical method, and code availability 

The Yang and Clancy model28 code was imple-

mented in C++. We utilized the male model as is 

and modified the female model as described 

above. The ODEs were solved using a combina-

tion of Forward Euler and Rush-Larsen 

scheme35, as done in the original O’Hara-Rudy 

model29 and implemented with a variable time 

step (dt = 0.025 or 0.005 ms). The data pro-

cessing, RFE algorithm, and machine learning 

modeling were implemented in Python using the 

packages Numpy36, Pandas37, Scikit-Learn38, and 

Hyperopt39. 

All simulations and data analyses were per-

formed on a desktop server: HP Z2 Tower G4, 

Intel(R) Core(TM) i7-8700K @ 3.20GHz 6CPUs 

(12 threads) + 16GB; and a computing cluster 

with Intel(R) Xeon(R) CPU E5-2690 v4 @ 

2.60GHz 28 CPUs (56 threads) + 132GB. 

Source code and documentation are freely 

available at http://elegrandi.wixsite.com/gran-

dilab/downloads and https://github.com/drgran-

dilab. 

 
3. Results 

3.1 Sex-specific biophysical models for action 
potential and Ca2+ transient  

The Yang and Clancy model28 well recapitulates 

the prolonged AP observed in females vs. 

males40. Conversely, we noted that the predicted 

larger Ca2+ loading and transient amplitude in the 

female model does not match the sex differences 

measured in rodents30,32. Our updated female 

model, with modifications in Ca2+-handling pro-

cesses described in the Methods, captures these 

sex-specific differences (Fig 2Aii). Namely, the 

female Ca2+ transient amplitude is modestly re-

duced (Fig 2Biv) and decays slightly more 

slowly (Fig 2Bv) than in male. At the same time, 

the diastolic Ca2+ concentration and SR content 

do not appreciably differ in male and female (Fig 

2Aiii,Avi). These results are similar to Ca2+ 

measurements in myocytes from patients with 

cardiac hypertrophy (Fig 2 insets), whereby no 

significant sex differences were detected in sys-

tolic or diastolic Ca2+ levels, decay rate, and SR 

Ca2+content41. Notably, AP properties are very 

modestly affected by the modifications we intro-

duced in the model parameters, thus preserving 

the typical differences in repolarization between 

the two sexes in the original Yang and Clancy 

model28 (Fig 2Ai,Bi,Bii).  

 

3.2 Sex-specific TdP risk classifiers 

With the original male and updated female mod-

els, we simulated the effects of the 59 training 

drugs under different pacing and drug regimen 

conditions (see Methods). Representative simu-

lated traces reflecting the ranges of variations in-

duced by the drugs on the AP and Ca2+ transient 

are shown in Fig 3A (male) and B (female). For 

each simulated condition, several biomarkers 

(Table 2) were extracted and, together with the 

IC50 values available for each drug, generated the 

final feature datasets used by the RFE algorithm. 

This process led to optimized male- and female-

specific TdP classifiers.  

The final sets of features and relative weights 

selected and used by the best performing male 

and female TdP risk classifiers are illustrated in 

Fig 3C and 3E, respectively. TdP risk predictions 

for the male dataset are based on the current inte-

grals of the inward rectifier IK1 and late Na+ cur-

rent INaL, and the diastolic [Ca2+]. With LOO-CV, 

this ML model can correctly classify 54 out of 59 

drugs, whereby 4  proarrhythmic drugs are pre-

dicted safe (4 false negatives, FNs – Amiodarone 

1, Amiodarone 2, Cilostazol, Donepezil, where 

Amiodarone is simulated using different availa-

ble IC50 as shown in Table 1) and 1 safe drug is 

predicted harmful (1 false positive, FP – Prenyl-

amine). The best performing female classifier is 

built on a set of 5 features. Four of the features 

are measurements extracted from the Ca2+ transi-

ent (decay times, integral, and diastolic [Ca2+]), 

while the fifth one is the value of IC50 for the 

hERG channel. The model optimized on the fe-

male dataset misclassifies 3 drugs: 1 FN (Pro-

cainamide) and 2 FPs (Ajmaline, Prenylamine). 

Despite the different set of features involved, 

both classifiers clearly demonstrate good ability 

in distinguishing torsadogenic from safe drugs. 
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Figure 3: Sex-specific TdP risk classifiers. A,B: simulated effects of the 59 training drugs on the AP (i) and 

Ca2+ transient (ii) with male (A) and female (B) biophysical myocyte models paced at a BCL of 1,000 ms. 

Traces belonging to drugs TdP+ and TdP- are colored in red and green, respectively. C,E: best performing set 

of features selected through RFE and used to build the male (C) and female (E) TdP classifiers. Uncertainty of 

the feature weights is measured using LOO-CV (mean + SD). D: Receiver operating characteristic curve for 

male (magenta) and female (blue) TdP classifiers. Area under the curve (AUC) is 0.9447 and 0.9424 for male 

and female, respectively. F,G: scatterplot of the training drugs created using the two features with the largest 

weight for the male (F) and female (G) TdP classifiers. The estimated TdP risk probability for each drug is in-

dicated by the color of the filling. The misclassified drugs are indicated by arrows, and the color of the arrow 

and the stroke specifies the right class (green for TdP-, red for TdP+). H: distributions of performance metrics 

for the male (magenta) and female (blue) TdP classifiers after injecting random normally-distributed (µ=0, 

σ=0.1) noise to the original data (10,000 repetitions). 
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To evaluate model performances with commonly 

used metrics, we calculated F1 scores of 0.9148 

and 0.9492, and MCCs of 0.8336 and 0.8987 for 

male and female TdP risk classifier, respectively 

(Table 3). Robust performances were confirmed 

by AUC values of 0.9447 and 0.9424 (Fig 3D) 

values for male and female classifier, respec-

tively.  

To visualize the TdP risk predictions of the 

classifiers, we created 2D scatterplots of the 

training compounds using the two most influen-

tial features used by each model (Fig 3F for male, 

Fig 3G for female). In this representation, the far-

ther the features from the drug-free condition at 

coordinates (0,0), i.e., the larger the drug effect 

on the features, the more extreme are the pre-

dicted probabilities (darker colors). Interestingly, 

most of the misclassified drugs are located in the 

features space around the drug-free condition (in-

sets of Fig 3F and 3G), and are associated with 

probabilities close to the classification threshold 

of 0.5. To evaluate the robustness of our classifi-

ers, we added random normally-distributed noise 

(µ=0, σ=0.1) to the features and evaluated their 

performances by repeating this procedure 10,000 

times (Fig 3H). The noise injection tends to 

increase the misclassification rate of the classifi-

ers, whereby the drugs that are more frequently 

misclassified are those located in close proximity 

to the decision boundary of the SVM (r = -0.7653 

and -0.8808 for male and female, respectively). 

However, despite being negatively affected, the 

performances of the sex-specific classifiers re-

main satisfactory even in presence of confound-

ing noise in the data.  

 

3.3 Testing the male classifier on female data 

To verify our contention that the creation of sex-

specific classifiers is indeed critical to obtain ac-

curate predictions, we evaluated the performance 

of the male classifier in predicting TdP risk of the 

training drugs applied to the female simulated 

features. When applied to female data, the pre-

dictive accuracy of the male classifier dropped, 

producing 1 FP and 12 FNs (Fig 4A). One possi-

ble explanation for the poor performances could 

be that the male classifier was trained on a differ-

ent dataset. To test this idea, we retrained the 

male classifier using the data generated from the 

simulations with the female biophysical model 

(weights are compared in the insert of Fig 4B) 

Figure 4: Predictions of TdP risk on female data with male-specific features. A: TdP classifier perfor-

mances are evaluated on the dataset created with the female biophysical model. The results obtained 

with the female classifier (left column) are compared with the ones of the original male classifier (cen-

ter column) and of a male classifier retrained on the female dataset (right column). B: Receiver operat-

ing characteristic curve for female (blue), original male (blue), and retrained male (purple) TdP classi-

fiers applied on female data; area under the curve (AUC) is 0.9424, 0.9159, and 0.9217, respectively. 

In the inset, bar plot comparing the weights of the original (magenta) and retrained (purple) male clas-

sifiers. Uncertainty of the feature weights is measured using LOO-CV (mean + SD).    
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and re-evaluated the performances. The retrained 

male ML model still produced more misclassi-

fied drugs compared to our female classifier (Fig 

4A). This result demonstrates that the set of fea-

tures used by the female classifier has superior 

predictive ability for drug-induced arrhythmias 

in females, and confirms the need of considering 

sex when estimating drug-induced torsadogenic 

risk in preclinical compounds (and in patients). 

       

 3.4 Sex-specific prediction of drugs with inter-
mediate risk of TdP 

From the initial list of drugs in our possession, 36 

drugs had not been included in the training phase 

for belonging to the so-called intermediate tor-

sadogenic risk category. In these drugs, TdP risk 

is associated with the presence of one or more 

risk factors. Indeed, when simulating these com-

pounds with the sex-specific cardiomyocyte 

models, the observed changes on the AP (Fig 

5Ai,ii) and Ca2+ transient (Fig 5Aiii,iv) are 

milder compared to the drugs with higher risk 

(Fig 3A,B). In order to explore how sex could af-

fect the estimated torsadogenic risk of the drugs 

in the intermediate category, we applied the sex-

specific TdP classifiers to the simulated male and 

female features and compared the predicted TdP 

probabilities (Fig 5Bi). In general, intermediate 

TdP risk drugs tend to have more dangerous out-

comes in women, whereby a larger number of 

compounds is predicted to have higher probabil-

ity of TdP in women (Fig Bii). Notably, if the 

male classifier is used on female data (right col-

umns, Fig 5Bi), the predicted risk of the com-

pounds is consistently underestimated, confirm-

ing the results obtained with the training dataset. 

 

3.5 Effect of hormones on TdP risk prediction 

It is well-established in the literature that circu-

lating levels of hormones affect cardiac electro-

physiology42. To test how the performances of 

the female TdP classifier are influenced by hor-

mones, we simulated the drug effects during the 

different phases of the menstrual cycle. Notably, 

the performances of the female classifier are al-

most unaltered by the hormonal effects (Fig 6A), 

with some modest changes in prediction in the 

late follicular phase. This is explained by hor-

mones having minimal consequences on the Ca2+ 

transient, which strongly influences the female 

Figure 5: Sex-specific TdP predictions for intermediate-risk drugs. A: simulated effects of the 36 intermediate 

drugs on the AP (i,ii) and Ca2+ transient (iii,iv) on the male (left) and female (right) biophysical models paced at 

a BCL of 1,000 ms. B: heatmaps of the predicted torsadogenic risk probability estimated by the sex specific TdP 

classifiers. (i) Left and center columns show the predictions obtained in male and female, respectively. The tor-

sadogenic risk probabilities predicted by the male TdP classifier on the female dataset are visualized in the right 

column. Drugs are sorted by the risk probability predicted by the male TdP classifier. (ii) Difference between 

torsadogenic risk probabilities predicted by female and male TdP classifiers. 
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predictions, while prolonging the AP duration 

considerably (Fig 6B). The consistency of the fe-

male classifier predictions in response to hormo-

nal perturbations is also reflected in the probabil-

ities forecasted for the drugs at intermediate TdP 

risk (Fig 6C). Similar results were obtained for 

the male classifier simulating the effects of tes-

tosterone (not shown). Taken together, these re-

sults show that this torsadogenic classifier is ro-

bust to acute changes in the levels of the sex hor-

mones.  

   
4. Discussion 

Despite its important role in susceptibility to Tor-

sade de Pointes20–22, sex is rarely considered 

when developing predictive frameworks for 

torsadogenic risk. In the current study, we up-

dated a published model of ventricular cardiomy-

ocyte with sex-specific parameterizations28 to in-

clude experimentally observed differences in 

Ca2+ handling30–32, and used it to simulate the ef-

fects of drugs belonging to different TdP risk cat-

egories. We then fed the simulated data to ma-

chine learning algorithms and generated sex-spe-

cific TdP risk classifiers. We showed that: (i) 

classifiers trained on data reflecting male and fe-

male electrophysiological properties are built on 

distinct and not interchangeable set of features, 

(ii) male classifiers underestimate the torsado-

genic risk in females, (iii) female classifier pre-

dictions are robust to changes in sex hormone 

fluctuations during the menstrual cycle. Taken 

Figure 6: Effects of sex hormone fluctuations on female TdP classifier predictions. A: Receiver oper-

ating characteristic curve for female TdP classifier applied on training drugs dataset in absence of hor-

monal effects (navy blue) or simulating early follicular (EF, azure blue), late follicular (LF, sky blue), 

and luteal (LU, turquoise) phases. Area under the curve (AUC) is 0.9574, 0.9516, 0.9516, and 0.9505, 

respectively. B: Rate dependency of biomarkers simulated during different menstrual phases: measure-

ments of voltage- (i) and Ca2+-related (ii-iv) biomarkers as a function of the BCL tested. C: heatmap of 

the predicted torsadogenic risk probabilities of intermediate TdP risk drugs simulated during different 

menstrual phases. 
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together, these results confirm the need of includ-

ing sex when estimating the torsadogenic risk of 

a drug and provide a new tool to aid in this inves-

tigation.  

 

4.1 Prediction of TdP risk 

Our work is preceded by a number of important 

studies that utilized in silico approaches to iden-

tify biomarkers predictive for Torsade. In 2011, 

Mirams et al.14 used cardiac models to investi-

gate the role of multi-channel effects on forecast-

ing TdP risk categories. They showed that simu-

lating the effects of 31 drugs on INa , ICaL and IKr 

allowed prediction of TdP risk better than that 

based on IKr block only. Similar conclusions were 

reached in the study by Kramer et al.43, who 

trained logistic regression models on combina-

tions of pharmacodynamic parameters. The ne-

cessity of considering how drugs affect multiple 

targets is also one of the founding pillars of the 

CiPA initiative10. Since its creation, this multi-

group effort has built various tools for improving 

the simulations of drug effects11,12,44 and devel-

oped the Torsade Metric Score, an original met-

ric which, in its most recent update13, uses the 

sum of the integrals of 4 different ionic currents 

to order 28 compounds by their TdP risk. Our ap-

proach, based on a combination of biophysically-

detailed simulations and machine learning, is in-

spired by the seminal work of Lancaster and 

Sobie15. The study demonstrated that the perfor-

mance of a SVM classifier trained on drug effects 

on APD50 and diastolic Ca2+ levels was compara-

ble to that built on an entire set of biomarkers, 

and outperformed existing TdP risk predictive 

models. The specificity of this predictive model 

was later improved by Krogh-Madsen et al.16 

with the adoption of a cell model optimized on 

both clinical APD data and intracellular ionic 

concentrations. The Clancy group extensively 

demonstrated the use of Triangulation, Reverse-

use dependence, Instability and Dispersion (i.e. 

TRIaD)45,46, proposed by Hondeghem et al.47, a 

combined metric suggesting that the kinetics of 

repolarization and the instability of AP prolonga-

tion are more critical than AP lengthening itself. 

Other groups have suggested that more direct 

metrics can still contain enough information for 

satisfactory TdP risk predictions48. The TdP 

score developed by the Rodriguez group, for ex-

ample, relies only on the count of repolarization 

abnormalities observed during drug applications 

in experimentally calibrated populations of car-

diomyocyte models18. This estimator has indeed 

demonstrated promising performances, which 

have been further increased by adding simula-

tion-derived measurements to the score calcula-

tion18. In our study, we used both direct features 

(i.e., IC50 values for IKr, ICaL, and INa) and simu-

lated biomarkers as inputs to the ML models. For 

the first time, we utilized sex-specific ionic mod-

els, based on the seminal work of the Clancy 

lab27,28,49 (accounting for both chronic and acute 

effects of sex hormones on cardiac electrophysi-

ology) for creating sex-specific TdP risk classifi-

ers.  

 

4.2 Sex-specific model of ventricular electro-
physiology and Ca2+ handling 

The female Yang and Clancy28 model was pa-

rameterized using differences in expression lev-

els of ion channels and transporters measured in 

cardiac tissue explanted from female vs. male pa-

tients50. In addition, the authors implemented the 

effects of sexual hormones on three ionic cur-

rents (IKr, IKs, ICaL). While the resulting parame-

terizations accurately recapitulate the well docu-

mented differences in AP (and QT) properties in 

the basic research and clinical literature40,51, less 

is known about sex differences in Ca2+ handling 

in humans. Experimental studies in rodents re-

vealed smaller CaT amplitudes in female ani-

mals, associated with a decreased excitation-con-

traction coupling gain31,32. Interestingly, L-type 

Ca2+ current, diastolic [Ca2+] and SR Ca2+ con-

tent are not significantly different between 

sexes31,32. The simulated Ca2+ levels of the origi-

nal female model were unusually high, particu-

larly at faster frequencies and compared to the 

simulated male Ca2+ levels. Therefore, we modi-

fied some parameters affecting the Ca2+-handling 

processes in the female model (see Methods) and 

obtained CaTs in line with the differences re-

ported in literature. Intriguingly, the outputs of 

our updated model more closely resemble the 

sex-specific Ca2+ recordings obtained by Fischer 

et al.41 from isolated ventricular myocyte of hy-

pertrophic patients (Fig 2). Information on the 
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sex-specific differences in Ca2+ handling from 

non-diseased patients would be highly desirable, 

but we are not aware of any available data. 

 

4.3 Sex-specific TdP biomarkers 

Here we propose for the first time the adoption of 

sex-specific torsadogenic risk predictors. 

Through an RFE algorithm, we obtained male 

and female classifiers built on distinct minimal 

set of best performing features. Importantly, the 

RFE iterative process does not require any man-

ual intervention of the user, leading to unbiased 

results. From the analysis of the most predictive 

biomarkers (Fig 3C), we found that the male 

classifier resembles the SVM classifier devel-

oped by Lancaster and Sobie15. In both cases, 

TdP classification is based on information about 

the changes in (1) myocyte diastolic Ca2+ con-

centration and (2) one or more metrics related to 

the degree of drug-induced AP prolongation. Di-

astolic Ca2+ levels are an index of cell Ca2+ load-

ing. In fact, we found that this biomarker is 

highly correlated with SR Ca2+ content and Ca2+ 

transient amplitude (r = 0.9803 and 0.8476, re-

spectively). The integral of IK1 used by our male 

classifier is highly correlated with APD90/AP tri-

angulation (r = 0.8872 and 0.8946 respectively). 

Accordingly, the scatterplot shown in Fig 3F 

looks similar to the one published by the Sobie 

group (see Fig 3b in Lancaster and Sobie, 

201615).  

The female classifier, on the contrary, selected 

hERG IC50 and several features related to Ca2+-

handling processes, whereby diastolic Ca2+ con-

centration, integral of CaT, and CaT decay time 

constant are all positively associated with tor-

sadogenic risk (Fig 3E). Altered Ca2+ homeosta-

sis has been shown to be an important determi-

nant of Torsade susceptibility. An elevated Ca2+ 

influx through L-type Ca2+ channels (e.g., medi-

ated by AP prolongation), for example, can lead 

to a stronger activation of NCX, which in turn 

may reactivate the ICaL and promote the genera-

tion of EADs52. The enhancement of NCX activ-

ity could be exacerbated even more in women, 

where the expression levels are higher in physio-

logical condition33. While a detailed mechanistic 

interpretation of the necessity of different CaT-

related features for TdP prediction in female is 

still undetermined, a deeper exploration through 

ad hoc experiments is advisable.  

 

4.3 Ground truth classification 

We are not aware of any clinical drug classifica-

tion accounting for sex-specific TdP risk. To 

solve this critical lack of ground truth, we oper-

ated under the assumption that drugs generally 

considered safe (i.e., missing in the Credi-

bleMeds34 database, which contains a continu-

ously updated database of therapeutic com-

pounds categorized by the strength of the associ-

ation between their use and a torsadogenic out-

come) are so in both sexes. Conversely, drugs 

clearly associated with Torsade (i.e., inserted in 

the “Know Risk of TdP” category), are more 

likely to be so in both sexes. On the contrary, 

drugs associated with an intermediate risk of 

causing TdP (i.e., inserted in the “Possible” or 

“Conditional Risk of TdP” categories) are more 

likely to change risk categorization depending on 

sex. Therefore, the latter drugs were therefore not 

used to build our classifiers. 

Based on the ground truth adopted here, our 

sex-specific TdP classifiers have shown remark-

able predictive powers (Fig 3D,H, Table 3). In 

addition, analyzing in more detail the misclassi-

fied drugs, we note that both male and female ML 

models produced an erroneous classification of 

the drug Prenylamine. This compound, missing 

in the CredibleMeds34 and CiPA10 databases, has 

been labeled as TdP- in our pipeline. However, 

prenylamine has been reported to cause Torsade 

in patients53, hence it is labeled as torsadogenic 

by categorization systems different from the ones 

we used54. Notably, the classifiers we developed 

were able to detect the torsadogenicity of the 

compound despite the wrong label. A similar 

conclusion can be reached exploring the clinical 

literature for ajmaline55.     

 

4.4 Predictions on intermediate drugs 

Our classification results with the intermediate 

risk drugs identified multiple therapeutic com-

pounds that are predicted safe in men and tor-

sadogenic in women (Fig 5B), which is in gen-

eral agreement with the increased susceptibility 

to TdP in females. As drug-induced TdP is a rare 

event, prospective studies to evaluate the TdP 
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risk factors are difficult to design and would re-

quire very large patient cohorts. We analyzed ret-

rospective reviews of case reports, and notably, 

found a nice correspondence in the predictions 

for some specific compounds with observations 

published in the clinical literature. Indeed, fe-

male sex is a risk factor for documented TdP ep-

isodes associated with the use of Risperidone56,57, 

Sunitinib58, Paroxetine59, and Quetiapine60, 

which are among the intermediate-risk therapeu-

tic compounds with the largest selectivity for 

women based on our estimated torsadogenic risk.  

It is also important to understand sex-differ-

ences in TdP outcome in high-risk drugs, which 

also demonstrate female sex-prevalence, as 

demonstrated for quinidine, amiodarone, sotalol, 

disopyramide, bepridil, prenylamine (but not 

procainamide)20.  

 

4.5 Limitations  

It is important to recognize that even at compara-

ble drug dosages, drug exposure may vary be-

tween women and men owing to differences in 

absorption, distribution, metabolism and excre-

tion that could explain higher TdP risk in women. 

The increased risk is not fully explained by sex 

difference in drug plasma levels61, though cellu-

lar concentrations of a same systemic drug dose 

can vary across individuals and between sexes. 

Thus, future studies should account for both 

(population) pharmacokinetic and pharmacody-

namic drug interactions. Experimental differ-

ences in pharmacokinetics observed between 

men and women have frequently been attributed 

to bodyweight differences and thus might be ad-

dressed by appropriate adjustment of dosage by 

body weight. In fact, in a cohort of more than 200 

patients a statistically significant prevalence of 

dofetilide dose reduction or discontinuation was 

found in female vs. male patients mostly due to 

QTc prolongation, although no TdP cases were 

reported62. On the other hand, the occurrence of 

TdP was not associated to any critical serum drug 

level of quinidine63. 

Here, we showed that while “chronic” sex dif-

ferences affect the predicted susceptibility to 

TdP42, varying levels of sex hormones, e.g., dur-

ing the menstrual cycle, do not impair the perfor-

mance of our TdP classifiers (Fig 6). Several 

studies have reported the influences of circadian 

rhythms on cardiac physiology64,65. Circadian 

variation in the levels of hormones, heart rate, 

and drug metabolism could undoubtedly interact 

and influence the response of the heart to drugs, 

as reported for the differential QT prolongation 

caused by Risperidone66 or Moxifloxacin67 dur-

ing the 24-hour period. 

 
5. Conclusions 

We have extracted sex-specific features to clas-

sify the torsadogenic risk of drugs using simu-

lated data resembling male and female drug re-

sponses. We demonstrated that the predictive 

features are not interchangeable between the 

sexes, and are robust to noise and to variations in 

acute hormone effects. Taken all together, our re-

sults indicate the need of considering sex when 

developing and applying torsadogenic classifiers, 

to obtain more accurate predictions and provide 

safer therapeutic treatments to patients.    

Clinical risk assessment and trials suggest that 

besides sex, other patient conditions, i.e., age, 

disease, electrolyte imbalance68, interaction with 

other drugs69 should all be taken into account in 

the evaluation TdP. Data gathered from experi-

ment in human induced pluripotent stem cells-

derived cardiomyocytes obtained from male and 

female cell lines have been recently proven use-

ful for investigating the sex-differences in tor-

sadogenicity70, suggesting that these patient-de-

rived cells could be used to guide new models 

and paradigms for safety pharmacology19 ac-

counting for patient conditions.      

 
6. Funding 
This work was supported by the National Institutes of 

Health (NIH) Stimulating Peripheral Activity to Re-

lieve Conditions grant 1OT2OD026580 (EG and 

CC); the National Heart, Lung, and Blood Institute 

grants R01HL131517, R01HL141214, 

P01HL141084 (EG), and R00HL138160 (SM); the 

American Heart Association Postdoctoral Fellowship 

20POST35120462 (HN), Predoctoral Fellowship 

20PRE35120465 (XZ), and grant 15SDG24910015 

(EG); the UC Davis School of Medicine Dean’s Fel-

low award (EG) and Academic Senate grant (EG and 

US);  the Health and Environmental Sciences Insti-

tute grant U01 FD006676-01 (AE). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.26.352740doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.352740
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

References 

1. Dessertenne, F. La tachycardie 

ventriculaire a deux foyers opposes 

variables. Arch. Mal. Coeur Vaiss. 59, 

263–272 (1966). 

2. Haverkamp, W. et al. The potential for 

QT prolongation and proarrhythmia by 

non-antiarrhythmic drugs: clinical and 

regulatory implications. Report on a 

Policy Conference of the European 

Society of Cardiology. Eur. Heart J. 21, 

1216–1231 (2000). 

3. Food and Drug Administration. Additions 

and Modifications to the List of Drug 

Products That Have Been Withdrawn or 

Removed From the Market for Reasons 

of Safety or Effectiveness. Final rule. 

Fed. Regist. 79, 37687–37696 (2014). 

4. Sanguinetti, M. C., Jiang, C., Curran, M. 

E. & Keating, M. T. A mechanistic link 

between an inherited and an acquird 

cardiac arrthytmia: HERG encodes the 

IKr potassium channel. Cell 81, 299–307 

(1995). 

5. Tristani-Firouzi, M., Chen, J., Mitcheson, 

J. S. & Sanguinetti, M. C. Molecular 

biology of K+ channels and their role in 

cardiac arrhythmias11Am J Med. 

2001;110-50-59. Am. J. Med. 110, 50–59 

(2001). 

6. Food and Drug Administration. 

International Conference on 

Harmonisation; Guidance on S7B 

Nonclinical Evaluation of the Potential 

for Delayed Ventricular Repolarization 

(QT Interval Prolongation) by Human 

Pharmaceuticals; Availability. Fed. 

Regist. 70, 61133–4 (2005). 

7. Food and Drug Administration. 

International Conference on 

Harmonisation; guidance on E14 Clinical 

Evaluation of QT/QTc Interval 

Prolongation and Proarrhythmic Potential 

for Non-Antiarrhythmic Drugs; 

availability. Notice. Fed. Regist. 70, 

61134–5 (2005). 

8. Sager, P. T. Key clinical considerations 

for demonstrating the utility of preclinical 

models to predict clinical drug-induced 

torsades de pointes. Br. J. Pharmacol. 

154, 1544–1549 (2008). 

9. Gintant, G. An evaluation of hERG 

current assay performance: Translating 

preclinical safety studies to clinical QT 

prolongation. Pharmacol. Ther. 129, 

109–119 (2011). 

10. Sager, P. T., Gintant, G., Turner, J. R., 

Pettit, S. & Stockbridge, N. Rechanneling 

the cardiac proarrhythmia safety 

paradigm: A meeting report from the 

Cardiac Safety Research Consortium. 

Am. Heart J. 167, 292–300 (2014). 

11. Dutta, S. et al. Optimization of an In 

silico Cardiac Cell Model for 

Proarrhythmia Risk Assessment. Front. 

Physiol. 8, 1–15 (2017). 

12. Li, Z. et al. Improving the In Silico 

Assessment of Proarrhythmia Risk by 

Combining hERG (Human Ether-à-go-

go-Related Gene) Channel–Drug Binding 

Kinetics and Multichannel 

Pharmacology. Circ. Arrhythmia 

Electrophysiol. 10, e004628 (2017). 

13. Li, Z. et al. Assessment of an In Silico 

Mechanistic Model for Proarrhythmia 

Risk Prediction Under the Ci PA 

Initiative. Clin. Pharmacol. Ther. 105, 

466–475 (2019). 

14. Mirams, G. R. et al. Simulation of 

multiple ion channel block provides 

improved early prediction of compounds’ 

clinical torsadogenic risk. Cardiovasc. 

Res. 91, 53–61 (2011). 

15. Lancaster, M. C. & Sobie, E. Improved 

Prediction of Drug-Induced Torsades de 

Pointes Through Simulations of 

Dynamics and Machine Learning 

Algorithms. Clin. Pharmacol. Ther. 100, 

371–379 (2016). 

16. Krogh-Madsen, T., Jacobson, A. F., 

Ortega, F. A. & Christini, D. J. Global 

Optimization of Ventricular Myocyte 

Model to Multi-Variable Objective 

Improves Predictions of Drug-Induced 

Torsades de Pointes. Front. Physiol. 8, 1–

10 (2017). 

17. Passini, E. et al. Human In Silico Drug 

Trials Demonstrate Higher Accuracy than 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.26.352740doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.352740
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

Animal Models in Predicting Clinical 

Pro-Arrhythmic Cardiotoxicity. Front. 

Physiol. 8, 1–15 (2017). 

18. Passini, E. et al. Drug‐induced shortening 

of the electromechanical window is an 

effective biomarker for in silico 

prediction of clinical risk of arrhythmias. 

Br. J. Pharmacol. bph.14786 (2019). 

doi:10.1111/bph.14786 

19. Li, Z. et al. General Principles for the 

Validation of Proarrhythmia Risk 

Prediction Models: An Extension of the 

CiPA In Silico Strategy. Clin. 

Pharmacol. Ther. 107, 102–111 (2020). 

20. Makkar, R. R., Fromm, B. S., Russell, T. 

S., Meissner, M. D. & Lehmann, M. H. 

Female Gender as a Risk Factor for 

Torsades de Pointes Associated With 

Cardiovascular Drugs. JAMA J. Am. Med. 

Assoc. 270, 2590 (1993). 

21. Bednar, M. M., Harrigan, E. P. & Ruskin, 

J. N. Torsades de pointes associated with 

nonantiarrhythmic drugs and 

observations on gender and QTc. Am. J. 

Cardiol. 89, 1316–1319 (2002). 

22. Chorin, E. et al. Female gender as 

independent risk factor of torsades de 

pointes during acquired atrioventricular 

block. Hear. Rhythm 14, 90–95 (2017). 

23. Flórez-Vargas, O. et al. Bias in the 

reporting of sex and age in biomedical 

research on mouse models. Elife 5, 1–14 

(2016). 

24. Vitale, C. et al. Under-representation of 

elderly and women in clinical trials. Int. 

J. Cardiol. 232, 216–221 (2017). 

25. Zucker, I. & Beery, A. K. Males still 

dominate animal studies. Nature 465, 

690–690 (2010). 

26. Ramirez, F. D. et al. Sex Bias Is 

Increasingly Prevalent in Preclinical 

Cardiovascular Research: Implications 

for Translational Medicine and Health 

Equity for Women. Circulation 135, 

625–626 (2017). 

27. Yang, P.-C., Kurokawa, J., Furukawa, T. 

& Clancy, C. E. Acute Effects of Sex 

Steroid Hormones on Susceptibility to 

Cardiac Arrhythmias: A Simulation 

Study. PLoS Comput. Biol. 6, e1000658 

(2010). 

28. Yang, P.-C. & Clancy, C. E. In silico 

Prediction of Sex-Based Differences in 

Human Susceptibility to Cardiac 

Ventricular Tachyarrhythmias. Front. 

Physiol. 3, 1–12 (2012). 

29. O’Hara, T., Virág, L., Varró, A. & Rudy, 

Y. Simulation of the Undiseased Human 

Cardiac Ventricular Action Potential: 

Model Formulation and Experimental 

Validation. PLoS Comput. Biol. 7, 

e1002061 (2011). 

30. Farrell, S. R., Ross, J. L. & Howlett, S. E. 

Sex differences in mechanisms of cardiac 

excitation-contraction coupling in rat 

ventricular myocytes. Am. J. Physiol. 

Circ. Physiol. 299, H36–H45 (2010). 

31. Parks, R. J. & Howlett, S. E. Sex 

differences in mechanisms of cardiac 

excitation–contraction coupling. Pflügers 

Arch. - Eur. J. Physiol. 465, 747–763 

(2013). 

32. Parks, R. J., Ray, G., Bienvenu, L. A., 

Rose, R. A. & Howlett, S. E. Sex 

differences in SR Ca2+ release in murine 

ventricular myocytes are regulated by the 

cAMP/PKA pathway. J. Mol. Cell. 

Cardiol. 75, 162–173 (2014). 

33. Papp, R. et al. Genomic upregulation of 

cardiac Cav1.2α and NCX1 by estrogen 

in women. Biol. Sex Differ. 8, 5–8 (2017). 

34. Woosley, R., Heise, C., Gallo, T., 

Woosley, R. & Romero, K. QTDrug List. 

AZCERT Available at: 

https://crediblemeds.org/new-drug-list/.  

35. Rush, S. & Larsen, H. A Practical 

Algorithm for Solving Dynamic 

Membrane Equations. IEEE Trans. 

Biomed. Eng. BME-25, 389–392 (1978). 

36. Van Der Walt, S., Colbert, S. C. & 

Varoquaux, G. The NumPy array: a 

structure for efficient numerical 

computation. Comput. Sci. Eng. 13, 22 

(2011). 

37. McKinney, W. Data Structures for 

Statistical Computing in Python. in 

Proceedings of the 9th Python in Science 

Conference (eds. van der Walt, S. & 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.26.352740doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.352740
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

Millman, J.) 56–61 (2010). 

doi:10.25080/Majora-92bf1922-00a 

38. Pedregosa, F. et al. Scikit-learn: Machine 

Learning in Python. J. Mach. Learn. Res. 

12, 2825–2830 (2011). 

39. Bergstra, J., Yamins, D. & Cox, D. D. 

Making a Science of Model Search: 

Hyperparameter Optimization in 

Hundreds of Dimensions for Vision 

Architectures. in Proceedings of the 30th 

International Conference on 

International Conference on Machine 

Learning - Volume 28 I–115–I–123 

(JMLR.org, 2013). 

40. Verkerk, A. O. et al. Gender Disparities 

in Cardiac Cellular Electrophysiology 

and Arrhythmia Susceptibility in Human 

Failing Ventricular Myocytes. Int. Heart 

J. 46, 1105–1118 (2005). 

41. Fischer, T. H. et al. Sex-dependent 

alterations of Ca 2+ cycling in human 

cardiac hypertrophy and heart failure. 

Europace 18, 1440–1448 (2016). 

42. Furukawa, T. & Kurokawa, J. Regulation 

of cardiac ion channels via non-genomic 

action of sex steroid hormones: 

Implication for the gender difference in 

cardiac arrhythmias. Pharmacol. Ther. 

115, 106–115 (2007). 

43. Kramer, J. et al. MICE Models: Superior 

to the HERG Model in Predicting 

Torsade de Pointes. Sci. Rep. 3, 2100 

(2013). 

44. Chang, K. C. et al. Uncertainty 

Quantification Reveals the Importance of 

Data Variability and Experimental 

Design Considerations for in Silico 

Proarrhythmia Risk Assessment. Front. 

Physiol. 8, 1–17 (2017). 

45. Yang, P.-C. et al. A computational model 

predicts adjunctive pharmacotherapy for 

cardiac safety via selective inhibition of 

the late cardiac Na current. J. Mol. Cell. 

Cardiol. 99, 151–161 (2016). 

46. Yang, P.-C. et al. A Computational 

Pipeline to Predict Cardiotoxicity. Circ. 

Res. 126, 947–964 (2020). 

47. Hondeghem, L. M., Carlsson, L. & 

Duker, G. Instability and Triangulation of 

the Action Potential Predict Serious 

Proarrhythmia, but Action Potential 

Duration Prolongation Is Antiarrhythmic. 

Circulation 103, 2004–2013 (2001). 

48. Parikh, J., Gurev, V. & Rice, J. J. Novel 

Two-Step Classifier for Torsades de 

Pointes Risk Stratification from Direct 

Features. Front. Pharmacol. 8, 1–18 

(2017). 

49. Yang, P.-C. et al. A multiscale 

computational modelling approach 

predicts mechanisms of female sex risk in 

the setting of arousal-induced 

arrhythmias. J. Physiol. 595, 4695–4723 

(2017). 

50. Gaborit, N. et al. Gender-related 

differences in ion-channel and transporter 

subunit expression in non-diseased 

human hearts. J. Mol. Cell. Cardiol. 49, 

639–646 (2010). 

51. Rautaharju, P. M. et al. Sex differences in 

the evolution of the electrocardiographic 

QT interval with age. Can. J. Cardiol. 8, 

690–5 (1992). 

52. Sims, C. et al. Sex, Age, and Regional 

Differences in L-Type Calcium Current 

Are Important Determinants of 

Arrhythmia Phenotype in Rabbit Hearts 

With Drug-Induced Long QT Type 2. 

Circ. Res. 102, 86–100 (2008). 

53. Tamari, I., Rabinowitz, B. & Neufeld, H. 

N. Torsade de pointes due to prenylamine 

controlled by lignocaine. Eur. Heart J. 3, 

389–92 (1982). 

54. Champeroux, P. et al. Prediction of the 

risk of Torsade de Pointes using the 

model of isolated canine Purkinje fibres. 

Br. J. Pharmacol. 144, 376–385 (2005). 

55. Haverkamp, W. et al. Torsade de pointes 

induced by ajmaline. Z. Kardiol. 90, 586–

590 (2001). 

56. Vieweg, W. V. R. et al. Proarrhythmic 

Risk with Antipsychotic and 

Antidepressant Drugs. Drugs Aging 26, 

997–1012 (2009). 

57. Vieweg, W. V. R. et al. Risperidone, QTc 

interval prolongation, and torsade de 

pointes: A systematic review of case 

reports. Psychopharmacology (Berl). 228, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.26.352740doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.352740
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

515–524 (2013). 

58. Harvey, P. A. & Leinwand, L. A. 

Oestrogen enhances cardiotoxicity 

induced by Sunitinib by regulation of 

drug transport and metabolism. 

Cardiovasc. Res. 107, 66–77 (2015). 

59. Wenzel-Seifert, K., Wittmann, M. & 

Haen, E. QTc Prolongation by 

Psychotropic Drugs and the Risk of 

Torsade de Pointes. Dtsch. Aerzteblatt 

Online 108, 687–693 (2011). 

60. Hasnain, M. et al. Quetiapine, QTc 

interval prolongation, and torsade de 

pointes : a review of case reports. Ther. 

Adv. Psychopharmacol. 4, 130–138 

(2014). 

61. Darpo, B. et al. Are women more 

susceptible than men to drug-induced QT 

prolongation? Concentration-QT c 

modelling in a phase 1 study with oral 

rac-sotalol. Br. J. Clin. Pharmacol. 77, 

522–531 (2014). 

62. Pokorney, S. D. et al. Dofetilide dose 

reductions and discontinuations in 

women compared with men. Hear. 

Rhythm 15, 478–484 (2018). 

63. Thompson, K. A., Murray, J. J., Blair, I. 

A., Woosley, R. L. & Roden, D. M. 

Plasma concentrations of quinidine, its 

major metabolites, and dihydroquinidine 

in patients with torsades de pointes. Clin. 

Pharmacol. Ther. 43, 636–642 (1988). 

64. Smetana, P., Batchvarov, V. N., 

Hnatkova, K., Camm, A. J. & Malik, M. 

Sex differences in repolarization 

homogeneity and its circadian pattern. 

Am. J. Physiol. Circ. Physiol. 282, 

H1889–H1897 (2002). 

65. Sredniawa, B., Musialik-Lydka, A., 

Jarski, P., Kalarus, Z. & Polonski, L. 

Circadian and sex-dependent QT 

dynamics. Pacing Clin. Electrophysiol. 

28 Suppl 1, S211-6 (2005). 

66. Watanabe, J. et al. Increased Risk of 

Antipsychotic-Related QT Prolongation 

During Nighttime. J. Clin. 

Psychopharmacol. 32, 18–22 (2012). 

67. Täubel, J., Ferber, G., Fernandes, S. & 

Camm, A. J. Diurnal Profile of the QTc 

Interval Following Moxifloxacin 

Administration. J. Clin. Pharmacol. 59, 

35–44 (2019). 

68. Lazzerini, P. E. et al. Proton Pump 

Inhibitors and Serum Magnesium Levels 

in Patients With Torsades de Pointes. 

Front. Pharmacol. 9, 1–10 (2018). 

69. Lv, C. et al. The Clinical 

Pharmacokinetics and 

Pharmacodynamics of Warfarin When 

Combined with Compound Danshen: A 

Case Study for Combined Treatment of 

Coronary Heart Diseases with Atrial 

Fibrillation. Front. Pharmacol. 8, 1–10 

(2017). 

70. Huo, J., Wei, F., Cai, C., Lyn-Cook, B. & 

Pang, L. Sex-Related Differences in 

Drug-Induced QT Prolongation and 

Torsades de Pointes: A New Model 

System with Human iPSC-CMs. Toxicol. 

Sci. 167, 360–374 (2018). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.26.352740doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.352740
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

Tables 

Table 1 

Drug list with TdP risk category (TdP+ in red, TdP- in green, intermediate risk in yellow), IC50s and 

EFTPC. All concentrations are expressed in nM. A Hill coefficient (nH) of 1 was used unless a different 

nH is indicated in parenthesis. 

 

Drug IKr INaL  ICaL  INa  Ito  IK1  IKs  EFTPC  

Amiodarone 1 860 
 

1900  15900  
   

0.8 

Amiodarone 2 30 
 

270  4800  
   

0.5 

Bepridil 1 160 
 

1000  2300  
   

35 

Bepridil 2 33 
 

211  3700  
   

33 

Bepridil CiPA 50 (0.9) 1813.9 (1.4) 2808.1 (0.6) 2929.3 (1.2) 8594 (3.5) 0 (0) 28628.3 

(0.7) 

33 

Cilostazol 13800 
 

91200  93700  
   

128 

Disopyramide 14400 
 

1036700  168400  
   

742 

Dofetilide 1 30 
 

26700  162100  
   

2 

Dofetilide 2 5 
 

60000  300000  
   

2 

Dofetilide CiPA 4.9 (0.9) 753160.4 

(0.3) 

260.3 (1.2) 380.5 (0.9) 18.8 (0.8) 394.3 (0.8) 0 (0) 2 

Donepezil 700  
 

34300  38500  
   

3 

Flecainide 1500  
 

27100  6200  
   

753 

Halofantrine 380  
 

1900  331200  
   

172 

Haloperidol 1 40  
 

1300  4300  
   

4 

Haloperidol 2 27  
 

1700  7000  
   

3.6 

Ibutilide 18  
 

62500  42500  
   

140 

Methadone 3500  
 

37400  31800  
   

507 

Moxifloxacin 86200  
 

173000  1112000  
   

10960 

Procainamide 272400  
 

389500  746600  
   

54180 

Quinidine 1 720  
 

6400  14600  
   

3237 

Quinidine 2 300  
 

15600  16600  
   

924 

Quinidine CiPA 992 (0.8) 9417 (1.3) 51592.3 

(0.6) 

12329 (1.5) 3487.4 (1.3) 39589919 

(0.4) 

4898.9 (1.4) 3237 

Sotalol 111400  
 

193300  7013900  
   

14690 

Sotalol CiPA 110600 

(0.8) 

0 (0) 7061527 

(0.9) 

1140000000 

(0.5) 

43143455 

(0.7) 

3050260 

(1.2) 

4221856 

(1.2) 

14690 

Sparfloxacin 22100  
 

88800  2555000  
   

1766 

Terodiline 650  
 

4800  7400  
   

145 

Thioridazine 1 500  
 

3500  1400  
   

980 

Thioridazine 2 33  
 

1300  1830  
   

208 

Ajmaline 1040  
 

71000  8200  
   

1500 

Ceftriaxone 445700  
 

153800  555900  
   

23170 

Cibenzoline 22600  
 

30000  7800  
   

976 

Diazepam 53200  
 

30500  306400  
   

29 

Diltiazem 1 13200  
 

760  22400  
   

122 

Diltiazem 2 17300  
 

450  9000  
   

122 
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Diltiazem CiPA 13150 (0.9) 21868.5 

(0.7) 

112.1 (0.7) 110859 

(0.7) 

2820000000 

(0.2) 

0 (0) 0 (0) 122 

Duloxetine 3800  
 

2800  5100  
   

16 

Lamivudine 2054000  
 

54200  1571400  
   

19540 

Linezolid 1147200  
 

105400  2644500  
   

59110 

Loratadine 6100  
 

11400  28900  
   

0.4 

Mexiletine 50000  
 

100000  43000  
   

4129 

Mexiletine CiPA 28880 (0.9) 8956.8 (1.4) 38243.6  0 (0) 0 (0) 0 (0) 0 (0) 4129 

Mibefradil1 1700  
 

510  5600  
   

12 

Mibefradil2 1800  
 

156  980  
   

12 

Mitoxantrone 539400  
 

22500  93500  
   

225 

Nifedipine1 44000  
 

12  88500  
   

8 

Nifedipine2 275000  
 

60  37000  
   

7.7 

Nitrendipine1 24600  
 

25  21600  
   

3 

Nitrendipine2 10000  
 

0.35  36000  
   

3.02 

Pentobarbital 1433900  
 

299000  2686000  
   

5171 

Phenytoin1 147000  
 

21900  72400  
   

4360 

Phenytoin2 100000  
 

103000  49000  
   

4500 

Prenylamine 65  
 

1240  2520  
   

17 

Propranolol 2828  
 

18000  2100  
   

26 

Ribavirin 967000  
 

622500  2997500  
   

27880 

Sitagliptin 174700  
 

147100  1220800  
   

442 

Telbivudine 422700  
 

713900  1095200  
   

19720 

Verapamil1 250  
 

200  32500  
   

88 

Verapamil2 143  
 

100  41500  
   

81 

Verapamil_CiPA 288  7028  201.8 (1.1) 0 (0) 13429.2 

(0.8) 

349000000 

(0.3) 

0 (0) 81 

Amitriptyline 3280  
 

11600  20000  
   

41 

Astemizole 4  
 

1100  3000  
   

0.3 

Chlorpromazine1 1500  
 

3400  3000  
   

38 

Chlorpromazine_CiPA 929.2 (0.8) 4559.6 (0.9) 8191.9 (0.8) 4535.6 (2) 17616711 

(0.4) 

9269.9 (0.7) 0 (0) 38 

Cisapride1 20  
 

11800  337000  
   

3 

Cisapride_CiPA 10.1 (0.7) 0 (0) 9258076 

(0.4) 

0 (0) 219112.4 

(0.2) 

29498 (0.5) 81192862 

(0.3) 

2.6 

Clozapine 2300  
 

3600  15100  
   

71 

Dasatinib 24500  
 

81100  76300  
   

41 

Desipramine 1390  
 

1709  1520  
   

108 

Diphenhydramine 5200  
 

228000  41000  
   

34 

Droperidol 60  
 

7600  22700  
   

16 

Fluvoxamine 3100  
 

4900  39400  
   

377 

Imipramine 3400  
 

8300  3600  
   

106 

Metronidazole 1340200  
 

177900  2073200  
   

187000 

Nilotinib 1000  
 

17500  13300  
   

172 

Ondansetron_CiPA 1320 (0.9) 19180.8  22551.4 

(0.8) 

57666.4  1023378  0 (0) 569807 

(0.7) 

139 

Paliperidone 780  
 

193900  109000  
   

69 
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Paroxetine 1900  
 

3900  9800  
   

14 

Pimozide1 40  
 

240  1100  
   

0.5 

Pimozide2 20  
 

162  54  
   

1 

Piperacillin 3405100  
 

1226000  2433800  
   

1378000 

Propafenone 440  
 

1800  1190  
   

241 

Quetiapine 5800  
 

10400  16900  
   

33 

Raltegravir 782800  
 

246700  824200  
   

7000 

Ranolazine_CiPA 8270 (0.9) 7884.5 (0.9) 0 (0) 68774 (1.4) 0 (0) 0 (0) 36155020 

(0.5) 

1948.2 

Risperidone1  260  
 

34200  43400  
   

2 

Risperidone2 150  
 

73000  102000  
   

1.81 

Saquinavir 16900  
 

1900  12100  
   

130 

Sertindole1 33  
 

6300  6900  
   

2 

Sertindole2 14  
 

8900  2300  
   

1.59 

Solifenacin 280  
 

4300  1500  
   

3 

Sunitinib 1200  
 

33400  16500  
   

13 

Terfenadine1 50  
 

930  2000  
   

9 

Terfenadine2 8.9  
 

375  971  
   

9 

Terfenadine_CiPA 23 (0.6) 20056 (0.6) 700.4  4803.2  239960.8 

(0.3) 

0 (0) 399754 

(0.5) 

4 

Voriconazole 490900  
 

414200  1550500  
   

7563 
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Table 2 

List of biomarkers extracted from simulations and relative descriptions.  

 

 Biomarker Description 

APD90 Action potential duration at 90% repolarization 

APD75 Action potential duration at 75% repolarization 

APD50 Action potential duration at 50% repolarization 

APD30 Action potential duration at 30% repolarization 

Vmax Peak voltage 

Vmin Diastolic voltage 

dVdtmax Maximal upstroke velocity 

Plateau potential Average voltage between 10 and 50 ms after action potential initiation 

INa max Peak of the sodium current 

CaT max Peak concentration of the calcium transient 

CaT min Diastolic intracellular calcium concentration 

CaD80 Calcium transient duration at 80% return to baseline 

CaT tau Rate constant of decay of the calcium transient 

Cai integral Integral of calcium transient 

Nai integral Integral of sodium transient ??? 

INa integral Integral of fast component of the sodium current 

INaL integral Integral of late component of the sodium current 

Ito integral Integral of transient outward potassium current 

ICaL integral Integral of L-type calcium current 

IKr integral Integral of rapid delayed rectifier potassium current 

IKs integral Integral of slow delayed rectifier potassium current 

IK1 integral Integral of inward rectifier potassium current 

INaK integral Integral of sodium/potassium-ATPase current 

IpCa integral Integral of calcium pump current 

INaCa integral Integral of sodium/calcium exchanger current 

AP amplitude Action potential amplitude 

AP triangulation Difference between APD80 and APD30 
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Table 3 

Summary of prediction performances of the different combination of TdP classifiers and dataset dis-

cussed.  

 

 F1 

score 

MCC AUC FN FP Misclassified drugs 

M on M 0.9148 0.8336 0.9447 4 1 Amiodarone 1, Amiodarone 2, Cilostazol, 

Donepezil, Prenylamine 

F on F 0.9492 0.8987 0.9424 1 2 Ajmaline, Prenylamine, Procainamide 

M on F 0.7693 0.5945 0.9159 12 1 Amiodarone 1, Amiodarone 2, Bepridil 2, 
Bepridil CiPA, Cilostazol, Donepezil, 

Flecainide, Halofantrine, Prenylamine, Pro-
cainamide, Quinidine 1, Sotalol, Thioridazine 

1 

M re-

trained 

on F 

0.8980 0.7972 0.9217 4 2 Ajmaline, Amiodarone 1, Amiodarone 2, Ci-

lostazol, Donepezil, Prenylamine 

F on EF 0.9322 0.8665 0.9516 1 3 Ajmaline, Prenylamine, Procainamide, 

Telbivudine 

F on LF 0.9492 0.8987 0.9516 1 2 Ajmaline, Prenylamine, Procainamide 

F on LU 0.9492 0.8987 0.9505 1 2 Ajmaline, Prenylamine, Procainamide 
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