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Abstract What limits our ability to find an object we are looking for? There are
two competing models: one explains attentional limitations during visual search
in terms of a serial processing computation, the other attributes limitations to
noisy parallel processing. Both models predict human visual search behavior when
applied to the simplified stimuli often used in experiments, but it remains unclear
how to extend them to account for search of complex natural scenes. Models exist of
natural scene search, but they do not predict whether a given scene will limit search
accuracy. Here we propose an alternate mechanism to explain limitations across
stimuli types: visual search is limited by an ”untangling” computation, proposed
to underlie object recognition. To test this idea, we ask whether models of object
recognition account for visual search behavior. The current best-in-class models
are artificial neural networks (ANNs) that accurately predict both behavior and
neural activity in the primate visual system during object recognition tasks. Unlike
dominant visual search models, ANNs can provide predictions for any image. First
we test ANN-based object recognition models with simplified stimuli typically used
in studies of visual search. We find these models exhibit a hallmark effect of such
studies: a drop in target detection accuracy as the number of distractors increases.
Further experiments show this effect results from learned representations: networks
that are not pre-trained for object recognition can achieve near perfect accuracy.

Research funded by the Lifelong Learning Machines program, DARPA/Microsystems Technol-
ogy Office, DARPA cooperative agreement HR0011-18-2-0019. David Nicholson was partially
supported by the 2017 William K. and Katherine W. Estes Fund to F. Pestilli, R. Goldstone
and L. Smith, Indiana University Bloomington.

David A. Nicholson
Emory University
Department of Biology,
O. Wayne Rollins Research Center,
1510 Clifton Road NE, Atlanta , GA 30322 E-mail: nicholdav@gmail.com

Astrid A. Prinz
Emory University
Department of Biology,
O. Wayne Rollins Research Center,
1510 Clifton Road NE, Atlanta , GA 30322

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.26.354258doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.354258
http://creativecommons.org/licenses/by/4.0/


2 David A. Nicholson, Astrid A. Prinz

Next we test these models with complex natural images, using a version of the
Pascal VOC dataset where each image has a visual search difficulty score, derived
from human reaction times. We find models exhibit a drop in accuracy as search
difficulty score increases. We conclude that ANN-based object recognition models
account for aspects of visual search behavior across stimuli types, and discuss how
to extend these results.

Keywords Visual search · Selective visual attention · Object recognition · neural
networks · Deep learning

1 Introduction

What limits our ability to find an object as we search for it in the cluttered scenes
constantly presented to our visual system? Essentially, there are two competing
families of models that explain limitations on visual search, as schematized in
Fig. 1. One family attributes limitations to a serial processing step required to
bind different feature dimensions like color and orientation into a target object
(Wolfe, 1994; Wolfe et al., 1989; Treisman and Gelade, 1980). The other family
attributes limitations to noisy parallel processing (Eckstein, 1998; Eckstein et al.,
2000; Palmer et al., 2000; Eckstein, 2011). These have also been described as mod-
els of visual selective attention (Eckstein, 1998; Geisler and Cormack, 2011; Wolfe
and Horowitz, 2017; Peelen and Kastner, 2014). However, we defer usage of the
term ”attention” until the discussion, to place emphasis on which specific com-
putations impose limits on search behavior (Hommel et al., 2019), and to avoid
overloading the term, since ”attention” has a different meaning when applied to the
artificial neural network models that we test here (Lindsay, 2020; Hommel et al.,
2019). The dominant models explaining limitations are built on results obtained
by measuring search behavior with highly simplified stimuli like those shown in the
upper left of Fig. 1, that have been employed in thousands of studies. As can be
seen, the stimuli consist of a two-dimensional array of items, where a target is usu-
ally distinguished from distractors by one or two parametrically-defined features
like hue, luminance, or orientation. Accordingly, the dominant models accurately
predict visual search behavior when given as inputs some number of items that
are described by a few clearly-defined features. We emphasize that what both
families of models have in common is that they assert that the brain operates on
well-defined features like color and orientation that it uses while processing sets
of discrete items.

These assertions shared by both families of models make it unclear how to
extend them to relatively complex natural scenes, more similar to what we see
during real world search, like those shown in the upper right of Fig. 1. In real
world scenes, an object we are searching for will not differ from nontarget items
by one or two parametrically-defined features like color and orientation (Peelen
and Kastner, 2014; Wolfe et al., 2011). In addition, natural scenes are not easily
divided into discrete items (Hulleman and Olivers, 2017). Even if it were possible to
easily extend existing models to natural images, their predictions might not match
real world visual search behavior. For example, models with a serial processing
step imply that search of cluttered scenes should produce lengthy reaction times,
but often these searches can be highly efficient (Peelen and Kastner, 2014; Wolfe
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Untangling visual search 3

Fig. 1 Schematic representation of hypothesis we test, and its relationship to other
models. See text for description

et al., 2011). Finally, dominant models of visual search are not consistent with
our current understanding of the visual system (Nakayama and Martini, 2011).
One way in which this is true is the emphasis those models place on what features
guide search (Wolfe and Horowitz, 2017). Emerging evidence from neuroscience
suggests that, beyond the sensory periphery, neural activity in the visual system
is not dominated by neurons representing or encoding separate feature dimensions
like color or orientation (Nakayama and Martini, 2011), especially during natural
behavior (de Vries et al., 2020).

Models exist that explain visual search of natural scenes, but they do not
directly account for limitations of search performance in terms of a specific com-
putation. A conceptual model has been described based on proposed functions of
the dorsal and ventral pathways of the visual system (Peelen and Kastner, 2014),
and imaging studies provide evidence in support of this model, but to our knowl-
edge no computational studies of the model have been carried out. Conversely,
experiments have shown that that visual search performance can be predicted
from features of natural scenes (Katti et al., 2017; Ionescu et al., 2016), but this
predictive power of features was not attributed to a specific computation carried
out by the visual system.
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Here we ask whether a specific computation can account for limitations on
visual search behavior across stimuli. Specifically, we hypothesize that the core
computation proposed to underlie object recognition is also required for visual
search, and that it places limits on visual search performance. The key compu-
tation proposed to underlie object recognition is ”untangling”: transforming low-
level features of the visual scene into a representational space where the object
can be classified (DiCarlo and Cox, 2007; DiCarlo et al., 2012). According to this
theory, the visual system learns to project different views of an object onto a low-
dimensional manifold in ”object space”, such that a hyperplane exists separating
that manifold from other object manifolds. Several previous studies provided ev-
idence suggesting that a similar computation might be involved in visual search
(Bauer et al., 1996; Duncan and Humphreys, 1989; D’Zmura, 1991), as noted by
(Nakayama and Martini, 2011). Those previous studies used the simplified stimuli
described above, and the authors attributed behavioral effects to the intrinsic dis-
criminability of target and distractors. In contrast, our central hypothesis is that
untangling itself can account for limitations on target detection accuracy that are
observed when human subjects search those simplified stimuli, and additionally
can account for limitations on accuracy seen when human subjects search natural
scenes.

To test our hypothesis, we use artificial neural networks (ANNs) that are
currently best-in-class models of object recognition (Yamins and DiCarlo, 2016;
Schrimpf et al., 2018). These ANN models accurately predict both neural activity
in the primate visual system and behavior during object recognition tasks. Specif-
ically, ANN accuracy is correlated with accuracy of human subjects and monkeys
performing object recognition tasks. The models are optimized for task perfor-
mance, in this case image classification, using methods that have come to be called
deep learning (Yamins and DiCarlo, 2016; Yamins et al., 2014; Richards et al.,
2019). An additional benefit of using ANNs is that they are image-computable
models (Yamins et al., 2014; Geisler and Cormack, 2011), meaning they can pro-
vide predictions both for the highly simplified stimuli used in lab tasks and for
natural scenes.

Previous studies have tested different ANN architectures as models of visual
search (Poder, 2017; Eckstein et al., 2017; Grossberg et al., ????; Ma et al., 2011),
but we emphasize that here our goal is to specifically test whether ANN-based
object recognition models exhibit human-like behaviors when performing visual
search tasks. If so, we will take this as evidence that the untangling computation
proposed to underlie object recognition also represents an alternate mechanism
that could account for visual search behavior. To observe the behavior of ANN-
based object recognition models performing visual search task, we use methods
from deep learning to adapt pre-trained models to new domains. As we show
below, this approach produced results supporting the idea that an untangling
computation can account for limitations of target detection accuracy across the
different types of stimuli used in visual search tasks.
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2 General Methods

2.1 Transfer learning

For all experiments, we employ transfer learning methods used with deep neural
network models (Yosinski et al., 2014; Kornblith et al., 2019). Essentially, we
hold fixed all parameters optimized for object recognition, except for those in
the final output layer of the neural network. We replace the final layer used for
image classification with a new layer that has an appropriate number of units for
the visual search task and then adapt the model to this task by optimizing for
performance with a training set. We then measure visual search task performance
with a held-out test set the network has not seen during training time.

2.2 Code availability

To aid with reproducibility of our experiments, and to make them more accessible
to other researchers, we developed a separate software library, visual-search-nets,
available at https://github.com/NickleDave/visual-search-nets. All code related
to carrying out experiments, analyzing and visualization of results, is available at
https://github.com/NickleDave/untangling-visual-search.

3 Results

In order to use ANN-based models to test the idea that optimizing the visual
system for object recognition places limits on visual search behavior, we employ
transfer learning methods used with deep neural network models (Yosinski et al.,
2014; Kornblith et al., 2019). Essentially, we hold fixed all neural network parame-
ters optimized for object recognition, except for those in the final output layer. We
replace the final layer used for image classification with a new layer that has an
appropriate number of units for the visual search task and then adapt the model
to this task by optimizing for performance with a training set. For standard lab
tasks using simplified stimuli, the final layer has two output units corresponding
to ”target present” and ”target absent”; for tasks using natural scenes, the num-
ber of outputs units corresponds to the number of classes in the dataset (20 in
the case of the Pascal VOC dataset we use). We then measure visual search task
performance with a held-out test set the network has not seen during training
time. For all experiments we test the performance of four ANN models. Two of
the models, AlexNet (Krizhevsky et al., 2012) and VGG16 (Simonyan and Zis-
serman, 2015), represented key advances in image classification by the computer
vision community, and were later used in some of the first papers that proposed
ANNs as models of object recognition (Cadieu et al., 2014; Jozwik et al., 2017).
The other two, CORnet S and CORnet Z, are two ANNs specifically developed
in pursuit of good performance under a metric proposed to account for a model’s
ability to predict both brain activity and behavior during object recognition tasks
(Schrimpf et al., 2018). Other models might be added but we chose these four
architectures as a representative sample of ANN-based object recognition models
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to increase the likelihood that our results are general, and are not an artifact of
any specific architecture.

3.1 ANN models of object recognition exhibit set size effects

3.1.1 Set size effects are a hallmark of search tasks that use simplified stimuli

We first tested whether ANNs exhibited behavior similar to that seen when hu-
mans search highly-simplified stimuli like those shown in Fig. 2. The prevailing
models of visual search are built on results obtained with these stimuli, which
have been employed in thousands of studies. A complete review of the dominant
models is beyond the scope of this paper, but there are essentially two competing
families (Wolfe, 1994; Eckstein, 2011). The evidence for both families of models
consists of so-called ”set size effects”, observed when subjects perform visual search
tasks that use stimuli like those in Fig. 2. Since we test whether ANN-based object
recognition models also exhibit set size effects, we define this term by briefly de-
scribing how these laboratory search tasks are typically performed (Wolfe, 1998).
On each trial, the subject reports whether a target is present (Fig. 2a bottom row)
or absent (Fig. 2a top row) among distractors. Studies using these stimuli use the
term ”set size” to refer to the total number of items (distractors plus target when
present). Hence by extension the term ”set size effect” refers to any change in
some behavioral measure of target detection, such as reaction time or accuracy,
that depends on increasing the number of distractors, as depicted schematically
in Fig. 2b. These set size effects are taken as evidence for different types of com-
putations thought to be involved in visual search. Therefore, we tested whether
ANN models of object recognition exhibit set size effects, supporting the idea that
the untangling computation can account for visual search. Specifically, we asked
whether ANNs showed a decrease in accuracy of detecting a target as the number
of distractors increased.

3.1.2 Methods

All ANN models were trained on a dataset consisting of ten types of stimuli
(columns in Fig. 3), with 1200 samples for each type. Stimuli were generated
with jitter in the placement of the items, to guarantee that there were no repeated
images that would encourage the ANNs to simply memorize the correct answer
during training. 1200 samples was the maximum number we could generate per
stimulus without repeats, given the parameters we used to create them.

3.1.3 ANNs pre-trained for object recognition show set size effects, while ANNs
trained from randomly initialized weights achieve perfect accuracy

As shown in Fig. 3, all ANN models we tested exhibited set size effects. We tested
four different ANN architectures that have been used as models of object recog-
nition (rows in Fig. 3), and all showed a drop in target detection accuracy as the
number of distractors increased (solid blue line). This set size effect was consis-
tent across the eight training replicates we ran for each model (dashed lines). All
replicates were trained on a dataset consisting of ten types of stimuli (columns

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.26.354258doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.354258
http://creativecommons.org/licenses/by/4.0/


Untangling visual search 7

Fig. 2 Set size effects are a hallmark finding from laboratory visual search tasks.
Panel a shows example simplified displays commonly used in visual search tasks. In top row of
a a target is absent and in the bottom row it is absent. Displays in each row also have different
set sizes (total number of items including target and distractors): on the top row of a the set
size is two and the bottom row it is four. Panel b schematically depicts set size effects, redrawn
from (Wolfe et al., 2010) and (Eckstein, 1998)). Effect size varies based on the features that
distinguish targets from distractors (shown in columns). In the left column of a, the target
can be distinguished from distractors by a single feature, color; in the middle column, by a
conjunction of features, color and orientation; in the right column, by a spatial configuration
of multiple features.

in Fig. 3) with 1200 samples for each type (see methods for details). The effect
size was different for different stimulus types; we measured effect size by taking
the difference between accuracy for set size 8 and accuracy for set size 1. The
columns in Fig. 3 are sorted by the size of this effect, in increasing order, averaged
across models. Note that when sorted this way it can be seen that stimulus types
thought to give rise to ”efficient” search in humans were easily discriminable by
the networks, like the blue x target vs. red distractors in the last column in figure
2. Similarly, stimulus types thought to give rise to inefficient search, such as the
”digital 2 target vs. digital 5 distractors stimulus in the first column, were difficult
for the networks to discriminate.

This initial finding demonstrated that ANN models exhibit set size effects, but
it left unanswered the question of whether these effects result from the models
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being optimized for object recognition, or whether alternatively they result from
the structure of ANNs in general. To answer this question, we carried out another
set of experiments where we trained models from randomly-initialized weights,
instead of using weights pre-trained on ImageNet. In almost all cases, these models
achieve nearly perfect accuracy across all set sizes (solid red lines in fig. 3). For
all models we tested, most of the eight replicates (dashed red lines) achieved these
high levels of accuracies, providing an existence proof that these ANN models can
find near-optimal solutions to this task. The only exceptions were one replicate of
AlexNet that failed to converge, and one replicate of VGG16 that did not achieve
high accuracy on two of the ten stimulus types.

A final concern that might be raised about our results is that the simplified
stimuli we used somehow affect the activations within the hidden layers of the
neural networks, impeding their ability to learn the task. For example, the black
backgrounds might produce lower activations on average than the activations pro-
duced by full-color images from ImageNet used to pre-train the model. To address
this concern, we carried out a control experiment where we produced the same set
of simplified stimuli types, only with a white background instead of black, and we
repeated the training with the AlexNet model. We again saw that AlexNet models
pre-trained on ImageNet exhibited set size effects, whereas AlexNet models trained
from randomly-initialized weights were able to achieve very high accuracy on the
same task. Please see the repository on-line for these results. Thus this control
experiment did not produce evidence that our result is an artifact of the stimulus.

Based on the results from this set of experiments, we conclude it is possible to
optimize ANNs to perform this task with perfect accuracy, when parameters are
not pre-trained for image classification. Therefore the set size effects we observed
resulted from ANNs being optimized for object recognition before we used transfer
learning to measure how they performed visual search tasks.

3.1.4 set size effects exhibited by ANN models do not arise from overfitting,
failure of optimization to converge, or lack of training data

We found that ANNs pre-trained for image classification showed a drop in accu-
racy of target detection as the number of distractors increased, as shown in Fig. 3.
An alternative explanation for our findings would be that we simply failed to find
the best method to fit models. The method we use here is based on preliminary
experiments (Nicholson and Prinz, 2019) where we eliminated the possibility that
set size effects arose from: hyperparameters such as learning rate; imbalance in
the data set; and the size of the training set. In addition, we took several steps
to minimize the possibility that the results presented here were an artifact of our
training method. Those steps included logging metrics at each step of training,
then visually assessing plots of the logged training histories for evidence of over-
fitting to the training set, or failure of the optimization to converge. In Fig. 4 we
show representative training histories from the Alexnet model. (Plots of training
histories for all models can be found in the openly shared repository accompanying
this paper; see methods for link.) In almost all cases, we saw that the loss function
converged to an asymptotic value on the training set, as well as on a validation
set that ANN models did not see during training. We also saw that the models
achieved high accuracy on this validation set, indicating that what they learned
during training generalized to unseen data. The only exception was one replicate
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Fig. 3 ANNs pre-trained for image classification show set size effects, while ANNs
trained from randomly initialized weights can achieve near perfect accuracy. Rows
show four different models trained on datasets consisting of 10 different search stimulus types
(examples shown at top of columns). Each axes shows accuracy as a function of set size, for
eight training replicates (dashed lines). Solid lines indicate mean across all trials and replicates.
Brown dashed lines and grey solid lines indicate accuracy for object recognition models, that
had weights pre-trained for image classification and were adapted to this visual search task
using transfer learning. Peach dashed lines and salmon solid lines indicate accuracy for models
trained from randomly-initialized weights, not pre-trained for image classification. Columns
are ordered by effect size, the difference in accuracy between set size 1 and 8 for the object
recognition models. Rows are organized in increasing order of per-model effect size, averaged
across all stimulus types. All example images for different stimulus types are shown with the
target present condition. Stimulus types from left to right are: blue x target v. red x and red
o distractors; yellow T target v. blue T and blue L distractors; blue x target v. red x and blue
o distractors; red vertical line target v. green vertical line distractors; red vertical line target
v. red horizontal and green vertical line distractors; papaya whip vertical line target v. papaya
whip horizontal and pink vertical distractors; papaya whip vertical line target v. pink vertical
distractors; rotated T target v. T distractors; yellow rotated T target v. blue T and yellow L
distractors; white digital 2 target v. white digital 5 distractors

of one model that failed to converge. Hence, we do not find any evidence that set
size effects can be attributed to an artifact of training.
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Fig. 4 Set size effects exhibited by ANN models do not arise from overfitting
or failure of optimization to converge. Shown are representative training histories from
the Alexnet model. (Plots of training histories for all models can be found in the openly
shared repository accompanying this paper; see methods for link.) Top row, training histories
from experiments using transfer learning to hold parameters fixed that were pre-trained for
object recognition; bottom row, histories for the same model trained ”from scratch” with
parameters randomly initialized. For each ANN architecture and training method (transfer or
from randomly initialization), we trained eight replicates, each indicated by a different shade
of color. For all models and methods, we saw that the loss function converged to an asymptotic
value on the training set (column 1), as well as on a validation set that ANN models did not see
during training (column 2). In addition, the models achieved high accuracy on this validation
set (columns 3), indicating that what they learned during training generalized to unseen data.

3.2 Accuracy of ANNs correlates with visual search difficulty scores based on
reaction times of humans searching natural scenes

As described in the introduction, a key limitation of dominant models of visual
search is that it is unclear how to extend them to account for search of relatively
complex natural scenes. We propose that the untangling computation provides an
alternative account of search behavior across stimulus types, and leverage the abil-
ity off ANNs to provide predictions for any type of image to test our proposition.
A key finding from experiments using natural scenes to study visual search is that
it can be highly efficient, as suggested by reaction times. In spite of this efficiency,
different natural scenes elicit different reaction times, as evidenced by previous
attempts to estimate the extent to which targets and contextual information in-
fluence real world visual search (Katti et al., 2017; Ionescu et al., 2016). Although
the ANN models we test here do not directly produce reaction times as an output,
we can ask whether their accuracy correlates with reaction times.

3.2.1 The Visual Search Difficulty dataset

To test for a relationship between ANN accuracy and human reaction times dur-
ing visual search, we use the Visual Search Difficulty dataset, first presented in
(Ionescu et al., 2016). The dataset consists of search difficulty scores assigned to
all images in the Pascal VOC dataset. These scores are a weighted combination
of reaction times of human subjects asked to report whether a target is present
in the image (please see (Ionescu et al., 2016) for details). In Fig. 5 we present
representative images and scores from the dataset (top row), as well as summary
statistics (bottom row). While we cannot directly test whether ANN outputs pre-
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Fig. 5 The Visual Search Difficulty dataset assigns search difficulty scores to im-
ages from the Pascal VOC dataset, based on reaction times of human subjects
searching each image for targets In the top row, example images from the Pascal VOC
dataset are shown, and the visual search difficulty score assigned to that image is shown un-
derneath it. Images are the first through fourth quartile of the distribution. Face in second
image obscured for privacy. The distribution of scores is shown in the bottom panel of the first
row. Note the long tail of the distribution: the median around 3 but that scores extend all the
way to 9. In terms of the number of items, most images have only one item (annotated), but
there are a good number with two or three. In the last panel we see that a slight trend where
images with more items have a higher difficulty score.

dict human behavior using the dataset, we can ask if they are related, as a first
step towards testing whether untangling can account for real world visual search
behavior.

3.2.2 Target detection accuracy of ANN models of object recognition correlates
with visual search difficulty scores

We do find a clear relationship between accuracy of ANN models and search diffi-
culty scores based on human reaction times, as shown in Fig. 6. Because we could
not directly link model outputs to reaction times, we chose to bin the difficulty
scores, then measure accuracy of each trained model on the images within each
bin. To do so, we binned the difficulty scores such that there were equal numbers
of items in each bin, so that estimates of accuracy were based on similar sample
sizes across bins. This analysis revealed a strong correlation between accuracy and
difficulty score: as shown in Fig. 6, for all models, accuracy dropped as the search
difficulty score increased. Because there are multiple objects present in the im-
ages in this dataset, we tested for this relationship in two ways. First, we adapted
models using transfer learning methods as before, where each model classifies an
image with a single label. We trained models this way using either the largest
object in an image, as defined by its bounding box, or a randomly chosen image.
The object chosen had no noticeable effect on accuracy when measured on a test
set. We also carried out a separate set of experiments where we trained models
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for multi-label classification, meaning that that model could classify an image as
having any number of objects from the twenty classes present in the dataset. In
both cases, the relationship between accuracy and visual search difficulty score
held. Based on these results, we conclude that optimizing ANN models for object
recognition limits their ability to perform a search task using complex natural
images.

In experiment one we showed that models trained from randomly-initialized
weights were able to achieve near-perfect accuracy when classifying simplified
search stimuli as ”target present” or ”target absent”. One might reasonably ask
why not carry out the same experiment here. For this experiment with natural
images, we would expect that models trained from randomly-initialized weights
would not achieve higher accuracy than models with weights pre-trained for image
classification on ImageNet, because transfer learning is known to provide better
accuracy than training ”from scratch”. In particular this has been shown when
pre-training models on ImageNet and then adapting the models to a related task
where we have a much smaller training set (Yosinski et al., 2014; Kornblith et al.,
2019), as is the case here with the PascalVOC dataset used to derive visual search
difficulty scores. For the sake of completeness, we did train models from randomly-
initialized weights using single- and multi-label classification, and did find that
those models achieved much lower accuracy on the test set. Please see on-line
repository for results. It could be argued that in this case we are simply training
models to perform object recognition, not a visual search task. We return to this
point in the discussion. Because models trained from randomly-initialized weights
did not achieve high accuracy on the test set, we did not analyze their performance
in terms of visual search difficulty scores.

4 Discussion

We set out to test whether the untangling mechanism proposed to underlie object
recognition can also account for limitations on visual search performance across
visual search tasks. Our goal was to address unreconciled findings in the litera-
ture, where visual search behavior obtained with simplified stimuli has been used
to support models that are not easily extended to account for search of relatively
complex natural scenes. To test whether untangling can account for search be-
havior across simplified stimuli and relatively complex natural scenes, we used
ANN-based models object recognition models that capture the key computation
of untangling. A key advantage of ANN models, compared to prevailing models
of visual search, is that they are image-computable, i.e. they can produce predic-
tions for any image. This characteristic of ANN models allowed us to to measure
their behavior with two types of stimuli commonly used in lab tasks, the simpli-
fied displays shown in Fig. 2 and natural scenes like those shown in Fig. 5. Our
results demonstrate that ANN-based object recognition models exhibit behaviors
characteristic of humans performing visual search tasks. Unlike prevailing models
of visual search, ANN models can produce predictions for any image, i.e. they are
image-computable. When tested with simplified displays, the ANN models exhib-
ited set size effects that are hallmarks of this task, as shown in Fig. 3. Similarly,
when detecting targets in natural scenes, ANN models also a drop in accuracy in-
versely correlated with visual search difficulty scores derived from reaction times of
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Fig. 6 Target detection accuracy of ANN models of object recognition correlates with visual
search difficulty scores.
We observed a clear correlation between binned visual search difficulty scores (x axes) and
accuracy of ANN-based object recognition models when measured on images within a given
bin (y axes). This was true for all models (columns) when measuring accuracy using images
where only a single item was labeled (top row). The effect was consistent across all eight
training replicates (dashed lines with different shades). We saw a similar effect when adapting
the ANNs pre-trained for object recognition to predict multiple labels for images (bottom
row). In this case all models except the CORnet Z model showed a strong negative correlation
between search difficutly score and accuracy.

human subjects searching the images, as shown in Fig. 6. To further test whether
the set size effects we saw with simplified stimuli were specific to object recognition
models, we carried out separate experiments where we trained the same ANN ar-
chitectures from randomly-initialized weights, instead of using weights pre-trained
for image classification, as is typically done for object recognition models (Yamins
et al., 2014; Schrimpf et al., 2018). This experiment demonstrated that models
trained from randomly-initialized weights are capable of performing the task with
near-perfect accuracy, as we show in Fig. 3, and so we conclude that the effect is
specific to object recognition models. We conclude that taken in whole our results
support our assertion that untangling provides an alternative mechanism that can
account for limitations on visual search performance as typically measured with
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lab tasks. Hence our findings point to a mechanism that could potentially resolve
findings across the literature. Of course this will need to be tested empirically by
more direct comparisons of ANN model behavior with that of human subjects.

This need to further test empirically points to one caveat of our findings. We
feel the studies here are complete, because they can can account for limitations on
visual search across stimuli in terms of one commonly used behavioral measure:
accuracy. However, the models we test here cannot account for other behavioral
measures, the most crucial of which is reaction time. This is because the ANN
models we employ do not explicitly represent time. Previous studies have ad-
dressed this limitation in a couple of ways. One is to limit the time that subjects
can view an image, to say 100 milliseconds, and compare accuracy in this time-
limited setting to the accuracy of the ANN models. In part, this approach has
been justified by the need to compare activation in the ANN models with neural
activity in some fixed window. For extensive discussion of this operationalization
of object recognition see (Cadieu et al., 2014; Majaj et al., 2015) and references
therein. The time-limited 100 ms stimulus presentation is most relevant to our
findings. Researchers studying visual search have also often carried out experi-
ments where they limit the time that subjects view a stimulus, although in that
case this experimental design is motivated by the need to control other factors
such as eye movement (Eckstein, 1998; Wolfe, 1998; Eckstein, 2011). In other
words, our approach for modeling visual search aligns with a standard approach
for modeling object recognition, although for different reasons. At the least our
approach makes sense given that researchers using the same restrictions on human
subjects performing visual search tasks. As an alternative to studying accuracy
of object recognition in a time-limited setting, some studies have used recurrent
neural networks, which carry out a computation for a specified number of time
steps t, in some cases to specifically model object recognition tasks without time
constraints (Kar et al., 2019; Kietzmann et al., 2019; Spoerer et al., 2017; Nayebi
et al., ????). In general these studies find that recurrence conveys an advantage in
terms of predicting neural activity and behavior. However it is not clear how to
relate this implicit time step to clock time in seconds, which would be needed for
models to directly predict reaction time. A more direct solution would be to add
a computation to our models that endow their behavior with reaction times, such
as a winner-take-all mechanism for decision making. One previous computational
study (Narbutas et al., 2017) did succeed in directly comparing reaction times
of visual search models limited by serial binding (Moran et al., 2013) to models
limited by noisy parallel processing, by adding a winner-take-all mechanism to
the noisy parallel model. Although the same mechanism could be applied to ANN
models of object recognition so that they produce a reaction time, the models
would always produce the same reaction time given a particular image, since their
output is deterministic (at least, at inference time, ignoring things like stochas-
tic dropout often used during training). In contrast, human subjects produce a
distribution of reaction times across trials (Wolfe et al., 2010).

Given these caveats, we suggest two lines of future work. The first approach
we suggest that would address questions abouty reaction time would be to adopt
a modeling framework that makes it possible to combine ANN models tested here
with higher-level cognitive models. For example, the Neural Engineering Frame-
work (Eliasmith and Anderson, 2003; Eliasmith and Stewart, ????) for cognitive
modeling has at its core a ”neural compiler” (Bekolay et al., 2014) that converts
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cognitive abilities specified as functions into spiking neural networks, and the re-
cently developed Nengo-DL library (Rasmussen, 2019) makes it possible to inte-
grate deep neural networks like those we study here into Nengo models. Previous
work with Nengo has considered families of winner-take-all mechanisms (Gosmann
et al., ????) making it possible to easily endow the ANN models studied here with
reaction times, and thus ask whether models explain behavior across different
tasks. For example, future work could test which if any of those winner-take-all
mechanisms produce distributions of reaction times that match human subjects.

Another line of future work we suggest would be to integrate the study of
object recognition and visual search. A cynic might argue that our study simply
shoehorns visual search tasks into the modeling framework used to study object
recognition. We do agree that the tasks we use here to study visual search are in
many respects similar to tasks used to study object recognition, and we feel that
this emphasize the need to better understand how those two behaviors relate to
each other in the real world. One possibility, suggested by our findings, is that the
primate visual system is optimized for object recognition, and that optimizing for
this behavior places limits on visual search, a related behavior. In this way, our
experiments can be said to adopt the recently proposed deep learning framework
for neuroscience (Richards et al., 2019) to ask how optimizing for one behavior
impacts others. As other authors have noted (Kell and McDermott, 2019), findings
within this framework can be related to ideal observer models, which have been
applied to visual search (Geisler, 2003). Ideal observer models take a normative
approach, proposing a closed-form optimal solution for a task and then asking how
real-world behavior deviates from the behavior expected from the optimal solution.
Obviously there is no known closed-form solution for object recognition, but as
has been noted previously, the optimization perspective at least provides empirical
evidence that our models perform the task very well, at least as measured with
the test data set. Future work could further test this idea, or alternatively ask
whether a different objective function could produce models that better account
for both object recognition and visual search behavior Saxe et al. (????).

5 Conclusion

In spite of any questions about the differences between tasks used to investigate
object recognition and visual search behavior, we feel it is likely that untangling
will remain a key mechanism in models that account for both visual search behavior
and object recognition in the real world. Most neuroscientists will agree that the
visual system (and the brain) performs a series of nonlinear transformations on its
inputs, regardless of what behavior we engage in, and regardless of the nuances
about which parts of the visual system can be mapped to which type of behavior.
Put this way, it is in some sense trivial to argue that untangling can account for
aspect of both behaviors. However the prevailing models of visual search do not
account for these nonlinear transformations, and so we hold that the results here
set forth a strong alternative mechanism to account for limitations on visual search
accuracy across stimuli types.
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