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 2 

Abstract 32 

The reproducibility of research results has been a cause of increasing concern to the scientific 33 

community. The long-held belief that experimental standardization begets reproducibility has 34 

also been recently challenged, with the observation that the reduction of variability within 35 

studies can lead to idiosyncratic, lab-specific results that are irreproducible. An alternative 36 

approach is to, instead, deliberately introduce heterogeneity; known as “heterogenization” of 37 

experimental design. Here, we explore a novel perspective in the heterogenization program in 38 

a meta-analysis of variability in observed phenotypic outcomes in both control and 39 

experimental animal models of ischaemic stroke. First, by quantifying inter-individual 40 

variability across control groups we illustrate that the samount of heterogeneity in disease-41 

state (infarct volume) differs according to methodological approach, for example, in disease-42 

induction methods and disease models. We argue that such methods may improve 43 

reproducibility by creating diverse and representative distribution of baseline disease-state in 44 

the reference group, against which treatment efficacy is assessed. Second, we illustrate how 45 

meta-analysis can be used to simultaneously assess efficacy and stability (i.e., mean effect 46 

and among-individual variability). We identify treatments that have efficacy and are 47 

generalizable to the population level (i.e. low inter-individual variability), as well as those 48 

where there is high inter-individual variability in response; for these latter treatments 49 

translation to a clinical setting may require nuance. We argue that by embracing rather than 50 

seeking to minimise variability in phenotypic outcomes, we can motivate the shift towards 51 

heterogenization and improve both the reproducibility and generalizability of preclinical 52 

research. 53 

 54 

  55 
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Introduction 56 

Reproducibility of research findings – “obtaining the same results from the conduct of an 57 

independent study whose procedures are as closely matched to the original experiment as 58 

possible” [1] – is integral to scientific progress. Compelling evidence, however, suggests that 59 

irreproducibility pervades basic and preclinical research [1-5]. Moreover, animal studies 60 

motivate the development of novel treatments to be tested in clinical studies, but failure to 61 

observe effects in humans which have been reported in animal studies is commonplace [6, 7]. 62 

The conventional approach to preclinical experimental design has been to minimise 63 

heterogeneity in experimental conditions within studies to reduce the variability between 64 

animals in the observed outcomes [8]. Such rigorous standardization procedures have long 65 

been endorsed as the way to improve the reproducibility of studies by reducing within-study 66 

variability and increasing statistical power to detect treatment effects, as well as reducing the 67 

number of animals required [8, 9]. This well-established notion that standardization begets 68 

reproducibility, however, has recently been challenged. 69 

 70 

An inadvertent consequence of standardization is that an increase in internal validity may 71 

come at the expense of external validity [10]. By reducing within-study variability, 72 

standardization may inflate between-study variability as outcomes become idiosyncratic to 73 

the particular conditions of a study, ultimately becoming only representative of local truths 74 

[10-12]. For example, in animal studies the interaction between an organism’s genotype and 75 

its local environment (i.e., phenotypic plasticity due to gene-by-environment interactions) can 76 

result in variable and discordant outcomes across laboratories using otherwise concordant 77 

methodology [13-16]. Such inconsistent outcomes may result from distinct plastic responses 78 

of animals to seemingly irrelevant and minor, unmeasured differences in environmental 79 

conditions and experimental procedures [13-18]. Through amplifying the effects of these 80 
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unmeasured variables, standardization may thus weaken, rather than strengthen, 81 

reproducibility in preclinical studies. 82 

 83 

A potential counter to this “standardization fallacy” [10] then, is to improve reproducibility 84 

by embracing, rather than minimizing, heterogeneity [10-12]. Practical solutions to enhance 85 

external validity include conducting studies across multiple laboratories to deliberately 86 

account for differences in within-lab variability [19-21], and perhaps more radically, to 87 

systematically introduce variability into experimental designs within studies [12, 22, 23]. 88 

Both simulation [11, 14, 20, 21] and empirical studies [19, 22, 24, 25] show that deliberate 89 

inclusion of more heterogeneous study samples and experimental conditions (i.e., 90 

“heterogenization”) improve external validity, and hence reproducibility, by increasing 91 

within-study (or within-lab) variability and minimizing among-study (or among-lab) 92 

variability. 93 

 94 

Despite the promise of heterogenization, standardization remains the conventional approach 95 

in preclinical studies [26-28]. This has been partly fuelled by Russel and Birch’s [29] 96 

injunction to a “reduction in the numbers of animals used to obtain information of a given 97 

amount and precision”. Consequently, within-study variability is typically treated as a 98 

biological inconvenience that is to be minimised, rather than an outcome of interest in its own 99 

right. Embracing and quantifying heterogeneity, however, may benefit preclinical science in 100 

at least two ways. First, through comparative analyses of the variability associated with 101 

experimental procedures we may identify methodologies that introduce variation. As 102 

discussed above, by using methods that induce variation one may design a deliberately 103 

heterogeneous study with greater reproducibility [10-12]. Second, by explicitly investigating 104 

inter-individual heterogeneity in the response to drug/intervention outcomes, we may 105 
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quantify the generalisability of a treatment and its translational potential. That is, a treatment 106 

with low inter-individual variation in efficacy despite heterogenization is more generalizable 107 

while a treatment with high inter-individual variation indicates the effect may be individual-108 

specific. This may be relevant in the context of personalized medicine: A treatment 109 

associated with inter-individual variation in outcome may require tailoring in its clinical use 110 

[30]. Taking these two points together, one could argue an ideal trial would use a technical 111 

design that typically generated variation in disease state, which was then attenuated by a 112 

treatment of interest that might consistently (in all animals) or selectively (in some animals) 113 

improve outcome. 114 

 115 

An illustrative case where the issues of reproducibility and lack of translation has been 116 

highlighted repeatedly is that of animal models of ischaemic stroke [31-33]. Several 117 

systematic reviews [34, 35] and meta-analyses [36-38] have questioned the propriety of 118 

experimental design and the choice of experimental procedures in stroke animal studies. The 119 

consequent recommendation for improving reproducibility in the field has usually been to 120 

adopt methodological procedures that minimize heterogeneity (and/or mitigate sources of 121 

bias) in phenotypic outcomes (e.g. in infarct volume or neurobehavioral outcomes) [34-38]. 122 

Furthermore, whilst potentially beneficial treatments have been identified in individual trials 123 

at the preclinical stage, intravenous thrombolysis remains the only regulatory approved 124 

treatment for ischaemic stroke [33, 39, 40]. This lack of transferable results from the 125 

preclinical to clinical stage highlights a major shortcoming for the generalizability of stroke 126 

animal models and is emblematic of translation failures generally across preclinical studies 127 

[6, 7, 33, 34]. 128 

 129 
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Using the case of rat animal models of stroke as a guiding example, we highlight how 130 

recently developed methods for the meta-analysis of variation can be used to better 131 

understand biological heterogeneity. First, through analysis of variability using the log 132 

coefficient of variation (lnCV; CV representing variance relative to the mean) in control 133 

groups, we identify methodological procedures that increase variability in outcomes. Second, 134 

we show how, through the concurrent meta-analysis of mean and variance in treatment 135 

effects using the log response ratio (lnRR; i.e. ratio of means) and log coefficient of variation 136 

ratio (lnCVR), one gains additional information about the generalisability of an intervention 137 

at the individual level. Overall, we argue that the quantification of heterogeneity in 138 

phenotypic outcomes can be exploited to improve both the reproducibility and translation of 139 

animal studies. 140 

 141 

Results 142 

Dataset 143 

We obtained data for rat animal models of ischaemic stroke from the Collaborative Approach 144 

to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) 145 

database [41], focusing our meta-analysis on animal models that reported outcomes in infarct 146 

volume (see Materials and Methods for inclusion criteria of studies). We extracted data for 147 

infarct volume from 1318 control group cohorts from 778 studies for our analyses 148 

investigating the effects of methodology and variability. We extracted data for the effect of 149 

treatment on infarct volume from 1803 treatment/control group cohort pairs from 791 studies 150 

for our analyses investigating the effects of drug treatment on inter-individual variability (see 151 

S1 Data for extracted database used in this study). 152 

 153 

Methodology and variability 154 
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To identify methodological procedures that generated variability in disease-state, we first 155 

meta-analysed variability in infarct volume for control group animals. We quantify variability 156 

as the log coefficient of variation (lnCV) rather than the log of standard deviation because we 157 

found that our data showed a mean-variance relationship (i.e. Taylor’s Law, where the 158 

variance increases with an increase in the mean [42]; S1 Fig). Overall, the coefficient of 159 

variation (CV) in infarct volume across control groups was around 23.6% of the mean (lnCV 160 

= –1.444, CI = –1.546 to –1.342 𝜏" = 0.565; Fig 1). We found large differences in variability 161 

of infarct volume (𝐼"$%$&' = 93.7%), suggesting that sampling variance alone cannot account 162 

for differences in the reported variability across control groups (Table 1). The 𝐼" attributable 163 

to study was 49.6% suggesting that methodological differences across studies explained some 164 

of this heterogeneity, although a moderate amount (42.9%) of 𝐼" remained unexplained  165 

(Table 1). 166 

 167 

Table 1. Heterogeneity (𝑰𝟐) estimates for analyses of methodology on variability (lnCV) 168 

and drug treatment on mean (lnRR) and variance (lnCVR) in rat infarct volume.  169 

Model Total Study Strain 
Residual 

(within-study) 

lnCV     

   MLMA 93.7% 49.6% 1.3% 42.9% 

   MLMR 93.3% 46.3% 1.7% 45.3% 

lnRR     

   MLMA 95.7% 54.5% 1.7% 39.5% 

   MLMR 94.9% 46.3% 2.2% 46.4% 
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lnCVR     

   MLMA 71.2% 38.8% 0.9% 31.6% 

   MLMR 70.3% 36.1% 1.2% 33.1% 

Estimates (%) are shown for multi-level meta-analyses (MLMA) and multilevel meta-170 

regression (MLMR) models. 171 

 172 

We detected statistically significant differences in variability of infarct volume between 173 

various methodological approaches (Fig 1; see S1 and S2 Tables in S1 Text for unconditional 174 

and conditional model coefficients, respectively). Among occlusion methods, models with 175 

spontaneous occlusion produced the greatest variability in infarct volume (CV = 52.5%; lnCV 176 

= –0.644, –1.633 to 0.345), whilst filamental occlusion had lowest variability (CV = 17.9%; 177 

lnCV = –1.720, –2.195 to –1.244). Studies using temporary models of ischaemia had higher 178 

variability in infarct volume (CV = 25.2%; lnCV = –1.377, –1.500 to –1.255) compared to 179 

permanent models. Variability was slightly but significantly lower with longer time of 180 

damage assessment (lnCV = –1.404, –1.521 to –1.288) and greater median weight of the 181 

control group cohort (lnCV = –1.366, –1.486 to –1.245). 182 

 183 

Drug treatment effects and inter-individual variation 184 

To quantify generalizability in drug treatment outcomes, we meta-analysed the mean and the 185 

coefficient of variation in infarct volume for the effects observed in control/experimental 186 

contrasts. We quantified the mean and inter-individual variability as the log response ratio 187 

(lnRR) and log coefficient of variation ratio (lnCVR), respectively. Overall, mean infarct 188 

volume in experimental groups was around 33.1%, smaller than in control groups (lnRR =  189 

–0.402, –0.461 to –0.343; Fig 2A); whilst the coefficient of variation in experimental groups 190 
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was around 32.4% higher than in control groups (lnCVR = 0.280, 0.210 to 0.351; Fig 2B). 191 

Overall, heterogeneity in lnRR was very high, while that for lnCVR was moderate, and 192 

moderate amounts of heterogeneity were partitioned into the study-level for both (Table 1). 193 

 194 

Both the mean and variability in infarct volume differed significantly across drug treatment 195 

groups (Fig 2; S3 and S4 Tables in S1 Text for unconditional and conditional model 196 

coefficients, respectively). Treatment with hypothermia resulted in the largest reduction of 197 

mean infarct volume in experimental groups relative to controls (around 49.7% lower in 198 

experimental groups than controls; lnRR = –0.687, –0.775 to –0.599). However, hypothermia 199 

also had the most variable and inconsistent effect (i.e. inter-subject variation) in reducing 200 

infarct volume, with the largest ratio of CV between experimental and control groups (inter-201 

individual variability around 60.0% higher in experimental groups compared to controls; 202 

lnCVR = 0.470, 0.349 to 0.591). In contrast, environmental treatments were the least 203 

effective in reducing mean infarct volume (around 7.3% greater in experimental groups than 204 

controls; lnRR = 0.071, –0.166 to 0.308). Hyperbaric oxygen therapy (HBOT) has the least 205 

variable and most consistent effect on infarct volume (variability around 45.3% less in 206 

experimental groups relative to controls; lnCVR = –0.603, –1.483 to 0.277). 207 

 208 

Thrombolytics, which include the only regulatory approved treatment (i.e., tissue 209 

plasminogen activator; tPA [42]), reduced mean infarct volume by around 29.6% in 210 

experimental relative to control groups (lnRR = –0.351, –0.446 to –0.256). The CV across 211 

experimental groups for thrombolytics was around 17.4% higher than control groups (lnCVR 212 

= 0.160, 0.031 to 0.289), but it is notable that this increased inter-subject variability is much 213 

less than that seen with hypothermia. Through quantifying variability in drug treatment 214 

outcomes, we propose that treatments be considered generalizable if they reduced mean 215 
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infarct volume and concurrently show low inter-individual variability (i.e. negative lnRR and 216 

lnCVR estimates; Fig 3). Drug treatments that on average reduced infarct volume but had 217 

variable and inconsistent effects (i.e. had negative lnRR and positive lnCVR estimates; Fig 3) 218 

are ungeneralizable but might be appropriate for clinical exploitation in selected patients [30; 219 

43]. Conversely, the least successful treatments can be identified as those that consistently do 220 

not reduce mean infarct volume (i.e. positive lnRR and lnCVR estimates; Fig 3). We 221 

explored whether the sex of groups used in experiments affected lnRR or lnCVR (see 222 

Methods for multilevel meta-regression model parameters) but differences in mean or 223 

variability of infarct volume did not vary significantly between female and male cohorts (see 224 

S5 and S6 Tables in S1 Text for contrast model estimates for sex effects). 225 

  226 

Discussion 227 

We propose that the current failures in reproducibility and translation of preclinical trials may 228 

be due, at least in part, to the way studies are designed and assessed, which is to minimise 229 

within-study variation and ignore heterogeneity in outcomes [8, 9, 26-28]. Here, we have 230 

illustrated the potential utility of embracing such heterogeneity, through meta-analysing 231 

variability (relative variance or CV) in outcomes for rat animal models of stroke. First, by 232 

estimating the variability generated by different methodological designs applied to control 233 

animal groups, we have identified procedures that generate variability in disease-states (Fig 234 

1). Second, we have, for the first time, quantified both the efficacy and stability (i.e., changes 235 

in the mean and variance, respectively) of stroke treatments applied to the experimental 236 

animal models (Fig 2; Fig 3), identifying potential treatments that may be generalizable 237 

versus those that require tailoring. We further discuss these results below in the context of 238 

their implications for improving the reproducibility and generalizability of preclinical studies. 239 

 240 
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Generate variability through methodology 241 

Among stroke animal models, studies may differ in the design of a number of parameters, 242 

including the genetic composition of animals (e.g. the sex and strain of rats used [32, 44]) as 243 

well as laboratory and operational environments (e.g. methods for stroke induction, the 244 

duration of ischemia, and the type of anaesthesia used [37, 38, 45]). However, an impediment 245 

to heterogenization is that we have not previously had reliable estimates for which 246 

methodological parameters may be most successful in generating variability in phenotypic 247 

outcomes [15]. Our results therefore quantify heterogeneity and rank the experimental factors 248 

that can generate variability in disease-state into animal models. 249 

 250 

Our analyses of operational factors reveal that heterogeneity in outcomes may be induced by 251 

incorporating spontaneous (CV = 52.5%), embolic (CV = 32.3%), and endothelin  252 

(CV = 27.8%) methods of occlusion. Temporary models of occlusion also generate 253 

significantly more variability in disease state, than permanent models (CV = 25.2% and 254 

20.5%, respectively). Where choices permit, we suggest that these operational design 255 

considerations are a valuable approach for introducing variability into animal models, in 256 

conjunction with more familiar proposals to diversify the laboratory environment (e.g. 257 

through differences in animal housing conditions and feeding regimens [16; 19]). Depending 258 

on the type and purpose of study, such operational and laboratory design considerations that 259 

increase heterogeneity in outcomes through environmental effects may be especially valuable 260 

when variability cannot be introduced through the animal’s genetic composition (e.g., for 261 

studies that are interested in sex-specific [46; 47] or strain-specific outcomes [44; 48]). 262 

 263 

Our analysis is not the first to assess the effects of experimental methodology on variation in 264 

disease state in rodent models of stroke [37, 38]. Ström et al. (2013) [37] investigated similar 265 
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components of experimental design on variation in infarct volume in rats. There are a number 266 

of methodological differences between their analyses and ours (e.g. differences in size of 267 

dataset and use of formal meta-analytic models). Despite these differences our quantitative 268 

results are largely concordant. Where we differ substantially is in interpretation of what is a 269 

desirable outcome. Ström et al. (2013) [37] concluded that intraluminal filament procedures 270 

are optimal as they generate minimal variation in disease outcome and maximise statistical 271 

power. Our analyses also identify that filament methods have low variation (CV = 17.9%), 272 

however, we argue that these gains in statistical power come at the cost of reduced 273 

reproducibility. 274 

 275 

Considering genetic factors, proposals to include more heterogeneous study samples 276 

recommend the inclusion of both sexes over just male or female animals [49-51], as well as 277 

the use of multiple strains of inbred-mice and rats (or even, multiple species) [27, 52, 53]. 278 

Recent meta-analyses of variability in male and female rodents show that males may be as or 279 

more variable than females in their phenotypic response [54, 55]. We also find that male (CV 280 

= 23.5%) and female (CV = 23.9%) rats generate quantitatively equal amounts of variability, 281 

but counterintuitively find that studies that used both sexes produce the most consistent 282 

outcomes (CV = 17.3%; see S1 Table for full model coefficients). We caution that a 283 

moderate amount of the total heterogeneity remained unexplained (i.e. residual variation; 284 

Table 1), and thus these outcomes of sex on estimates of variability may be due to 285 

confounding effects of unaccounted for differences in experimental design. We therefore 286 

emphasize the importance of considering both genetic and environmental parameters for 287 

effective heterogenization of studies [56, 57]. 288 

 289 
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An alternative approach to heterogenization of experimental designs within studies is to 290 

introduce variability by conducting experiments across multiple research laboratories (i.e., 291 

multi-laboratory approach) [20, 24, 58]. Importantly, such an approach inherently captures 292 

‘unaccounted’ sources of variability in experimental conditions that are difficult to 293 

systematically manipulate within a single centre study [16, 19]. We argue that, especially 294 

where logistical constraints may hinder multi-laboratory approaches (e.g., for earlier, basic 295 

and exploratory studies), introducing heterogeneity within studies may provide the most 296 

practical alternative [23]. Indeed, by meta-analysing the variability introduced by differences 297 

in experimental methodology across studies, we can begin to find ways in which to 298 

heterogenize single studies in order to best capture the variation that exist across laboratories 299 

and studies [16; 20]. 300 

 301 

Systematically introducing variability into a system comes at the cost of reduced statistical 302 

sensitivity [8, 9] and necessitates larger studies [8, 26, 29]. These economic and ethical costs 303 

must, of course, be minimised, which can be done by identifying the most efficient means of 304 

introducing heterogeneity within experiments. It is therefore necessary to quantify the amount 305 

of variability that different experimental designs introduce, with the aim that researchers can 306 

then make informed decisions about how to most efficiently incorporate heterogeneity into 307 

study design [14-16, 20]. Identifying sources of variability through meta-analysis of variance 308 

in existing animal data as we have done here is the most practical and economic way of 309 

establishing this much needed knowledge base. 310 

 311 

Quantify variability to improve drug translation 312 

Our second approach of simultaneously assessing both the mean and variation in treatment 313 

outcomes allows us to place potentially useful treatments into two, distinct categories for 314 
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further exploration: 1) beneficial and generalizable interventions, which are those that 315 

consistently reduce infarct volume across individuals and; 2) beneficial but non-generalizable 316 

interventions, which on average reduce infarct volume but result in large inter-individual 317 

heterogeneity in outcomes. This latter group could even include treatments that do not 318 

necessarily reduce mean state, but have a large enough variance response to be beneficial to 319 

some [30, 43, 59]. 320 

 321 

Overall, we find that the stroke treatments in our dataset are usually effective, reducing 322 

infarct volume on average by 33.1% compared to controls. Out of these effective treatments, 323 

we identify four treatments that significantly reduced infarct volume but did not induce 324 

significant differences in the coefficient of variation across experimental and control groups 325 

(green highlights in Fig 4). Nootropic treatments reduced infarct volume on average by 326 

40.8%, whilst citicoline, antibiotic and exercise treatments reduced infarct volume by around 327 

27.5% to 28.8% compared to control groups. None of these treatments were estimated to 328 

significantly affect the CV, although estimated effects ranged from 5.7% smaller in 329 

experimental relative to controls for citicoline (highlighted with a triangle symbol in Fig 4), 330 

to 21.3% to 31.9% greater for the other treatments. We emphasise that these treatments may 331 

potentially be more generalizable in that the outcomes of these treatments are on average 332 

favourable, and are relatively consistent at the individual level [33, 34]. 333 

 334 

Second, we identify a handful of effective treatments that on average reduce infarct volume, 335 

but also generate significant amounts of variability in experimental groups (blue highlights in 336 

Fig 3; see S3 Table in S1 Text for rank order of unconditional estimates in mean and 337 

coefficient of variation across treatments). Of particular interest to note is that whilst 338 

thrombolytics significantly increase variability in experimental groups relative to controls, 339 
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they are still relatively consistent in reducing mean infarct volume (on average reducing 340 

infarct volume by 29.6% whilst the coefficient of variation in experimental groups is only 341 

17.4% greater than controls). Out of treatments that significantly reduce mean infarct volume, 342 

thrombolytics rank second in terms of its consistency in effect, with overlapping confidence 343 

intervals in their effects on the coefficient of variation with those of citicoline (Fig 3). 344 

 345 

On the other hand, hypothermia is much more effective in reducing infarct volume (on 346 

average reducing infarct volume by 49.7%) but is the least consistent in doing so, estimating 347 

the greatest coefficient of variation (CV is 60.0% greater in hypothermia treated groups than 348 

concurrent controls). Interestingly, efforts to exploit hypothermia for stroke in clinical trials 349 

have so far failed to identify a patient group who might reliably benefit [60]. Other treatments 350 

that greatly reduce average infarct volume whilst increasing the variation include, for 351 

example, omega-3, rho GTPase inhibitors, and oestrogen treatments. As such, whilst these 352 

treatments confer a mean beneficial effect, this effect may not be generalizable across 353 

animals. Any future translation into clinical trials would require tailoring with effort put in to 354 

predicting response at the individual level [30]. To our knowledge, such tailoring has not 355 

been attempted because a treatment with high variability (inconsistency) is less likely to be 356 

statistically significant and pass the preclinical stage (even if it does improve a disease state) 357 

[30, 43, 59, 61]. Our study represents the first meta-analyses to quantify both the efficacy and 358 

consistency of treatment effects in animal models. We believe that this approach will forge 359 

new opportunities for improving the generalizability and translation of preclinical trials by 360 

embracing both the mean and variability in outcomes. 361 

 362 

Conclusion 363 
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We have demonstrated how researchers can quantitatively embrace heterogeneity in 364 

phenotypic outcomes with the aim of improving both the reproducibility and generalizability 365 

of animal models. Prior to experimentation, researchers may design their experiments by 366 

deliberately selecting methodologies that generate variability in disease-state creating a 367 

heterogenous, but broadly representative back drop of disease states against which treatment 368 

efficacy can be assessed [10-12]. Since the magnitude and direction of phenotypic expression 369 

and outcomes are determined by the interaction of genetic and environmental contexts within 370 

studies [14-16], both of these methodological factors require heterogenization in order to 371 

avoid context-specific and irreproducible outcomes across studies [16]. Post-experimentation, 372 

studies may further incorporate analyses that estimate the magnitude and direction of 373 

variability generated by treatments to identify potentially generalizable versus non-374 

generalizable approaches. Recent meta-analyses of variability in phenotypic outcomes of 375 

animal models are beginning to illuminate the potential use of embracing different types of 376 

heterogeneities for improving reproducibility, generalizability, and translation [61-63]. We 377 

offer that comparative analyses of variability in both control and treatment groups has the 378 

potential to inform experimental design and lead to changes in both the approach and 379 

direction of follow-up studies, ultimately leading to a more successful program of 380 

reproducibility, drug discovery and translation. 381 

 382 

Materials and methods 383 

Data collection and imputation 384 

We identified studies of rat animal models for stroke from the CAMARADES electronic 385 

database. For our analysis, we only included experimental studies that reported mean infarct 386 

volume (and their associated standard deviation and sample size) in both control and 387 

experimental groups. Where necessary we calculated the standard deviation from the standard 388 
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error multiplied by the square root of (n – 1), where n is the sample size of the control or 389 

experimental group. Furthermore, when a study used multiple treatment groups for a control 390 

group, we divided the sample size of the control group equally amongst the treatment groups, 391 

which dealt with correlated errors and prevented sampling (error) variances being overly 392 

small [64]. Before calculating the effect sizes, we excluded data where: (i) the standard error 393 

was reported as zero; or (ii) the sample size of the control group when divided was equal to or 394 

less than one. We also excluded categorical predictors that were represented by fewer than 395 

five data points. 396 

 397 

For meta-analysis of variance across methodological parameters, we focused on control 398 

groups and only included data from studies that provided sufficient group-level information 399 

on the methodology of the experiment. Specifically, we collected and coded methodological 400 

predictors as closely as possible to the predictors used by Ström et al. (2013) [37] to produce 401 

a comparable meta-analysis (see full model parameters in S1 Table in S1 Text). For meta-402 

analysis of variance across drug treatment, we included data from studies that provided 403 

sufficient group-level information on the drug group, rat strain, and sex of 404 

experimental/control groups (see full model parameters in S3 Table in S1 Text). For all 405 

analyses, we dealt with missing data via multiple imputation [65, 66] using the package mice 406 

[67] as follows: We first generated multiple, simulated datasets (m = 20) by replacing missing 407 

values with possible values under the assumption that data are missing at random (MAR) [66, 408 

78]. After imputation, meta-analyses were performed on each imputed dataset (as described 409 

in Statistical Analysis) and model estimates were then pooled across analyses into a single set 410 

of estimates and errors. 411 

 412 

Calculating effect sizes 413 
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For meta-analysing variance across methodological predictors we calculated the log 414 

coefficient of variation (lnCV) and its associated sampling variance (s2lnCV) for each control 415 

group. Since many biological systems appear to exhibit a relationship between the mean and 416 

the variance on the natural scale (i.e., Taylor’s Law; [42, 69]), an increase in the mean may 417 

correspond to an increase in variance. Our data indeed appears to exhibit a positive 418 

relationship between log standard variation (lnSD) and log mean infarct volume (S1 Fig). 419 

When such a relationship holds in data it may be most preferable to use an effect size such as 420 

lnCV, which estimates variance accounting for the mean, and this is the approach we have 421 

taken. 422 

 423 

For meta-analysing variance across drug treatments, we calculated the log coefficient of 424 

variance (lnCVR) and its associated sampling variance (s2lnCVR) as given in equations (11) 425 

and (12) in Nakagawa et al. (2015) [70] (S7 Table in S1 Text). When meta-analysing 426 

variance in the presence of Taylor’s Law as it appears in our dataset, it may be most 427 

preferable to use lnCVR (over the log variance ratio, lnVR), which gives the variance of a 428 

contrast group accounting for differences in the mean. We therefore report all results using 429 

lnCVR in the manuscript. We note, however, that both lnCV and lnCVR assumes a linear 430 

relationship between the mean and variance on the natural scale, whilst Taylor’s law states a 431 

power relationship. In addition to assessing the effects of treatments on variance, we further 432 

quantified differences in mean infarct volume by calculating the log response ratio of the 433 

mean for each control/experimental group within a study (lnRR) and its associated sampling 434 

variance (s2lnRR). For both lnRR and lnCVR we calculated effect sizes so that positive values 435 

corresponded to a larger mean or variance in the experimental group. 436 

 437 

Statistical analysis 438 
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We implemented multilevel meta-analytic models in a likelihood-based package using the 439 

function ‘rma.mv’ in the metafor package [71] as described in equation 1: 440 

𝑦+, = 𝜇 + 𝛽𝑥+, + 𝑠, + 𝑡, + 	𝑒+, + 𝑚+,  eqn 1 441 

where, 𝑦+, (the 𝑖th effect size of variability or mean infarct volume from a set of 𝑛 effect sizes 442 

(𝑖 = 1, 2, … , 𝑛) in the 𝑗th study from a set of 𝑘 studies 𝑗 = 1, 2, … , 𝑘) is given by the grand 443 

mean (𝜇), the effects of fixed predictors (𝛽𝑥+,), and random effects due to study (𝑠,), strain 444 

(𝑡,), residual (𝑒+,) and measurement error (𝑚+,) for the 𝑖th effect size in the 𝑗th study. Since 445 

variability in observed effects may be explained by measurement error (𝑚+, in equation 1), 446 

we present total 𝐼" (the percentage of variance that cannot be explained by measurement 447 

error) and study 𝐼" (the percentage of variance explained by study-effects) to estimate the 448 

true variance in observed effects (i.e. meta-analytic heterogeneity) [72]. We interpreted 𝐼" of 449 

25%, 50% and 75% as small, medium, and large variance, respectively [72]. 450 

 451 

To estimate variance (lnCV) in outcome as a function of methodology in control groups we 452 

constructed two meta-analytic models. First, we fitted a multilevel meta-analysis (MLMA) 453 

with the objective of estimating the overall average variability in infarct volume across 454 

studies. MLMA included a fixed intercept and random effects described in equation 1. 455 

Second, we fitted a multilevel meta-regression (MLMR) with the objective of estimating 456 

effects of methodological predictors on variability in infarct volume, by fitting the following 457 

fixed predictors: (i) method of occlusion, (ii) sex of animal cohort, (iii) type of ischaemic 458 

model, (iv) type of anaesthetic, (v) whether experiments were temperature controlled, (vi) 459 

whether rats were physiologically monitored, (vii) mean cohort weight, and (viii) time for 460 

evaluation of damage after focal ischaemia (S1 Table in S1 Text). Mean cohort weight and 461 

time for evaluation were z-transformed prior to model fitting. We similarly constructed 462 

MLMA and MLMR models for lnRR and lnCVR (fitting each effect size as the response in 463 
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separate models), to estimate the mean and variance in outcome as a function of drug 464 

treatment in our control/experimental groups, respectively. For these MLMR models, we 465 

included (i) drug treatment group, and (ii) sex of animal cohort as fixed predictors (S3 Table 466 

in S1 Text).  467 

 468 

Fixed effects were deemed statistically significant where their 95% credible intervals (CIs) 469 

did not span zero. For interpretation of results, we back-transformed model estimates from 470 

the log to the natural scale. Finally, we tested for signs of publication bias (systematic bias in 471 

the published data due to the preferential publication of more significant results) in our data 472 

by visual inspection of funnel plots (S2 Fig) and conducting a type of Egger regression 473 

(precision-effect test and precision-effect estimate with standard errors, PET-PEESE) on 474 

lnRR [73] (see S8 Table in S1 Text for publication bias test results). Egger regression cannot 475 

be used for lnCVR, and further, it is unlikely that publication bias occurs for lnCVR because 476 

such biases are not driven by the difference in standard deviations between the experimental 477 

and control groups [74]. All meta-analyses were conducted using the ‘rma.mv’ function in 478 

the likelihood-based package metafor [71], on the statistical programming environment R (v 479 

3.2.2 [75]). 480 

 481 
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S1 Fig. Scatter plot of mean-variance (SD) relationship in rat animal data. Point estimates for 675 

control (blue) and treatment (yellow) groups are provided, as well as their slope of linear 676 

regressions for control and experimental rat groups, respectively. Note that data points are not 677 

represented in the same units. (PDF) 678 
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S2 Fig. Funnel plot for log response ratio (lnRR) characterizing differences in mean infarct 679 

volume for control/treatment groups. Raw effect sizes are plotted against their precision 680 

(inverse of the square root of standard error). MLMA-model predicted mean effect size (solid 681 

vertical line) and its 95% CI (dashed lines) are shown. (PDF) 682 

S1 Data. Data files for analysis of lnCV, lnRR and lnCVR in infarct volume, extracted from 683 

CAMARADES database. (RDS) 684 

S1 Code. R code for conducting meta-analyses. (R-CODE) 685 
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 696 

Fig. 1. The effects of methodological parameters on variability (CV) in infarct volume 697 

across control groups. Mean estimates of unconditional (marginalized), group-specific 698 

coefficients of variation (%) are indicated as grey circles whilst the overall estimate is 699 

indicated as a grey diamond. 95% CIs are shown as grey lines and are asymmetric due to 700 

back-transformation of log coefficient of variation (lnCV) to the natural scale. Spontaneous 701 

occlusion generated the highest estimate of variability as indicated by the arrowhead. The 702 
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overall and group-specific estimates were obtained from multilevel meta-analysis (MLMA) 703 

and multilevel meta-regression (MLMR) models, respectively. 704 

 705 

Fig. 2. The effects of drug treatments on the difference in: (a) mean (lnRR); and (b) 706 

variability (lnCVR) in infarct volume across control and experimental rat groups. Mean 707 

estimates of unconditional (marginalized), group-specific effects are shown as grey circles 708 

whilst the overall estimate is indicated by the grey diamonds. 95% CIs are shown as grey 709 

lines. Negative lnRR estimates indicate that mean infarct volume is smaller in experimental 710 

versus control rats. Negative lnCVR estimates show that inter-individual variability in infarct 711 

volume is smaller in experimental versus control rats (e.g. HBOT indicated by left-pointing 712 

arrowhead) whilst positive lnCVR estimates show that variability in infarct volume is greater 713 

in experimental versus control rats (e.g. angiotensin receptor blockers (ARB) indicated by 714 

right-pointing arrowhead). The overall and group-specific estimates were obtained from 715 

multilevel meta-analysis (MLMA) and multilevel meta-regression (MLMR) models, 716 

respectively. 717 

 718 

Fig. 3. Categorization of treatment effects based on mean efficacy (lnRR) and inter-719 

individual variability in efficacy (lnCVR). Estimates (circles) represent unconditional 720 

(marginalized), treatment-specific means (lnRR), variability (lnCVR), and their 95% CIs 721 

(solid lines) obtained from multilevel meta-regression (MLMR) models. Treatments that 722 

significantly reduce infarct volume (negative lnRR) without significantly affecting the 723 

variation are highlighted green, with citicoline indicated by a diamond as the only treatment 724 

to significantly reduce infarct volume and also have a negative point estimate of lnCVR. 725 

Treatments that significantly reduce infarct volume and increase inter-individual variability 726 

(positive lnCVR) are highlighted blue. The effects of hypothermia (most negative and 727 
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positive mean and variability estimates, respectively) and thrombolytics (which include the 728 

only regulatory approved treatment) are highlighted in pink. Histograms show the 729 

relationship of the mean and variance in infarct volume between control (orange) and 730 

treatment (blue) groups in each quadrant of the graph. 731 
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