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Abstract

Potassium voltage-gated (Kv) channels need to detect and respond to rapidly changing
ionic concentrations in their environment. With an essential role in regulating electric
signaling, they would be expected to be optimal sensors that evolved to predict the
ionic concentrations. To explore these assumptions, we use statistical mechanics in
conjunction with information theory to model how animal Kv channels respond to
changes in potassium concentrations in their environment. By estimating mutual
information in representative Kv channel types across a variety of environments, we find
two things. First, under a wide variety of environments, there is an optimal gating
current that maximizes mutual information between the sensor and the environment.
Second, as Kv channels evolved, they have moved towards decreasing mutual
information with the environment. This either suggests that Kv channels do not need to
act as sensors of their environment or that Kv channels have other functionalities that
interfere with their role as sensors of their environment.

Introduction 1

Accurately detecting electrical stimuli in the environment is crucial for all living 2

organisms. It is remarkably important for communication in the nervous system, which 3

relies on efficiently detecting and responding to electrical signals produced as neuronal 4

ion channels open and close [1]. Such signaling is specifically dependent on the actions 5

of voltage-gated ion channels. These are transmembrane proteins that open depending 6

on the voltage changes across the membrane to allow an ionic current to flow [2]. Of the 7

different types of voltage-gated channels that exist (e.g. sodium, calcium), this work 8

focuses on potassium (Kv) voltage-gated channels, specifically those present in 9

Metazoans (animals). 10

Upon voltage activation, Kv channels undergo a conformational change that allows 11

only potassium ions to flow through [3]. They exist in all domains of life and the 12

biological tasks they carry out are very diverse [4–6], but a roughly unified function and 13

structure is found in Metazoan Kv channels [7]. This is due to the presence of a nervous 14

system that sends messages in the form of repetitive current spikes called action 15

potentials [8], which requires Kv channels to be excellent sensors. Imagine a neuron as 16

an electrical signal passes through it: each of the voltage-gated channels needs to make 17

the best prediction possible about the charges it feels that ultimately determine the 18

voltage changes - in no more than two milliseconds [9]. In a nervous system that does 19

not allow a wide range of ion concentrations, the slightest variation in the currents 20
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conveys important information about the signal, and it seems that Kv channels should 21

accurately detect it. 22

Researchers have so far developed Kv channel models to assess the probability of 23

being in an open conformation according to changes in membrane potential (voltage). 24

Using statistical mechanics and thermodynamics is a common approach [4,10,11], where 25

a variety of parameters in partition functions are introduced to generate models 26

coherent with experimental results. The principal models of this type have been 27

proposed by Sigworth [12] and Sigg and Bezanilla [13]. 28

These models have been mostly used in conjunction with mutagenesis studies to 29

determine the structure of the Kv voltage sensor domain (VSD) [14,15] or the 30

physiological effects of common mutations [16,17]. However, no one has yet explored 31

how well Kv channels sense their environment based on these models using mutual 32

information [23]. In an environment that (it would seem) demands accurate and 33

incredibly fast sensing, this approach is ideal to assess how informative Kv channels 34

need to be about their environment. 35

In this work, we manipulate Sigworth’s model to create one that predicts how likely 36

the channel is to be open depending ultimately on K+ concentration. Using information 37

theory, we quantify how well Kv channels send messages about their environment. We 38

then explore if their evolution could reflect a tendency to maximize mutual information. 39

The following section provides a theoretical background on the biophysical model 40

implemented, information theory, and Kv evolutionary history. In the Methods, we 41

explain the model. In Results, we show how the gating current is a critical factor for 42

sensing across different environments and explore the relationship between mutual 43

information and Kv channel evolution. Finally, in the Discussion, we explore new 44

evolutionary perspectives suggested by our results. 45

Theoretical background 46

We first discuss models of voltage-gated ion channels, and follow that with a discussion 47

of mutual information, our principle metric for studying the quality of a sensor. 48

Modeling a two-state voltage-gated ion channel 49

Several biological sensors can be considered as allosterically regulated molecules, where 50

an indirect regulator induces a conformational change [18]. Examples range from 51

ligand-gated ion channels, to hemoglobin changing conformation upon oxygen binding. 52

Considering these sensors as allosteric molecules allows to formulate statistical 53

mechanical models that link changes in conformation to their external regulators, 54

assigning statistical weights to different conformational states [19]. 55

As for voltage-gated ion channels, a simple statistical mechanical model that 56

describes the influence of the membrane potential (voltage difference) on the 57

conformation of the channel was proposed by Sigworth in 1994 [12]. Assuming a model 58

where the channel can be either open or closed, the following relation is found: 59

Po
Pc

= e−β∆G, (1)

where Po is the probability to be in the open conformation and Pc in the closed one, 60

β = 1
kBT

has its usual meaning where kB is the Boltzmann constant and T the 61

temperature in Kelvin, and 62

∆G = ∆G°− qE, (2)
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where ∆G° is the free energy change between the open and closed states at zero 63

membrane potential, q is the gating current (in terms of elemental charges eo) and E is 64

the membrane potential in mV. The standard Gibbs free energy ∆G° and q are unique 65

to each type of channel. ∆G has been redefined by several authors [20], but the original 66

definition is also valid. The gating current is generated when specific charges in the 67

voltage sensor domains of the voltage-gated channel move from a lower gate to an upper 68

gate, which is necessary for a conformational change to occur [8]. See Fig 1. This q 69

value is unique for each type of channel. 70

Fig 1. Two-state toy model of a Kv channel. The upwards movement of gating
charges (in black) generates a gating current that induces the conformational change
from a closed to an open state (voltage sensor domains in orange).

Knowing that the channel is either open or closed, so that PO +PC = 1, we find that 71

Po =
1

1 + eβ(∆G°−qE)
. (3)

The probability of being open is affected by the gating charge and the standard free 72

energy and is dependent on the changes in membrane potential. One can more correctly 73

think about this as a conditional probability distribution of the channel state given the 74

membrane potential: P (open|E). This notation will be used below. Later, we will relate 75

the membrane potential to environmental concentrations of potassium, and as such, the 76

probability distribution of channel state is conditioned on outside potassium 77

concentration: P (open|[K+]o). 78

Note from equation Eq 3 that at very positive (hyperpolarized) membrane potentials, 79

∆G becomes more negative, and the channel is virtually always open. In turn, the value 80

of q determines the magnitude by which changes in E impact ∆G. Generally, q is 81

regarded as an indicator of the voltage sensitivity of the channel. 82

The model was first used by Sigworth to study the shifts in Po induced by a 83

mutation in Kv Shaker channels and has continued to be used for similar 84

purposes [20–22]. While its simplicity makes it unsuitable for perfect fits to 85

experimental data, it is preferred for the purposes of this work. With few and clear 86

parameters that influence it, inferring significant contributions from each of the cases 87

studied (section 3) is more straightforward. For the same reasons, a two-state model 88

was chosen instead of a multi-state scheme. 89

Mutual information 90

The model above presents a scenario where the open conformation of a voltage-gated 91

channel is dependent on the membrane potential and thus the external potassium 92

concentration. The open conformation immediately allows an ionic current to flow and 93

is consequently equivalent to firing an electrical signal. In a very general sense, this can 94

be considered as an output signal (Y ) depending on certain input (X). Biology has 95

greatly focused on how a cell or an organism gets from receiving X to producing Y , 96

studying molecular mechanisms. However, looking at how well they process and 97

communicate these signals in terms of the information they carry is also possible. In 98

fact, the question about how much information from a given variable X can be reliably 99

tracked to an output Y (or vice versa, how much can Y reliably tell about X) is 100

answered by information theory. 101

Both X and Y represent random variables, meaning that their state is unknown and 102

random until we do a particular experiment and obtain a “realization” of each. Their 103

realizations are denoted x and y, respectively. Over the course of N � 1 experiments, 104
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we see X take a value x and Y take a value y with frequency ≈ Np(x, y). The quantity 105

p(x, y) is known as the joint probability distribution, and it describes (equivalently, in a 106

Bayesian sense) our belief that X will take value x and Y will take value y in any given 107

experiment. Of particular interest are: the marginal distributions p(x) =
∑
y p(x, y) and 108

p(y) =
∑
x p(x, y), which represent the probability of seeing a particular value x or a 109

particular value y; and the conditional probability distributions p(x|y) and p(y|x), 110

which represent the probability of seeing a particular value x conditioned on the fact 111

that we have seen a particular value y, or vice versa. It is of calculational importance 112

that there is a simple relationship between joint, marginal, and conditional probability 113

distributions: p(x, y) = p(x)p(y|x) = p(y)p(x|y). Though we have implicitly focused on 114

the case that x and y can only be in a finite set, one can straightforwardly extend 115

mutual information (described below) to the case when either x or y or both are real 116

numbers. 117

Proposed by Claude Shannon in 1948 [23], information theory is built upon the idea 118

of entropy in a system. This is not to be confused with the Boltzmann-Gibbs entropy 119

used in thermodynamics. Instead, Shannon’s entropy measures the uncertainty of the 120

state of a variable in a system (X or Y as outlined above). It reflects the average 121

number of yes/no questions needed to correctly guess the state of a random 122

variable [24]. It is mathematically expressed as: 123

H(X) = −
N∑
i=1

p(x)log2p(x). (4)

In this expression, N is the number of possible states of X (any given variable), p(x) is 124

the probability distribution of the states of X, and the logarithm with base 2 allows us 125

to get an entropy value in binary units – bits. The probability distribution can be 126

obtained using theoretical predictive models, using statistical weights for example (as 127

done in Sigworth’s model). As well, it can be inferred from experimental 128

measurements [24]. For convenience, values of X will represent “inputs” and Y 129

“outputs” throughout the rest of the paper. 130

To describe the amount of shared information between two systems (or two variables 131

X and Y ), Shannon introduced mutual information. It quantifies the reduction in 132

uncertainty about X obtained from knowing Y , or vice versa. Different relationships 133

between X and Y result in different expressions for mutual information, which have 134

been reviewed in other works [24–26]. Here, the scenario of interest is where the state of 135

Y is determined by X: it is conditional. The corresponding expression for its mutual 136

information is: 137

I(X;Y ) = H(Y )−H(Y |X). (5)

In this expression, H(Y |X) is a conditional entropy, which expresses the uncertainty of 138

a certain value of Y occurring given X. It is directly related to the conditional 139

probability distribution p(y|x) via H(Y |X) = −
∑
y p(y|x) log2 p(y|x), which in this 140

case, is exactly what we get using Sigworth’s model. Note the correspondence with Eq. 141

3. The specifications to get I(X;Y ) are discussed in the Methods. Mutual information 142

will quantify, in bits, how strong the (nonlinear) correlation is between X and Y . It is 143

always non-negative, with values close to zero meaning the correlation is weak, and 0 144

meaning X and Y are completely independent from each other [23]. 145

In a biological context, the value of mutual information indicates the number of 146

possible environmental conditions (X) that a biological readout (Y ) allows to 147

distinguish. For example, if the mutual information value is 1 bit, then Y occurs due to 148

one out of two possible states of X. With 2 bits, four states of X are possible; 3 bits 149

represent eight possible states, and so on [27]. In this sense, the higher the value is for 150
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mutual information, the more states we can distinguish of X from knowledge of Y , and 151

hence we can be less uncertain about it compared to when we did not know Y . 152

In general, information theory can be applied in two ways to biological contexts: 153

with a source coding or a channel coding approach. The first approach assumes we can 154

control the channel through which the information gets from X to Y , and focuses on 155

how to compress the X signal into a Y response losing as less information as possible. 156

The second approach assumes we can control the environment, studying how much data 157

we can send through a noisy channel. A third approach treats the mutual information 158

as a useful quantification of nonlinear correlations [28]. We mostly use the third 159

approach in this work, though later address the second approach. 160

Mutual information has been repeatedly used to approach questions throughout a 161

great variety of areas [26,29,30]. The copious number of studies using 162

information-theoretic tools have led some authors to judge the efforts as too optimistic 163

about the power of information theory [31]. However, in biological contexts, it can be a 164

good indicator of how well a biological sensor tracks its input to its output. As well, 165

careful uses of the theory have resulted in valuable new insights about a possible 166

evolutionary principle to optimize mutual information given the energetic constraints 167

that living organisms have to face [32]. 168

The evolution of Kv channels 169

Kv channels are present across all domains of life [7], and their functions in organisms 170

other than eukaryotes are just starting to be understood. Archaean and prokaryotic Kv 171

channels have been mainly used for structural modeling, and there are initial studies 172

suggesting that they play a role in electrical signaling (only for bacteria) [33]. In 173

eukaryotes, specifically Metazoans, three major families have been identified with 174

further categories. The following table summarizes the classifications. 175

Table 1. Three major Kv channel families.

Major family Subfamilies Kv number

Shaker superfamily

Shaker (or KCNA) 1.x
Shab (or KCNB) 2.x
Shaw (or KCNC) 3.x
Shal (or KCND) 4.x

KCNQ - 7.x

Eag
Eag 10.x
Erg 11.x
Elk 12.x

Data taken from González et al. [34]

As the one shown below, phylogenetic trees showing the evolution of these Kv 176

channels have been obtained using genomic data. 177

Fig 2. Evolution of potassium-specific ion channels during the time of
appearance of 4 groups of organisms. Data taken from Li et al. [35]. Kv channel
families are indicated. Unicellular eukaryotes refer specifically to the choanoflagellates.
Basal metazoans include Ctenophora (comb jellies) and Cnidaria (jellyfish, sea
anemones, and corals). Branch length is not proportional to time.

The tree shows the complete evolution for all ion channels that are selective for K+, 178

and only the ones with the “Kv” label are voltage gated. We can see that most of the 179

October 21, 2020 5/16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.10.26.354928doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.354928
http://creativecommons.org/licenses/by/4.0/


diversification including the emergence of all Kv families occurred in the basal 180

metazoans. Surprisingly, structures are highly conserved between the time they 181

diversified and the latest organisms in evolutionary history (for instance, humans). 182

Although gene sequences have changed, the changes in the final expression of the protein 183

are silent or insignificant, and major structural properties remain unchanged [36]. 184

Such numerous diversifications in the basal metazoans yet highly conserved later 185

lead to several questions. What could have driven such a sudden differentiation of Kv 186

channels? What selective pressure was present during the basal metazoan era but not 187

the following ones that slowed down Kv channel evolution? Further, looking at the 188

deeper principles in the evolution of biological sensors using concepts from information 189

theory, and reiterating the question we explore, did Kv channels in Metazoans evolve to 190

maximize mutual information? 191

Methods 192

To obtain a biophysical model for Kv channels we first identify its environment (X) as 193

the extracellular potassium concentration [K+]o, and its biological readout (Y ) as either 194

being in an open or closed conformation. Although one could initially think that the 195

environment should be the membrane potential, ultimately differences in ion 196

concentrations generate such potentials and Kv channels must select only for potassium 197

ions. Conversely, the opening and closing of the channels only generates changes in 198

potassium concentrations. Hence, we can make an educated guess that these channels 199

want to sense K+ concentrations in their outside (changing) environment, which in turn 200

affect the voltage sensed. 201

Precisely, the Goldman-Hodgkin-Katz voltage equation (or Goldman equation) 202

relates the membrane potential (E) to the main ion concentrations in and out of the 203

cell [37, 38]: 204

E =
RT

F
ln(

PK [K+]o + PNa[Na+]o + PCl[Cl
+]i

PK [K+]i + PNa[Na+]i + PCl[Cl+]o
), (6)

where P is the membrane permeability value for each ion, and the subscripts indicate if 205

the concentration is inside (i) or outside (o) of the cell. We have implicitly assumed that 206

the equilibrium membrane potential given the ion concentration gradients is quickly 207

achieved. 208

To keep [K+]o as the only variable term, we assume all other terms as constant 209

depending on the respective average concentrations for each cell type. In this work, we 210

use the concentrations for a typical neuron at rest. Then, the obtained expression for E 211

can be replaced in Sigworth’s model 3 to get: 212

P (open|[K+]o) =
1

1 + exp(β[∆G°− qRTF lnPK [K+]o+C1

C2
])

(7)

where C1, C2 are constants related to the aforementioned Goldman equation and ∆G° 213

has different possible expressions. One showing high fidelity to experimental results has 214

been proposed by Chowdhury and Chanda as the “limiting slope method” [20]. ∆G° 215

values reported using this method were directly used. However, in most cases, 216

experimental values only allowed us to make another estimation for ∆G° indicated by 217

the same authors as: 218

∆G° = qFV1/2, (8)

where q is the gating charge, F is Faraday’s constant, and V1/2 is the voltage at which 219

half of the channels are open (half-maximal activation voltage), commonly reported in 220

the literature. 221
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Once we get the equation Eq 7 relating the readout (Y ) to the identified 222

environment (X), we proceed to find the expression for the mutual information. There 223

are different ways to do so, but here we use the general expression indicated in Ref. [19]: 224

I(X;Y ) =
∑
x

p(x)p(y|x)log2
p(y|x)

p(y)
. (9)

The detailed derivation can be found in the supplementary material of Statistical 225

Mechanics of Monod–Wyman–Changeux (MWC)Models [19]. This expression is 226

especially useful since it depends only on p(x) and p(y|x), which represent the known 227

distributions of the environment and the conditional probability distribution found in 228

Eq. 7. Recall that the marginal probability distribution p(y) is simplified because it can 229

be expressed as: 230

p(y) =
∑
x

p(x)p(y|x) (10)

Replacing Eq 7 in Eq 9, we get the final expression for mutual information. It will 231

quantify how good sensors Kv channels are in the context of the two-state model used. 232

Although it is mathematically correct for p(x) to have its domain over all real 233

numbers, this is a condition that can never be met in real life. In this case, potassium 234

concentrations fall within a physiological range, and exceeding it simply causes cell 235

death. This limit varies according to cell types and tissue location. Additionally, we 236

discretize our environment by assuming that the ion concentration can only take on a 237

large but finite number of values within that physiological interval. 238

Channel capacity is defined as the maximal mutual information when p(y|x) is fixed 239

and p(x) is varied– in other words, when the environment is allowed to vary, but the 240

channel fixed. For the channel capacity calculation we use the Blahut-Arimoto 241

algorithm [39]. Its implementation in Python along with that of all equations above is 242

available at the GitHub repository referenced in the Appendix. 243

Results 244

The influence of gating current 245

Recalling the model obtained from Eq 7, the parameters that are expected to 246

differentiate the responses among distinct types of Kv channels to their environment are 247

T , ∆G° and q. Exploring these parameters is of interest since, should they play a 248

significant role in the statistical mechanical model, they should also be significant for 249

mutual information. As shown in Fig 3, changes in the gating current and ∆G° each 250

impact in different ways the curves obtained. Surprisingly, changes in temperature (T ) 251

did not produce any noticeable changes, regardless of how greatly the value was varied, 252

within the range 298 - 400K. 253

Fig 3. Changes in P (open|[K+]o) curves depend on standard free energy ∆G° with
values of −10, −100, −1000, and −10000 kcal/mol (a), and increasing gating current q
with values of 3, 6, 12, 24, and 48 e (b). The curves in (b) intersect at coordinate
(181, 0.505).

Shifts in the shape of the curve are produced by only doubling the gating current 254

values, while it is necessary to increase ∆G° by orders of magnitude. The shifts 255

corresponding to changing the free energy are expected: the more negative ∆G° is, the 256
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more energetically favorable it is for the channel to be in the open conformation. 257

However, in a biological context free energy values are very rarely below −100 kcal/mol. 258

For comparison, the combustion of pure carbon dioxide, one of the most exergonic 259

reactions in nature, has a free energy of −94 kcal/mol. The range of possible shapes 260

that the P (open|[K+]o) curve could take are thus between the blue and orange curves 261

in Fig 3, which show no outstanding variation. 262

However, realistic increases in the gating current cause the curve to be increasingly 263

sigmoidal. With high gating currents, the curve starts resembling the common 264

current-voltage (QV) curves obtained in patch-clamp experiments. Interestingly, there 265

is a point where all curves have the same P (open|[K+]o), regardless of the gating 266

current. This happens precisely when half of the channels are open, matching the 267

condition that defines the median voltage of activation V1/2. We therefore highlight that 268

although V1/2 is used to differentiate the QV curves of voltage-gated channels [8], the 269

voltage at which half the channels are open has no dependence on gating currents, at 270

least for Kv channels. 271

Mutual information in different environments 272

The impact of q values on the p(y|x) functions suggest that mutual information values 273

may also have a strong dependence on the gating current. We thus explore this 274

dependence, but as Eq 10 shows, we must now consider the distribution of values in the 275

environment p(x), where each x represents a value of [K+]o in the model used. We 276

consider four different possible distributions for it: uniform, normal, exponential, and 277

bimodal. The goal here is not to precisely portray real-life environments, but rather to 278

evaluate how significantly the model behavior changes just by switching to a very 279

different distribution. Recall that under an information-theoretic source coding 280

approach, we would expect an organism to modify itself (in this case the Kv channel) to 281

compress data from changing environments into a signal. Then, perhaps one strategy 282

these channels could use to do so is modifying or optimizing their gating currents, as 283

shown in Fig 4. The mutual information values found are however significantly lower 284

than channel capacity - the upper bound of information transmission. If mutual 285

information was instead near channel capacity, then the channel’s sensitivity would be 286

theoretically near-optimal, but this is not the case here (Fig 4.b). 287

Fig 4. There is an optimal gating current that generates a maximum mutual
information for four distinct environment distributions (a), but the values of mutual
information at these optimal gating currents are far from channel capacity (b). The x
(environment) ranges from 0 to 20 mM, intervals are taken each 0.5 mM, mean = 10,
second mean (only for bimodal) = 3, std. deviation (for normal and bimodal) = 5. Max.
mutual information values are 0.0052 (uniform), 0.0048 (exponential), 0.0037 (bimodal),
and 0.0029 (normal) bits. Maximum channel capacity is 0.138.

Surprisingly, four markedly different distributions show there is a very similar 288

optimal gating current. However, the maximum mutual information values obtained are 289

still very low. With a uniform environment, a value of 0.005 bits tells us that if we see a 290

Kv channel that is open, the doubts we initially have about the environment are only 291

reduced by 1
20.005 , or 0.34%. It seems not to be a very suitable sensor for the task it 292

should do, but we will return to the discussion of these values later. 293

It is commonly thought that the greater the gating current is, the more sensitivity 294

the Kv channel has [40]. One could easily assert that higher sensitivity makes a better 295

sensor. However, these results suggest that there is one value of gating current beyond 296

which Kv channels do not improve their performance as sensors. Also, while the curves 297
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seen in Fig 4 are apparently highly conserved, no Kv channel has the gating current 298

that would supposedly always maximize mutual information. 299

We also highlight that the channel capacity is remarkably low compared to those 300

obtained in other biological systems [24,41]. It also shows a dependence on gating 301

current (Fig 5) with a nonzero optimal value only after certain biophysical limit of the 302

environment. 303

Fig 5. Channel capacity has optimal values depending on the [K+] limit.
After the limit exceeds 9.1mM channel capacity has a non-zero maximum value when
the gating current is initially 5.5 e°. The limit is realistically 5 mM on average and
never higher than 10 mM .

The evolution of mutual information 304

We now evaluate the mutual information values of Kv channels from an evolutionary 305

approach. To have a well-rounded perspective about the different types of Kv channels 306

that have evolved, we have chosen representative and well-studied types from the Shaker 307

and KCNQ families (refer to Fig 2). We do not consider the Eag family because it has 308

significant allosteric regulators other than gating currents [42], and hence does not meet 309

the sole dependence on [K+] that the model used has. The considered Kv channel types 310

with their corresponding parameters and their evolutionary order are shown below. 311

Table 2. Representative Kv channels across different families.

Subfamily Kv channel type q (e°) ∆G° (kcal/mol) References

(outgroup) KvAP 9.5 -7.87 [20,43,44]
Shaker 1.2 13 -14.63 [44]

Shab
2.1 (mammalian) 12.5 -10.06

[43]
2.1 (invertebrate) 7.5 -7.54

Shal 4.2 3.3 -3.6 [45]
KCNQ 7.4 1.9 -1.07 [4]

From top to bottom: most basal to most evolved. The evolutionary order is based on
each channel type’s time of divergence from the last common ancestor, as seen in the
phylogenetic relationships reported by Li et al. [35] and summarized in Fig 2. Gating
charge (q) is in terms of elemental charges, and ∆G° is the free energy change at zero
membrane potential. When not reported, it was calculated with Eq 8. The mammalian
Shab channel is a human Kv2.1, and the invertebrate is a D. melanogaster Kv 2.1.
Although Figure 2 shows an early divergence for KCNQ families, Kv 7.4 is thought to
have recently evolved. KvAP is an Archaean Kv channel used as an outgroup (a very
early evolutionary reference not related to Metazoans) to highlight that the decrease in
gating current is rather a unique Metazoan trend, but not true in other evolutionary
groups.

We identified two environments representative of specific evolutionary eras (a 312

primitive and a recent one), to compare how mutual information evolves in different 313

environment distributions defined also with different parameters. Although the 314

distributions were very different, the Kv channels end up showing common behaviors. 315

We identified these environments considering the evolutionary relationships between 316

Kv channels, which had, at most, two evolutionary hotspot moments. The first 317

corresponds to the narrow period between the emergence of Ctenophora (comb jellies) 318
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Table 3. Parameters of marine and CSF environment to be used in the
distribution categories.

Environment parameters

Range [K+] (mM) Mean Standard deviation
Primitive: marine 0 - 20 10 2.5
Evolved: CSF 3.1 - 4.0 3.6 0.3

The standard deviation is only used in the normal and bimodal distributions. The
second mean for the bimodal is 3 in the primitive and 3.9 in the evolved environment.
Data taken from Somjen [46] and Bayrami et al. [47].

and Cnidaria (jellyfish) during the evolutionary time of the basal metazoans Fig 2. It is 319

known that most of the diversity of Kv channels appeared during that time, including 320

all diversions of the baseline voltage-gated family members [35]. Although these 321

primitive marine animals had internal nervous systems, they were very thin and did not 322

have permeable or isolating layers. Ions were then easily diffused, making the ionic 323

environment in their nervous system essentially identical to that of the open ocean [47]. 324

Hence, these marine [K+] distributions define the first environment. 325

The second hotspot occurred in very late bilaterian metazoans, specifically mammals 326

and insects. The KCNQ family greatly diverged during this time period. The 327

environment in which they did so corresponds to the developed bilaterian nervous 328

system with highly regulated potassium concentrations. We took the cerebrospinal fluid 329

(CSF) as the reference to define the second environment. 330

Defining p(x) with these parameters allows us to use mutual information evolution 331

to evaluate possible evolutionary scenarios. First and foremost, if Kv channels had 332

evolved to maximize mutual information, we should expect to always see increasing 333

curves in Fig 6. If mutual information between ion concentration and channel state had 334

been selected for positively, the graph would show steeper slopes between the most 335

evolved Kv channels in the CSF environment than in the marine one– mutual 336

information would be even more maximized in the evolved environments where most 337

recent Kv channels have been selected for. These expected trends are evidently not true. 338

However, we highlight that a change in the steepness of the curve occurs in the normal 339

and bimodal environments, where the most basal channel types are most greatly favored 340

in their corresponding basal environments, although differences in mutual information 341

are not significant in the evolved environment. 342

343

Fig 6. Mutual information in the evolutionary history of Kv channels.
Mutual information in the evolutionary history of Kv channels always decreased in all
environment distributions. The environment intervals are taken each 0.1mM . At the
left under the green bar: real-life conditions of a primitive environment during the first
evolutionary hotspot. At the right under the yellow bar: real-life conditions of an
evolved environment during second hotspot. Note the color correspondence with Fig 2.
Note that the random, exponential, and uniform distributions are not affected in shape
or steepness when changing the parameters. Kv2.1(H) is of mammalian type (Human)
and Kv2.1(D) is invertebrate (Drosophila melanogaster).

The decreasing trend, considering the accuracy of normally distributed 344

concentrations [46,48,49], strongly suggests that maximizing mutual information was 345

not the principle behind the evolution of Kv channels. As much as their biological task 346
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in nervous communication suggests that they should be optimal sensors tracking their 347

environment very well in their signals, it appears not to be the case here. 348

Recalling Eq 5, there are two possible scenarios that may lead to decreasing mutual 349

information values: either H(Y ) has decreased or H(Y |X) has increased during 350

evolutionary history. It is possible that both values changed simultaneously, and their 351

effect decreasing mutual information shows to be correlated with the lower gating 352

currents that emerged in Kv channels (Fig 7). The correlation is reasonable considering 353

that gating currents are known to determine channel sensitivity and hence their ability 354

to convey information about their environment. However, why evolution would have 355

selected for smaller gating currents is not immediately clear. We face here a scenario 356

where evolution appears to not care about making more efficient signals, at least under 357

what we have considered to represent an optimal response. However, why evolution 358

would have selected for smaller gating currents is not immediately clear. We face here a 359

scenario where evolution appears to not care about making more efficient signals, at 360

least under what we have considered to represent an optimal response. 361

Fig 7. Decrease in mutual information is closely related to decrease in
gating current in Kv channel evolution. The mutual information in a normally
distributed environment (blue) is used as an example, but the correlation with gating
current is similar in all other environments.

Looking at the more realistic normal environment, going from marine to CSF 362

conditions also significantly decreases the maximum mutual information (maxMI) by 363

two orders of magnitude. Although the marine maxMI is still low, it is 100 times more 364

informative than its CSF counterpart. Evidently, for two Kv channels with the same 365

precision (e.g. they detect each 0.1mM of ion concentrations), the signal that responds 366

to detecting such units will be a more specific, or less uncertain, message about the 367

actual environment when it goes up to 20 mM , than another with a maximum of 4 mM . 368

In the 20 mM maximum case, detecting any concentration value with a 0.1 mM 369

precision means that (ideally and in the simplest case) one state is differentiated from 370

the other 199. In the 4 mM maximum case, one state is differentiated from only 39 371

other possible ones. In general, H(X) increases when the [K+] limit is higher, 372

explaining why the marine maxMI is higher than that of the CSF environment. 373

Although this supports that Kv channel performance (and arguably that of other 374

biological sensors) is affected by their precision relative to the biophysical limit of their 375

environment, it does not show that their evolution tends to maximize the information it 376

can get given these constraints. 377

Discussion 378

Evaluating how good Kv channels are at accurately making predictions about their 379

environment using an information-theoretic approach suggests that they did not evolve 380

to maximize mutual information. Instead, the evolutionary history shows a steady 381

decrease in mutual information that is strongly correlated to similarly decreasing gating 382

currents. Regardless, showing what did not lead to their peculiar evolution still allows 383

us to identify certain crucial parameters for their response, and provides insight into one 384

of those cases where biological sensors do not need to be optimal. 385

It is worth highlighting that an evolutionary trend that does not seem to improve 386

the performance of Kv channels is coherent with the high conservation seen between 387

evolved and primitive Kv channel types. It is reasonable to suggest that during the 388

massive diversification these channels had when basal metazoans emerged, the channels 389
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developed a sufficient amount of sensitivity and ability to predict their environment, 390

which is surprisingly far below channel capacity. Nevertheless, there would have been no 391

further need to maximize the acquired sensitivity, and the critical structural features 392

were highly conserved over time. 393

The possibility of later diversification to be mostly random products of independent 394

evolution has already been suggested by Anderson and Greenberg [50]. Although 395

different channel types have different responses to macroscopic currents, they show that 396

these variations have a negligible effect on the current that crosses when the channels 397

open during such short action potentials. Within this context, optimizing K+ channel 398

sensing has no real biological repercussion and then cannot be a selective pressure for 399

evolution – a notion supported by our results. 400

If mutual information changes reflect random evolution, then the gating current – 401

which we show to be highly correlated with mutual information – should also have 402

certain randomness associated with it. However, even minimum changes in gating 403

currents are the reason behind several nervous signaling dysfunctions [40,42,51]. 404

Likewise, there is a clear trend across environments that show an optimal gating current 405

for maximum mutual information. 406

Considering the ordered character of these last two facts, we suggest a possible 407

evolutionary scenario: random diversions in protein domains (and hence gating currents) 408

first generated functional Kv channel types, which then did not need to evolve 409

significantly, but ended up incorporated billions of years later into such a regulated 410

microscopic nervous “system” that random alterations to Kv channel features now have 411

a negative impact. By this “system”, we refer to the neuron membrane complex of 412

protein transporters and pumps actively interacting with ions, regulators, and other 413

cells nearby. If Kv channels did not notably evolve, they generated very similar currents 414

that ultimately regulated the ionic environment for a long time. Perhaps, Kv channels 415

then may have represented a selective pressure to many other components in this 416

system, which adapted to them. 417

This could not only explain why random variations are so impactful now but not 418

when Kv channels emerged, but also suggest the possibility of any of the components of 419

the system preventing the gating current to increase up to its optimal value. Possibly in 420

a trade-off relationship, getting to the optimal gating current destabilizes a feedback 421

mechanism or any other transduction pathway not clear yet. 422

As a whole, we have to acknowledge that with the model we have used, just as in 423

any other case that models a biological situation approaching it from information 424

theory, we can never be sure that we have correctly identified what the organism (or in 425

this case the Kv channel) wants to sense. Perhaps Kv channels are just not well 426

thought-of as sensors. There may be further dependencies for potassium concentrations, 427

and even significant feedback loops or cooperativeness in the Kv channel subunits. As 428

well, the two-state model itself may behave differently than a multi-state one. These are 429

left as potential considerations for continuation of this work. 430

Conclusion 431

Biological sensors do not always need to maximize mutual information, and we have 432

shown that so is the case for potassium voltage-gated channels. Their evolution seems 433

to have been driven by numerous random diversifications when basal animals appeared, 434

which left no need to further optimize their performance as sensors. Still, the gating 435

current is most likely a determinant feature for how well Kv channels sense. We find 436

conserved tendencies for a possibly optimal gating current which still no Kv channel has, 437

leading to possible evolutionary scenarios that may have caused this. 438

These tendencies are even kept when the environment distribution changes, 439
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suggesting that Kv channels could know how to keep the level of efficacy as sensors that 440

is just good enough for them. While they cannot control their environment, they 441

respond accordingly to how much surprise they can find in it, and opt for a same range 442

of parameters to perform well given these constraints. 443

Supporting information 444

S1 Appendix. GitHub repository URL with the code used: 445

https://github.com/aduranu/Kv_channel_modeling.git 446
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