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ABSTRACT 

Analysing the behavior of individuals or groups of animals in complex 
environments is an important, yet difficult computer vision task. Here we 
present a novel deep learning architecture for classifying animal behavior and 
demonstrate how this end-to-end approach can significantly outperform pose 
estimation-based approaches, whilst requiring no intervention after minimal 
training. Our behavioral classifier is embedded in a first-of-its-kind pipeline 
(SIPEC) which performs segmentation, identification, pose-estimation and 
classification of behavior all automatically. SIPEC successfully recognizes 
multiple behaviors of freely moving mice as well as socially interacting non-
human primates in 3D, using data only from simple mono-vision cameras in 
home-cage setups. 

Introduction 

While the analysis of animal behavior is crucial for systems neuroscience and preclinical 
assessment of therapies, it remains a highly laborious and error-prone process. Over the last 
few years, there has been a surge in machine learning tools for behavioral analysis, including 
segmentation, identification and pose estimation1–8. Although this has been an impressive feat 
for the field, a key element, the direct recognition of behavior itself has been rarely addressed. 
Unsupervised analysis of behavior9,10 can be a powerful tool to capture the diversity of the 
underlying behavioral patterns, but the results of these methods do not align with human 
annotations and therefore require subsequent inspection. Here we demonstrate a 
complementary approach for researchers who seek to automatically identify particular 
behaviors of interest. Our approach relies on the initial annotation of exemplar behaviors, i.e. 
snippets of video footage, which are subsequently used to train a Deep Neural Network (DNN) 
to recognize these particular behaviors. Recently, there have been advances in the supervised 
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analysis of mouse behavior, using classifiers on top of pose-estimation generated features11–14. 
Sturman et. al.13 demonstrated that the classification of mouse behaviors using features 
generated from pose-estimation algorithms can outperform the behavioral classification 
performance of commercial systems. Yet, such pose-estimation based classification of behavior 
remains a labor-intensive and error-prone process as we show below. Here, we designed a novel 
DNN-based architecture that is capable of classifying different behavioral states and even social 
interactions in an end-to-end fashion directly from video-data with minimal manual labeling 
while significantly outperforming the accuracy of pose-estimation based approaches. Our 
findings demonstrate that for the sole analysis of designated behaviors of interest, pose-
estimation is not necessary. 
 
We developed the first all-inclusive pipeline with modules for segmentation, identification, 
behavioral classification, and pose estimation of multiple and interacting animals in complex 
environments, called SIPEC, solely using DNNs and video data. We show SIPEC modules 
outperform current state-of-the-art approaches. SIPEC enables researchers to capture behavior 
from multiple animals in complex and changing environments over multiple days in 3D space, 
even from a single-camera with relatively little labeling in contrast to other approaches that use 
heavily equipped environments and large amounts of labeled data7. To rapidly train our 
modules, we use image augmentation15 as well as transfer learning16, optimized specifically for 
each module. To accelerate the reusability of SIPEC, we share the network weights among all 
four modules for mice and primates, which can be directly used for analyzing new animals in 
similar environments without further training, or serve as pre-trained networks to accelerate 
training of networks in different environments.  
 
Results 

Our algorithm performs segmentation (SIPEC:SegNet) followed by identification 
(SIPEC:IdNet), behavioral classification (SIPEC:BehaveNet) and finally pose estimation 
(SIPEC:PoseNet) from video frames (Figure 1). These four artificial neural networks, trained 
for different purposes, can also be used individually or combined in different ways (Figure 1a). 
To illustrate the utility of this feature, Figure 1b shows the output of pipelining SIPEC:SegNet 
and SIPEC:IdNet to track the identity and location of 4 primates housed together (Figure 1b). 
Similarly, Figure 1c shows the output of pipelining SIPEC:SegNet and SIPEC:PoseNet to do 
multi-animal pose estimation in a group of 4 mice.  

Segmentation module SIPEC:SegNet. SIPEC:SegNet is based on the Mask-RCNN 
architecture17, which we optimized for analyzing multiple animals and integrated into SIPEC. 
We further applied transfer learning16 onto the weights of the Mask-RCNN ResNet-backbone18 
pretrained on the Microsoft Common Objects in Context (COCO dataset)19 (see Methods for 
SIPEC:SegNet architecture and training). Moreover, we applied image augmentation15 to 
increase generalizability and invariances, i.e. rotational invariance. For a given image, if we 
assume that N individuals are in the field of view (FOV), the output of SIPEC:SegNet are N 
segmentations or masks of the image. If the analysis is for multiple animals in a group, this step 
is mandatory, since subsequent parts of the pipeline are applied to the individual animals. Based 
on the masks, the center of masses (COMs) of the individual animals is calculated and serves 
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as a proxy for the animals’ 2D spatial positions. Next, we crop the original image around the 
COMs of each animal, thus reducing the original frame to N COMs and N square-masked 
cutouts of the individuals. This output can then be passed onto other modules.  
 
Segmentation performance on individual mice. We first examined the performance of 
SIPEC:SegNet on top-view video recordings of individual mice, behaving in an open-field test 
(OFT). 8 mice were freely behaving for 10 minutes in the TSE Multi Conditioning System’s 
OFT arena, previously described in Sturman et al.13. We labeled the outlines of mice in a total 
of 23 frames using the VGG image annotator20 from videos of randomly selected mice. To 
evaluate the performance, we used 5-fold cross-validation (CV). We assessed the segmentation 
performance on images of individual mice, where SIPEC:SegNet achieved a mean-Average 
Precision (mAP) of 1.0 ± 0 (mean ± s.e.m., see Methods for metric details). We performed a 
video-frame ablation study to find out how many labeled frames (outline of the animal, see 
Supplementary Figure 1) are needed for SIPEC:SegNet to reach peak performance (Figure 2b). 
While randomly selecting an increasing amount of training frames, we measured performance 
using CV. For single-mouse videos, we find that our model achieves 95% of mean peak 
performance (mAP of 0.95 ± 0.05) using as few as a total of 3 labeled frames for training.  
 
Segmentation performance of groups of primates. To test SIPEC:SegNet for detecting instances 
of primates within a group, we annotated 191 frames from videos on different days (Day 1, Day 
9, Day 16, Day 18). As exemplified in Figure 2a, the network handles even difficult scenarios 
very well: representative illustrations include ground-truth as well as predictions of moments 
in which multiple primates are moving rapidly while strongly occluded at varying distances 
from the camera. SIPEC:SegNet achieved a mAP of 0.91 ± 0.03 (mean ± s.e.m.) using 5-fold 
CV. When we performed the previously described ablation study, SIPEC:SegNet achieved 95% 
of mean peak performance (mAP of 0.87 ± 0.03) with only 30 labeled frames (Figure 2b). 

Identification module SIPEC:IdNet. The identification network (SIPEC:IdNet) allows the 
determination of the identity of individual animals. Given SIPEC:IdNet receives input as a 
series (T time points) of cropped images of N individuals from SIPEC:SegNet, the output of 
SIPEC:IdNet are N identities. The input images from SIPEC:SegNet are scaled to the same 
average size (see Methods) before being fed into SIPEC:IdNet. We designed a feedforward 
classification neural network, which utilizes a DenseNet21-backbone pretrained on ImageNet22. 
This network serves as a feature-recognition network on single frames. We then utilize past and 
future frames by dilating the mask around the animal with each timestep. The outputs of the 
feature-recognition network on these frames are then integrated over T timesteps using a gated-
recurrent-unit network (GRU23,24) (see Methods for architecture and training details). Based on 
the accuracy and speed requirements of a particular application, SIPEC:IdNet can integrate 
information from none to many temporally-neighboring frames. We developed an annotation 
tool for a human to assign identities of individual animals, in a multi-animal context, to 
segmentation masks in videoframes, which capture primates from different perspectives 
(Supplementary Figure 3). This tool was used for annotating identification data in the following 
sections. Below we compared SIPEC:IdNet’s performance to that of the current state-of-the-art 
i.e. idTracker.ai3. idTracker.ai3 requires tracking (sufficient overlap between segments of 
subsequent frames are used as a heuristic for being the same individual)  to train for the 
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identification of individual animals and evaluated performance only within a single session. 
Particularly in complex or enriched home-cage environments, where animals are frequently 
obstructed as they move underneath/behind objects, this tracking becomes impossible, which 
causes failure of identification of the animals for the rest of the session. We evaluated the 
identification performance of SIPEC:IdNet without any tracking and even across sessions.  
Nonetheless, smoothing the outputs of SIPEC:IdNet as a secondary step can boost performance 
for continuous video sequences, but was not used for the following evaluation. 
 
Identification of mice in an open-field test. We first evaluated the performance of SIPEC:IdNet 
in identifying 8 individual mice. We acquired 10 minute long videos of these mice behaving in 
the previously mentioned OFT (see Methods for details). While for the human observer, these 
mice are difficult to distinguish (Supplementary Figure 4), our network copes rather well. We 
used 5-fold CV to evaluate the performance, i.e. splitting the 10-minute videos into 2-minute 
long ones. Since this data is balanced, we use the accuracy metric for evaluation. We find that 
SIPEC:IdNet achieves 99 ± 0.5 % (mean and s.e.m.) accuracy, while the current state of the art 
idTracker.ai3 only achieves 87 ± 0.2 % accuracy (Figure 2c). The ablation study shows that 
only 650 labeled frames (frame and identity of the animal) are sufficient for the SIPEC:IdNet 
to achieve 95% of its mean peak performance (Figure 2d). We tested how this performance 
translates to identifying the same animals during the subsequent days (Supplementary Figure 
5). We find that identification performance is similarly high on the second day 86 ± 2 %, using 
the network trained on day 1. Subsequently, we tested identification robustness with respect to 
the interventions on day 3. Following a forced swim test, the identification performance of 
SIPEC:IdNet, trained on data of day 1, dropped dramatically to 4 ± 2 %, indicating that features 
utilized by the network to identify the mice are not robust to this type of intervention. 
 
Identification of individual primates in a group. To evaluate SIPEC:IdNet’s performance on 
the identification of individual primates within a group, we used the SIPEC:SegNet-processed 
videos of the 4 macaques (see Section “Segmentation performance of groups of primates”). We 
annotated frames from 7 videos taken on different days, with each frame containing multiple 
individuals, yielding approximately 2200 labels. We used leave-one-out CV with respect to the 
videos in order to test SIPEC:IdNet generalization across days. Across sessions SIPEC:IdNet 
reaches an accuracy of 78 ± 3 % (mean ± s.e.m.) while idTracker.ai3 achieves only 33 ± 3 % 
(Figure 2c), where the human expert (i.e. ground truth) had the advantage of seeing all the 
video frames and the entire cage (i.e. the rest of the primates). We did a separate evaluation of 
the identification performance on “typical frames” i.e. where the human expert can also 
correctly identify the primates using single frames. In this case, SIPEC:IdNet achieved a 
performance of 86 ± 3  (Supplementary Figure 6). The identification labels can then be further 
enhanced by greedy mask-match based tracking (see Methods for details). Supplementary 
Video 1 illustrates the resulting performance on a representative video snippet. We perform 
here an ablation study as well, which yields 95% of mean peak performance at 1504 annotated 
training samples (Figure 2d). 
 
Behavioral classification module SIPEC:BehaveNet. SIPEC:BehaveNet offers researchers 
a powerful means to recognize specific animal behaviors in an end-to-end fashion within a 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.10.26.355115doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355115
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

single neuronal net framework. SIPEC:BehaveNet uses video frames of N individuals over T 
time steps to classify what actions the animals are performing. We use a recognition network 
to extract features from the analysis of single frames, that we base on the Xception25 network 
architecture. We initialize parts of the network with ImageNet4 weights.  These features are 
then integrated over time by a temporal convolution network26,27 to classify the behavior of the 
animal in each frame (see Methods for architecture and training details).  
 
SIPEC end-to-end behavior recognition outperforms DLC-based approach. We compare our 
end-to-end approach to Sturman et al.13, who recently demonstrated that they can classify 
behavior based on DLC1  generated features. On top of a higher classification performance with 
fewer labels, SIPEC:BehaveNet does not require annotation and training for pose estimation, 
if the researcher is interested in behavioral classification alone. The increased performance with 
fewer labels comes at the cost of a higher computational demand since we increased the 
dimensionality of the input data by several orders of magnitude (12 pose estimates vs. 16384 
pixels). To test our performance we used the data and labels from Sturman et al.13 of 20 freely 
behaving mice in an OFT. The behavior of these mice was independently annotated by 3 
different researchers on a frame-by-frame basis using the VGG video annotation tool20. 
Annotations included the following behaviors: supported rears, unsupported rears, grooming 
and none (unlabeled default class). While Sturman et al.13 evaluated the performance of their 
behavioral event detection by averaging across chunks of time, evaluating the frame-by-frame 
performance is more suitable for testing the actual network performance since it was trained 
the same way. Doing such frame-by-frame analysis shows that SIPEC:BehaveNet has fewer 
false positives as well as false negatives with respect to the DLC-based approach of Sturman 
et al. We illustrate a representative example of the performance of both approaches for each of 
the behaviors with their respective ground truths (Figure 3a). We further resolved spatially the 
events that were misclassified by Sturman et al., that were correctly classified by 
SIPEC:BehaveNet and vice versa (Figure 3b). We calculated the percentage of mismatches, 
that occurred in the center or the surrounding area. For grooming events mismatches of Sturman 
et al.13 and SIPEC:BehaveNet occurs similarly often in the center 41 ± 12 % (mean and s.e.m.) 
and 42 ± 12 % respectively. For supported and unsupported rearing events Sturman et al.13 find 
more mismatches occurring in the center compared to SIPEC:BehaveNet (supported rears: 40 
± 4 % and 37 ± 6 %, unsupported rears: 12 ± 2 % and 7 ± 2 %). This indicates that the 
misclassifications of the pose estimation based approach are more biased towards the center 
than the ones of SIPEC:BehavNet. To quantify the behavioral classification over the whole 
timecourse of all videos of 20 mice, we used leave-one-out CV (Figure 3c). We used macro-
averaged F1-score as a common metric to evaluate a multi-class classification task and Pearson 
correlation (see Methods for metrics) to indicate the linear relationship between the ground 
truth and the estimate over time. For the unsupported rears/grooming/supported rears behaviors 
SIPEC:BehaveNet achieves F1-Scores of 0.6 ± 0.16/0.49 ± 0.21/0.84 ± 0.04 (values reported 
as mean ± s.e.m.) respectively, while the performance of the manually intensive Sturman et 
al.13’s approach reaches only 0.49 ± 0.11/0.37 ± 0.2/0.84 ± 0.03, leading to a significantly 
higher performance of SIPEC:BehaveNet for the unsupported rearing (F1: p=1.689x10-7, 
Wilcoxon paired-test was used as recommended28) as well as the grooming (F1: p=6.226x10-

4) behaviors. This improved performance is due to an increased precision as well as increased 
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recall for the different behaviors (Supplementary Figure 7a). As expected, more stereotyped 
behaviors with many labels like supported rears yield higher F1, while less stereotypical 
behaviors like grooming with fewer labels have lower F1 for both SIPEC:BehaveNet and DLC-
based approach. Additionally, we computed the mentioned metrics on a dataset with shuffled 
labels to indicate chance performance for each metric as well as computed each metric when 
tested across human annotators to indicate an upper limit for frame-by-frame behavioral 
classification performance (Supplementary Figure 7b). While the overall human-to-human F1 
is 0.79 ± 0.07 (mean ± s.e.m.), SIPEC:BehaveNet classifies with an F1 of 0.71 ± 0.07. As 
Sturman et al.13 demonstrated for unsupported and supported rears, this performance is 
sufficient to reach human-like performance, when behavioral classifications are temporally 
grouped to single events rather than analyzed frame-by-frame. Lastly, we performed a frame 
ablation study and showed that SIPEC:BehaveNet needs only 114 minutes, less than 2 hours 
of labeled data, to reach peak performance in behavioral classification (Figure 3d). 
 
Pose estimation module SIPEC:PoseNet. We also added an encoder-decoder architecture29 
module to SIPEC for performing pose estimation (SIPEC:PoseNet) (see Methods). 
SIPEC:PoseNet can be used to perform pose estimation on N animals, yielding K different 
coordinates for previously defined landmarks on the body of each animal. The main advantage 
of SIPEC:PoseNet in comparison to previous approaches is the inputs it receives from 
SIPEC:SegNet (top-down pose estimation). While bottom-up approaches such as DLC1 require 
grouping of pose estimates to individuals, our top-down approach makes the assignment of pose 
estimates to individual animals trivial, as inference is performed on the masked image of an 
individual animal and pose estimates within that mask are assigned to that particular individual 
(Figure 1c). We labeled frames with 13 standardized body for tracking mice in OFT similarly 
to Sturman et. al.13. SIPEC:PoseNet achieves a Root-Mean-Squared-Error (RMSE) (see 
Methods) of 2.7 pixels in mice (Supplementary Figure 8) for a total of 950 labeled training 
frames, which is comparable to the 2.9 pixel RMSE reported for DLC1. In our top-down pose 
estimation framework previously published pose estimation methods, working on single 
animals, can also be easily substituted into our pipeline to perform multi-animal pose estimation 
in conjunction with SIPEC:SegNet. 
 
Socially interacting primate behavior classification. We used the combined outputs of 
SIPEC:SegNet and SIPEC:IdNet, smoothed by greedy match based tracking,  to generate 
videos of individual primates over time (see Methods for details). To detect social events, we 
used SIPEC:SegNet to generate additional video events covering “pairs” of primates. 
Whenever masks of individual primates came sufficiently close (see Methods), an interaction 
event was detected. We were able to rapidly annotate these videos again using the VGG video 
annotation tool20 (overall 80 minutes of video are annotated from 3 videos, including the 
individual behaviors of object interaction, searching, social grooming and none (background 
class)). We then trained SIPEC:BehaveNet to classify frames of individuals as well as merged 
frames of pairs of primates socially interacting over time. We used grouped 5-fold stratified 
CV over all annotated video frames, with labeled videos being the groups. Overall 
SIPEC:BehaveNet achieved a macro-F1 of 0.72 ± 0.07 (mean ± s.e.m.) across all behaviors 
(Figure 4a). This performance is similar to the earlier mentioned mouse behavioral 
classification performance. The increased variance compared to the classification of mouse 
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behavior is expected as imaging conditions, as previously mentioned, are much more 
challenging and primate behaviors are much less stereotyped compared to mouse behaviors. 
 
Tracking identity and position of individual primates among groups in 3D without 
stereovision. By performing SIPEC:SegNet and SIPEC:IdNet inference on a full one-hour 
video, we easily built a density map of positions of individuals within the husbandry (Figure 
1a). With a single camera without stereovision, one cannot optically acquire depth information. 
Instead, we used the output masks of SIPEC:SegNet and annotated the position of the primates 
in 300 frames using a 3D model (Supplementary Figure 9). Subsequently, we generated 6 
features using Isomap30 and trained a multivariate linear regression model to predict the 3D 
positions of the primates (Figure 4b). Using 10-fold CV, our predicted positions using only 
single camera have an overall RMSE of only 0.43 ± 0.01 m (mean ± s.e.m.), that is of 0.27 ± 
0.01 m in x-direction or 6% error w.r.t the room dimension in x-direction; 0.26 ± 0.01 m / 7% 
and 0.21 ± 0.01 m / 7% for the y and z coordinates respectively.  

 

Discussion 

We have presented SIPEC, a novel pipeline, using specialized deep neural networks to perform 
segmentation, identification, behavioral classification and pose estimation on multiple animals. 
With SIPEC we address multiple key challenges in the domain of behavioral analysis. Our 
SIPEC:SegNet enables the segmentation of animals with minimal labeling. Subsequently, 
SIPEC:BehaveNet enables end-to-end animal behavior recognition directly from raw video 
data. End-to-end classification has the advantage of not requiring adjustment of pre-processing 
or feature engineering to specific video conditions. Our approach outperforms pose estimation 
approaches on a well-annotated mouse behavioral dataset. We thus propose to skip pose-
estimation if researchers are solely interested in classifying behavior. We note that our end-to-
end approach increases the input-dimensionality of the behavioral classification network and 
therefore uses more computational resources and is slower than pose estimation based 
approaches. SIPEC:IdNet identifies primates in complex environments across days with high 
accuracy, while also offering smoothing of labels. We showed that identification accuracy is 
significantly higher for typical frames with good visibility of the animal. Therefore, the better 
the coverage by the camera system the better is the overall identification performance. Finally, 
SIPEC:PosNet enables top-down pose estimation of multiple animals in complex 
environments, making it easy to assign pose estimates to individual animals. All approaches 
are optimized through augmentation and transfer learning, significantly speeding up learning 
and reducing labeling in comparison to the other approaches we tested on mouse as well as 
non-human primate datasets. We demonstrate how SIPEC can analyze social interactions of 
non-human primates such as mutual grooming over multiple days after annotating sequences 
of interest in videos. Finally, we show how SIPEC enables 3D vision from a single-camera 
view, yielding an off-the-shelf solution for home-cage monitoring of primates, without the need 
for setting stereo-vision setups. 
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SIPEC can be used to study the behavior of primates and their social interactions over longer 
periods of time in a naturalistic environment. After initial training of SIPEC modules, they 
could automatically output a specific behavioral profile of each individual in a group, 
potentially over days, weeks or months and therefore also be used to quantify the changes in 
behavioral and social dynamics over time. 

It would be interesting to integrate complementary unsupervised approaches9,10  into SIPEC to 
cover behavioral sequences that are not classified by SIPEC:BehaveNet and give researchers 
the chance to explore the data of these not-specified behaviors in an unsupervised fashion. The 
output of other modules (SIPEC:SegNet, SIPEC:IdNet and SIPEC:PoseNet) could be used as 
inputs for these unsupervised approaches to assign results to individual animals. 

SIPEC is easy to use for practitioners from the neuroscience community as well as very modular 
and hackable to encourage future improvements by researchers from the machine learning 
community. SIPEC can aid neuroscientific research by increasing throughput, reproducibility 
and transferability of results of behavioral analysis. To facilitate this, we make our code public 
with pre-trained networks for both mice and non-human primates. 
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Fig. 1 | Overview of the SIPEC workflow and modules. a) From a given video, instances of 
animals are segmented with the segmentation network (SIPEC:SegNet), indicated by masked 
outline as well as bounding boxes. Subsequently, individuals are identified using the 
identification network (SIPEC:IdNet). For each individual, the pose and behavior can be 
estimated/classified using the pose estimation network (SIPEC:PoseNet) and the behavioral 
identification network (SIPEC:BehaveNet), respectively. b) Outcome of SIPEC:SegNet, and 
SIPEC:IdNet modules are overlaid on a representative video-frame. Time-lapsed positions of 
individual primates (center of mass) are plotted as circles with respective colors. c) Outputs of 
SIPEC:SegNet (boxes) and SIPEC:PoseNet (colored dots) on a representative video-frame of 
mouse open-field data.  
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Fig. 2 | Performance of the segmentation (SIPEC:SegNet) and identification 
(SIPEC:IdNet) modules under demanding video conditions and using few labels. a) 
Qualitative comparison of ground truth (top row) versus predicted segmentation masks (bottom 
row) under challenging conditions; multiple animals, at varying distances from the camera, 
under strong visual occlusions, and in rapid motions. b) SIPEC:SegNet performance in mAP 
(mean average precision) for primates and mice as a function of the number of labels. The black 
lines indicate the mean for 5-fold CV while black circles indicate mAP for individual folds. c) 
Comparison of identification accuracy for SIPEC:IdNet module, idtracker.ai3, and randomly 
shuffled labels (chance performance). 8 videos from 8 individual mice and 7 videos from 4 
group-housed primates are used. All data is represented by a minimum to maximum box-and-
whisker plot, showing all points. d) The accuracy of SIPEC:IdNet (for primates and mice) as a 
function of the number of training labels used. The black lines indicate the mean for 5-fold CV 
with individual folds displayed.  
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Fig. 3 | SIPEC:BehaveNet outperforms DeepLabCut-based approach (Sturman et al.13). 
a) Comparison of behavioral classification by human annotator (ground truth), 
SIPEC:BehaveNet, and Sturman et al.13 b) Errors in the classification of mouse behavior in 
open arena for SIPEC:BehaveNet versus Sturman et al. Each colored dot represents a 
behavioral event that is incorrectly classified by that method (while correctly classified by the 
other) with respect to the ground truth. none-classified (background class) positions of mice are 
indicated as grey dots. c) Frame-by-frame classification performance per video (n=20 mice) 
compared to ground truth. Wilcoxon paired test:* p <= 0.05; *** p <= 0.001; **** p <= 0.0001. 
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d) SIPEC:BehaveNet classification performance as a function of labeled minutes. All data is 
represented by a Tukey box-and-whisker plot, showing all points.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.10.26.355115doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355115
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Fig. 4 | SIPEC can recognize social interactions of multiple primates and infer their 3D 
position using a single camera. a) Performance of SIPEC:BehaveNet for individual and social 
behaviors with respect to ground truth evaluated using grouped 5-fold CV. Behaviors include 
searching, object interaction, and social grooming; while the performance is measured using 
F1. F1 on shuffled labels is included for comparison. All data is represented by a minimum to 
maximum box-and-whisker plot, showing all points. b) Evaluation of 3D position estimates of 
primates in home-cage. Annotated positions (n=300) are marked by black spots while predicted 
positions are marked as red-hued spots at the end of the solid arrows (color-coded using a red 
gradient with brighter red indicating higher RMSE of predicted to true position). 
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Methods 

Animals. C57BL/6J (C57BL/6JRj) mice (male, 2.5 months of age) were obtained from Janvier 
(France). Mice were maintained in a temperature- and humidity-controlled facility on a 12-h 
reversed light-dark cycle (lights on at 08:15 am) with food and water ad libitum. Mice were 
housed in groups of 5 per cage and used for experiments when 2.5–4 months old. For each 
experiment, mice of the same age were used in all experimental groups to rule out confounding 
effects of age. All tests were conducted during the animals’ active (dark) phase from 12–5 pm. 
Mice were single housed 24 h before behavioral testing in order to standardize their 
environment and avoid disturbing cage mates during testing. The animal procedures of these 
studies were approved by the local veterinary authorities of the Canton Zurich, Switzerland, 
and carried out in accordance with the guidelines published in the European Communities 
Council Directive of November 24, 1986 (86/609/EEC).  

Acquisition of mouse data. For mouse behavioral data and annotation we refer to Sturman et 
al.13. For each day we randomized the recording chamber of mice used. On day 1,2 we recorded 
animals 1-8 individually. On day 3, for measuring the effect of interventions on performance, 
were forced swim tested in water for 5 minutes immediately before to the recording sessions. 

Acquisition of primate data. 4 male rhesus macaques (Primates were recorded with a 1080p 
camera withing their home-cage. The large indoor room measures about 15m2. Videos were 
acquired using a Bosch Autodome IP starlight 7000 HD camera with 1080p resolution at 50 
Hz. 

Annotation of segmentation data. To generate training data for segmentation training, we 
randomly extracted frames of mouse and primate videos using a standard video player. Next, 
we used the VIA video annotator20 to draw outlines around the animals. 

Generation and annotation of primate behavioral videos. For creating the dataset, 3 primate 
videos of 20-30 minutes were annotated using the VIA video annotator20. These videos were 
generated by previous outputs of SIPEC:SegNet and SIPEC:IdNet. Frames of primates, that 
were identified as the same over consecutive frames, were stitched together in order to generate 
individualized videos. To generate videos of social interactions, we dilated the frames of each 
primate in each frame and checked if their overlap crossed a threshold, in which case we 
recalculated the COM of those two masks and center-cropped the frame around it. Labeled 
behaviors included ‘searching’, ‘object interacting’, ‘social grooming’ and ‘none’ (background 
class).  

Tracking. Based on the outputs of the segmentation masks, we implemented greedy-match 
based tracking. For a given frame the bounding box of a given animal is assigned to the 
bounding box in the previous frame with the largest spatial overlap. We used the resulting track-
identities to smooth the labels that were output by SIPEC:IdNet. 
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Identification labeling with the SIPEC toolbox. As part of SIPEC we release a GUI that 
allows to label for identification when multiple animals are present (Supplementary Figure 4). 
For that SIPEC:SegNet has to be trained and inference has to be performed on videos to be id-
labeled. SIPEC:SegNet results can then be loaded from the GUI and overlaid with the original 
videos. Each box then marks an instance of the species that is to be labeled in green. For each 
of the animals, a number on the keyboard can be defined, which corresponds to the permanent 
id of the animal. This number has then to be pressed and the mask-focus jumps to the next mask 
until all masks in that frame are annotated. Subsequently, the GUI jumps to the next frame in 
either regular intervals or randomly throughout the video, as predefined by the user. Once a 
predefined number of masks is reached, results are saved and the GUI is closed. 

SIPEC:SegNet Network Architecture and training. SIPEC:SegNet was designed by 
optimizing the Mask R-CNN architecture. We utilized a ResNet101 and feature pyramid 
network (FPN)31 as the basis of a convolutional backbone architecture. These features were fed 
to the region proposal network (RPN), which applies convolutions onto these feature maps and 
proposes regions of interest (ROIs). Subsequently, these are passed to a ROIAlign layer, which 
performs feature pooling, while preserving the pixel-correspondence in the original image. Per 
level of the pyramidal ROIAlign layer we assign a ROI feature map from the different layers 
of the FPN feature maps. Now multiple outputs are generated from the FPN, one is classifying 
if an animal is identified. The regressor head of the FPN returns bounding-box regression 
offsets per ROI. Another fully convolutional performs the mask prediction, returning a binary 
mask for each animal ROI. The network is trained using stochastic gradient descent, 
minimizing a multi-task loss for each ROI: 

L  =  𝐿!"#$ + 𝐿%&'%&##()* + 𝐿+,"## 

where 𝐿!"#$  is the average binary cross-entropy, applied to each ROI. 𝐿%&'%&##()*  is a 
regression loss function, modified to be outlier robust as in the original Fast R-CNN paper32. 
𝐿+,"## is calculated for each of the anchors as a logarithmic loss of non-object vs object. The 
learning rate was 0.0025 and training was done by first training the output layers for some 
epochs and then incrementally training previous blocks. 

SIPEC:IdNet Network Architecture and training. SIPEC:IdNet was based on the DenseNet 
architecture21 for frame-by-frame identification. It consists of 4 dense blocks, which consist of 
multiple sequences of a batch normalization layer, a ReLU activation and a convolution. The 
resulting feature maps are concatenated to the outputs of the following sequences of layers 
(skip-connections). The resulting blocks are connected through transitions, that are 
convolutional followed by pooling layers. After the last dense block, there is an average pooling 
layer that we connect to a Dropout33 layer with a dropout rate of 0.5 followed by the softmax 
classification layer. For the recurrent SIPEC:IdNet we remove the softmax layer and feed the 
output of the average pooling layers for each timepoint into a batch normalization layer34 
followed by 3 layers of bidirectional gated recurrent units23,24 with leaky ReLU activation35,36 
(alpha=0.3) followed by a 0.2 Dropout33 followed by the softmax layer. The input for 
SIPEC:IdNet is the output cutouts of individuals, generated by SIPEC:SegNet (for the single-
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animal case a background-subtracted thresholding and centered-cropping would also work). 
For the recurrent case, the masks of past or future frames are dilated with a factor that increases 
with distance in time in order to increase the field of view. We pre-trained first the not-recurrent 
version of SIPEC:IdNet using Adam37 with an lr=0.00025, a batch size of 16 and using a 
weighted cross-entropy loss. We used a learning rate scheduler in the following form: 

𝐿-./ =
0!
$!

 (2) 

Where E stands for epoch, using a k=1.5. Subsequently we removed the softmax layer and 
fixed the weights of the network. We then trained the recurrent SIPEC:IdNet again using 
Adam37 and an lr=0.00005, k=1.25 and a batch size of 6. 

SIPEC:BehaveNet Network Architecture and training. SIPEC:BehaveNet was 
constructed as an end-to-end action recognition network. It consists of a feature recognition 
network that performs on a single frame basis and a network, which integrates these features 
over time (Supplementary Figure 2). The feature recognition network (FRN) is based on the 
Xception25 architecture, which consists of an entry flow, a middle flow and an exit flow. The 
entry flow initially processes the input with convolution and ReLU blocks. Subsequently, we 
pass the feature maps through 3 blocks of separable convolution layers, followed by ReLU , 
separable convolution and a max pooling layer. The outputs of these 3 blocks are convolved 
and concatenated. And passed to the middle flow.  The Middle flow consists of 8 blocks of a 
ReLU layer followed by a separable convolution layer. The Exit receives the feature maps 
from the middle flow and passes it one more entry-flow like block, followed by 2 times of 
separable convolution and ReLU units. Finally, these features are integrated by a global 
average pooling layer and then the softmax output. This FRN was first pre-trained on frame-
by-frame basis using an lr=0.00035, gradient clipping norm of 0.5 and batch size=36 using 
the Adam37 optimizer. For mouse data we reduced the original Xception architecture by the 
first 17 layers, in order to speed up computation and reduce overfitting. After training the 
FRN the outputting dense and softmax layers were removed and all weights were fixed for 
further training. The FRN-features were integrated over time by a non-cause Temporal 
Convolution Network26. It is non-causal, because for classification of behavior at timepoint t 
it integrates features from [t-n,t+n] with n being the number of timesteps, therefore looking 
not only backward in time but also forward. In this study, we used an n of 10. The FRN 
features are transformed by multiple TCN blocks of the following form: 1D-Convolution 
followed by batch normalization, a ReLU activation and spatial dropout. The optimization 
was performed using Adam37 as well with a learning rate of 0.0001 and a gradient clipping 
norm of 0.5, trained with a batch size of 16. 

Loss adaptation. To overcome the problem of strong data imbalance (most frames are annotated 
as ‘none’, i.e. no labeled behavior), we used a multi-class adaptation of the in object detection 
often used Focal loss38 for action recognition, to discount the contribution of the background 
class to the overall loss: 
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𝐿1)+", = −𝛼(1 − 𝑝2)3 log 𝑝2 

We used a gamma = 3.0 and an alpha = 0.5. For evaluation, we used the commonly used F1 
metric to assess multi-class classification performance, while using Pearson Correlation to 
assess temporal correlation. 

SIPEC:PoseNet Network Architecture and training. In combination with SIPEC:SegNet we 
can perform top-down pose estimation with SIPEC:PoseNet. That means, instead of pose 
estimation network outputting for one landmark multiple possible outputs, corresponding to 
different animals, we can first segment different animals and then run SIPEC:PoseNet per 
animal on its cropped frame. In principle, every architecture can now be run on the cropped 
animal frame, including DLC1. We ship SIPEC with a SIPEC:PoseNet architecture that is based 
on a simple encoder-decoder design29. For processing target images for pose-regression, we 
convolved pose landmark locations in the image with a 2D Gaussian kernel. Since there were 
many frames with an incomplete number of labels, we defined a custom cross-entropy-based 
loss function, which was 0 for non-existing labels. 

𝐿(*+)!4,&2& = /
𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦

0, 𝑖𝑓	𝑙𝑎𝑏𝑒𝑙𝑠	𝑑𝑜𝑒𝑠	𝑛𝑜𝑡	𝑒𝑥𝑖𝑠𝑡 

Implementation and Hardware. For all neural network implementations, we used 
Tensorflow39 and Keras40. Computations were done on either NVIDIA RTX 2080 Ti or V100 
GPUs.  

3D location labeling. To annotate the 3D location of a primate, we firstly create a precise 
model of the physical room (Supplementary Figure 9). For a given mask-cutout of a primate, 
we place an artificial primate at an approximate location in the 3D-model. We can then directly 
readout the 3D-position of the primate. 300 samples are annotated which altogether cover the 
most frequent parts of primate positions. 

3D location estimation. To regress the animal position in 3D, we trained a manifold 
embedding using Isomap30 using the mask size (normalized sum of positively classified pixels), 
the x and y pixel positions and their pairwise multiplications as features. We used the resulting 
6 Isomap features, together with the inverse square root of the mask size, mask size and x-y-
position in pixel space to train an ordinary least squares regression model to predict the 3D 
position of the animal. 

Metrics used. 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛56 =
∑ (𝑥( 	− 	 �̅�*
(7/ )(𝑦( 	− 	𝑦F)

G∑ (𝑥( 	− 	 �̅�*
(7/ )8G∑ (𝑦( 	− 	𝑦F*

(7/ )8
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𝑅𝑀𝑆𝐸 = 	K
∑ (𝑦L* − 𝑦*)89
*7/

𝑁  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃	 + 	𝐹𝑃	

𝑟𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃	 + 	𝐹𝑁 

Where TP denote True Positives, FP False Positives, TN True Negatives and FN False 
Negatives. 

	

𝐹1 = 	2 ·
𝑝𝑟𝑒𝑐𝑠𝑖𝑜𝑛	 · 	𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 + 	𝑟𝑒𝑐𝑎𝑙𝑙 

𝐼𝑜𝑈(𝑀:; , 𝑀<) =
𝑀:;⋂𝑀<

𝑀:;⋃𝑀<
 

Where 𝑀:; denotes the ground truth mask and 𝑀< the predicted one.  We now calculate the 
mAP for detections with an IoU > 0.5 as follows: 

𝑚𝐴𝑃	 = 		Y(
*7=

𝒓𝒏.𝟏 − 𝒓𝒏)	𝝆𝒊𝒏𝒕𝒆𝒓𝒑(𝒓𝒏.𝟏) 

With 

𝜌(*2&%4(𝑟*./) = 𝑚𝑎𝑥
%̃:%̃G%"#$

𝜌(�̃�) 

Where 𝜌(𝑟) denotes precision measure at a given recall value. 

Data Availability 
Data available upon reasonable request. 
 
Code Availability 
We provide the code for SIPEC at: https://github.com/damaggu/SIPEC and the GUI for the 
identification of animals https://github.com/damaggu/idtracking_gui. 
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Supplementary 
 

 
Supplementary Figure 1 | Segmentation annotation illustration. Examplary frame of mice 
in OFT with manually annotated outlines. 
 

 
Supplementary Figure 2 | Mouse 4plex segmentation. Number of 4plex labels needed to 
retrain single-mouse model for recovering mAP. 0 labels stands for the model trained on a 
single animal. All data is represented  mean, showing all points. 
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Supplementary Figure 3 | Identification Graphical User Interface. Mask-box results from 
SIPEC:SegNet is overlaid over frames in blue and can be labeled one by one. The current box 
to be labeled is in green. A simple keyboard input scheme is provided within the GUI. Names 
of individuals and the number of masks to be labeled can be set by the user. 
 
 

 
Supplementary Figure 4 | Example frames of the 8 distinct mice. 
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Supplementary Fig. 5 | Identification performance of mice across days and interventions. 
Identification accuracy across days for models trained on day 1. While the performance for the 
day the model is trained on is very high it drops when tested on day 2, but is still significantly 
above chance level. When tested on day 3, after a forced swim test intervention, the 
performance drops significantly. All data is represented  mean, showing all points. 
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Supplementary Figure 6 | Identification of typical vs difficult frames. a) Displayed are very 
difficult exemplary frames, which are also beyond human single-frame recognition, that are 
excluded for the ‘typical’ frame evaluation. b) Exemplary frames are shown, used for the 
‘typical’ frames analysis. c) Identification performance is significantly higher on ‘typical’ 
frames than on all frames. All data is represented  mean, showing all points. 
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Supplementary Figure 7 | Additional behavioral evaluation. a) Overall increased F1 score 
is caused by an increased recall in case of grooming events and precision for unsupported 
rearing events. b) Comparison of F1 values as well as Pearson Correlation of SIPEC:BehaveNet 
to human-to-human performance. All data is represented by a Tukey box-and-whisker plot, 
showing all points. 
 
 

 
Supplementary Figure 8 | Pose estimation. Pose estimation performance of SIPEC:PoseNet 
as a function of labeled frames for estimating the location of 13 standardized body parts on a 
video frame containing a single mouse in OFT. 
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Supplementary Figure 9 | 3D model used for annotation of primate 3D-location data. 
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